Skip to main content
Log in

Enantioselective synthesis of heterocyclic compounds using photochemical reactions

  • Reviews
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Different methods for the direct enantioselective photochemical synthesis of heterocycles are presented. Currently, asymmetric catalysis with templates involving hydrogen bonds or metal complexes is intensively investigated. Enzyme catalysis can be simplified under photochemical conditions. For example, in multi enzyme systems, one or more enzyme catalytic steps can be replaced by simple photochemical reactions. Chiral induction in photochemical reactions performed with homochiral crystals is highly efficient. Such reactions can also be carried out with crystalline inclusion complexes. Inclusion of a photochemical substrate and an enantiopure compound in zeolites also leads to enantioselective compounds. In all these methods, the conformational mobility of the photochemical substrates is reduced or controlled. Memory of chirality is a particular case in which a chiral information is temporally lost but the rigid conformations stabilize the molecular structure which leads to the formation of enantiopure compounds. Such studies allows a profound understanding on how particular conformations determine the configuration of the final products.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Scheme 4
Fig. 2
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Fig. 3
Scheme 18
Scheme 19
Scheme 20

Similar content being viewed by others

References

  1. Hoffmann, N. (2008). Photochemical reactions as key steps in organic synthesis. Chemical Reviews, 108, 1052–1103.

    PubMed  CAS  Google Scholar 

  2. Bach, T., & Hehn, J. P. (2011). Photochemical reactions as key steps in natural product synthesis. Angewandte Chemie International Edition, 50, 1000–1052.

    PubMed  CAS  Google Scholar 

  3. Kärkäs, M. D., Porco, J. A., & Stephenson, C. R. J. (2016). Photochemical approaches to complex chemotypes: Application in natural product synthesis. Chemical Reviews, 116, 9683–9747.

    PubMed  PubMed Central  Google Scholar 

  4. Gerry, C. J., & Schreiber, S. L. (2018). Chemical probes and drug leads from advances in synthetic planning and methodology. Nature Reviews, 17, 333–352.

    PubMed  CAS  Google Scholar 

  5. Schreiber, S. L. (2000). Target-oriented and diversity-oriented organic synthesis in drug discovery. Science, 287, 1964–1969.

    CAS  Google Scholar 

  6. Galloway, W. R. J. D., Isidro-Llobet, A., & Spring, D. R. (2010). Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules. Nature Communications, 1, 80.

    PubMed  Google Scholar 

  7. Beletskaya, I. P., Nájera, C., & Yus, M. (2020). Chemodivergent reactions. Chemical Society Reviews, 49, 7101–7166.

    PubMed  CAS  Google Scholar 

  8. Turro, N. J., & Schuster, G. (1975). Photochemical reactions as a tool in organic synthesis. Science, 187, 303–312.

    PubMed  CAS  Google Scholar 

  9. Klan, P., & Wirz, J. (2009). Photochemistry of organic compounds. Wiley.

    Google Scholar 

  10. Buzzetti, L., Crisenza, G. E. M., & Melchiorre, P. (2019). Mechanistic studies in photocatalysis. Angewandte Chemie International Edition, 58, 3730–3747.

    PubMed  CAS  Google Scholar 

  11. Dinges, J., & Lamberth, C. (Eds.). (2012). Bioactive heterocyclic compound classes—Pharmaceuticals. Wiley-VCH.

    Google Scholar 

  12. Lamberth, C., & Dinges, J. (Eds.). (2012). Bioactive heterocyclic compound classes—Agrochemicals. Wiley-VCH.

    Google Scholar 

  13. Krämer, W., Schirmer, U., Jeschke, P., & Witschel, M. (Eds.). (2012). Modern crop protection compounds, Vol. 1–3 (2nd ed.). Wiley-VCH.

    Google Scholar 

  14. Ostroverkhova, O. (Ed.). (2019). Handbook of organic materials for electronic and photonic devices (2nd ed.). Elsevier.

    Google Scholar 

  15. Lefebvre, C., Fortier, L., & Hoffmann, N. (2020). Photochemical rearrangements in heterocyclic chemistry. European Journal of Organic Chemistry, 2020, 1393–1404.

    CAS  Google Scholar 

  16. Latrache, M., & Hoffmann, N. (2021). Photochemical radical cyclization reactions with imines, hydrazones, oximes and related compounds. Chemical Society Reviews, 50, 7418–7435.

    PubMed  CAS  Google Scholar 

  17. Taylor, R. D., MacCoss, M., & Lawson, A. D. G. (2014). Rings in drugs. Journal of Medicinal Chemistry, 57, 5845–5859.

    PubMed  CAS  Google Scholar 

  18. Aldeghi, M., Malhotra, S., Selwood, D. L., & Cahn, A. W. E. (2014). Two and three-dimensional rings in drugs. Chemical Biology & Drug Design, 83, 450–461.

    CAS  Google Scholar 

  19. Lovering, F., Bikker, J., & Humblet, C. (2009). Escape from flatland: Increasing saturation as an approach to improving clinical success. Journal of Medicinal Chemistry, 52, 6752–6756.

    PubMed  CAS  Google Scholar 

  20. Stockdale, T. P., & Williams, C. M. (2015). Pharmaceuticals that contain polycyclic hydrocarbon scaffolds. Chemical Society Reviews, 44, 7737–7763.

    PubMed  CAS  Google Scholar 

  21. Oelgemöller, M., & Hoffmann, N. (2016). Studies in organic and physical photochemistry—An interdisciplinary approach. Organic & Biomolecular Chemistry, 14, 7392–7442.

    Google Scholar 

  22. Roth, H. D. (1989). The beginnings of organic photochemistry. Angewandte Chemie International Edition, 28, 1193–1207.

    Google Scholar 

  23. Rau, H. (1983). Asymmetric photochemistry in solution. Chemical Reviews, 83, 535–547.

    CAS  Google Scholar 

  24. Inoue, Y. (1992). Asymmetric photochemical reactions in solution. Chemical Reviews, 92, 741–770.

    CAS  Google Scholar 

  25. Inoue, Y., & Ramamurthy, V. (Eds.). (2004). Chiral photochemistry. Marcel Dekker.

    Google Scholar 

  26. Griesbeck, A. G., & Meierhenrich, U. (2002). Asymmetric photochemistry and photochirogenesis. Angewandte Chemie International Edition, 41, 3147–3154.

    PubMed  Google Scholar 

  27. Meggers, E. (2015). Asymmetric catalysis activated by visible light. Chemical Communications, 51, 3290–3301.

    PubMed  CAS  Google Scholar 

  28. Prentice, C., Morrisson, J., Smith, A. D., & Zysman-Colman, E. (2020). Recent developments in enantioselective photocatalysis. Beilstein Journal of Organic Chemistry, 16, 2363–2441.

    PubMed  PubMed Central  Google Scholar 

  29. Rigotti, T., & Alemán, J. (2020). Visible light photocatalysis—From racemic to asymmetric activation strategies. Chemical Communications, 56, 11169–11190.

    PubMed  CAS  Google Scholar 

  30. Genzink, M. J., Kidd, J. B., Swords, W. B., & Yoon, T. P. (2021). Chiral photocatalysts structures in asymmetric photochemical synthesis. Chemical Reviews. https://doi.org/10.1021/acs.chemrev.1c00467

    Article  PubMed  Google Scholar 

  31. Ramamurthy, V., & Sivaguru, J. (2016). Supramolecular photochemistry as a potential synthetic tool: Photocycloaddition. Chemical Reviews, 116, 9914–9993.

    PubMed  CAS  Google Scholar 

  32. Ramamurthy, V., & Mondal, B. (2015). Supramolecular photochemistry concepts highlighted with select examples. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 23, 68–102.

    CAS  Google Scholar 

  33. Vallavoju, N., & Sivaguru, S. (2014). Supramolecular photocatalysis: Combining confinement and non-covalent interactions to control light initiated reactions. Chemical Society Reviews, 43, 4084–4101.

    PubMed  CAS  Google Scholar 

  34. Brimioulle, R., Lenhart, D., Maturi, M. M., & Bach, T. (2015). Enantioselective catalysis of photochemical reactions. Angewandte Chemie International Edition, 54, 3872–3890.

    PubMed  CAS  Google Scholar 

  35. Yang, C., & Inoue, Y. (2014). Supramolecular photochirogenesis. Chemical Society Reviews, 43, 4123–4123.

    PubMed  CAS  Google Scholar 

  36. Stephenson, C. R. J., Yoon, T. P., & MacMillan, D. W. C. (Eds.). (2018). Visible light photocatalysis in organic chemistry. Wiley VCH.

    Google Scholar 

  37. König, B. (Ed.). (2020). Photocatalysis (2nd ed.). Walter d Gruyter.

    Google Scholar 

  38. Michelin, C., & Hoffmann, N. (2018). Photosensitization and photocatalysis—Perspectives in organic synthesis. ACS Catalysis, 8, 12046–12055.

    CAS  Google Scholar 

  39. Michelin, C., & Hoffmann, N. (2018). Photocatalysis applied to organic synthesis—A green chemistry approach. Current Research in Green and Sustainable Chemistry, 10, 40–45.

    Google Scholar 

  40. Ciamician, G. (1912). The Photochemistry of the Future. Science, 36, 385–394.

    PubMed  CAS  Google Scholar 

  41. Ciamician, G. (1908). Sur les actions de la lumière. Bulletin de la Société Chimique de France, 3, i–xxvii.

    Google Scholar 

  42. Paternò, E. (1909). I nuovi orizzonti della sintesi in chimica organica. Gazzetta Chimica Italiana, 39, 213–219.

    Google Scholar 

  43. Albini, A., & Fagnoni, M. (2008). 1908 Giacomo Ciamician and the concept of green chemistry. Chemsuschem, 1, 63–66.

    PubMed  CAS  Google Scholar 

  44. Albini, A., & Fagnoni, M. (2004). Green chemistry and photochemistry were born at the same time. Green Chemistry, 6, 1–6.

    CAS  Google Scholar 

  45. Albini, A., & Dichiarante, V. (2009). The “Belle époque” of photochemistry. Photochemical & Photobiological Sciences, 8, 248–254.

    CAS  Google Scholar 

  46. Anastas, P. T., & Kirchhoff, M. M. (2002). Origins, current status, and future challenges of green chemistry. Accounts of Chemical Research, 35, 686–694.

    PubMed  CAS  Google Scholar 

  47. Protti,S., Manzini, S., Fagnoni, M., & Albini, A. (2009). The contribution of photochemisty to green chemistry. In R. Ballini (Ed.), RSC green chemistry book series, eco-friendly synthesis of fine chemicals (pp. 80–111). Royal Society of Chemistry.

  48. Loubière, K., Oelgemöller, M., Aillet, T., Dechy-Cabaret, O., & Prat, L. (2016). Continuous-flow photochemistry: A need for chemical engineering. Chemical Engineering and Processing, 104, 120–132. 

    Google Scholar 

  49. Cambié, D., Bottecchia, C., Straathof, N. J. W., Hessel, V., & Noël, T. (2016). Application of continuous-flow photochemistry in organic synthesis, material science, and water treatment. Chemical Reviews, 116, 10276–10341. 

    PubMed  Google Scholar 

  50. Mizuno, K., Nishiyama, Y., Ogaki, T., Terao, K., Ikeda, H., & Kakiuchi, K. (2016). Utilization of microflow reactors to carry out synthetically useful organic photochemical reactions. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 29, 107–147. 

    CAS  Google Scholar 

  51. Oelgemöller, M., Hoffmann, N., & Shvydkiv, O. (2014). From ‘lab & light on a chip’ to parallel microflow photochemistry. Australian Journal of Chemistry, 67, 337–342. 

    Google Scholar 

  52. Knowles, J. P., Elliott, L. D., & Booker-Milburn, K. I. (2012). Flow photochemistry: Old light through new windows. Beilstein Journal of Organic Chemistry, 8, 2025–2052. 

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Oelgemöller, M., & Shvydkiv, O. (2011). Recent advances in microflow photochemistry. Molecules, 16, 7522–7550. 

    PubMed  PubMed Central  Google Scholar 

  54. Oelgemöller, M. (2016). Solar photochemical synthesis: From the beginnings of organic photochemistry to the solar manufacturing of commodity chemicals. Chemical Reviews, 116, 9664–9682.

    PubMed  Google Scholar 

  55. Bauer, A., Westkämper, F., Grimme, S., & Bach, T. (2005). Catalytic enantioselective reactions driven by photoinduced electron transfer. Nature, 436, 1139–1140.

    PubMed  CAS  Google Scholar 

  56. Fischer, H., & Radom, L. (2001). Factors controlling the addition of carbon-centered radicals to alkenes – an experimental and theoretical perspective. Angewandte Chemie International Edition, 40, 1340–1371.

    PubMed  CAS  Google Scholar 

  57. Roberts, B. P. (1999). Polarity-reversal catalysis of hydrogen-atom abstraction reactions: Concepts and applications in organic chemistry. Chemical Society Reviews, 28, 25–35.

    CAS  Google Scholar 

  58. Ravelli, D., Fagnoni, M., Fukuyama, T., Nishikawa, T., & Ryu, I. (2018). Site-selective C-H functionalization by Decatungstate anion photocatalysis: Synergistic control by polar and steric effects. ACS Catalysis, 8, 701–713.

    CAS  Google Scholar 

  59. Hoffmann, N. (2015). Electron and hydrogen transfer in organic photochemical reactions. Journal of Physical Organic Chemistry, 28, 121–136.

    CAS  Google Scholar 

  60. Hoffmann, N. (2016). Photochemical electron and hydrogen transfer in organic synthesis: The control of selectivity. Synthesis, 48, 1782–1802.

    CAS  Google Scholar 

  61. Bertrand, S., Hoffmann, N., Humbel, S., & Pete, J.-P. (2000). Diastereoselective tandem addition-cyclization reactions of unsaturated tertiary amines initiated by photochemical electron transfer (PET). Journal of Organic Chemistry, 65, 8690–8703. 

    CAS  Google Scholar 

  62. Hoffmann, N., & Görner, H. (2004). Photoinduced electron transfer from N-methylpyrrolidine to ketones and radical addition to an electron-deficient alkene. Chemical Physics Letters, 383, 451–455. 

    CAS  Google Scholar 

  63. Hoffmann, N., Bertrand, S., Marinković, S., & Pesch, J. (2006). Efficient radical addition of tertiary amines to alkenes using photochemical electron transfer. Pure and Applied Chemistry, 78, 2227–2246. 

    CAS  Google Scholar 

  64. Griesbeck, A. G., Hoffmann, N., & Warzecha, K.-D. (2007). Photoinduced-electron-transfer chemistry: From studies on PET processes to applications in natural product synthesis. Accounts of Chemical Research, 40, 128–140. 

    PubMed  CAS  Google Scholar 

  65. Miller, D. C., Tarantino, K. T., & Knowles, R. R. (2016). Proton-coupled electron transfer in organic synthesis: Fundamentals, applications, and opportunities. Topics in Current Chemistry, 374, 30.

    PubMed  Google Scholar 

  66. Hoffmann, N. (2017). Proton-coupled electron transfer in photoredox catalytic reactions. European Journal of Organic Chemistry, 2017, 1982–1992.

    CAS  Google Scholar 

  67. Nguyen, L. Q., & Knowles, R. R. (2016). Catalytic C-N bond-forming reactions enabled by proton-coupled electron transfer activation of amide N-H bondes. ACS Catalysis, 6, 2894–2903.

    CAS  Google Scholar 

  68. Alonso, R., & Bach, T. (2014). A Chiral Thioxanthone as an organocatalyst for enantioselective [2+2] photocycloaddition reactions induced by visible light. Angewandte Chemie International Edition, 53, 4368–4371.

    PubMed  CAS  Google Scholar 

  69. Li, X., Jandl, C., & Bach, T. (2020). Visible-light-mediated enantioselective photoreactions of 3-alkylquinolones with 4-O-tethered alkenes and allenes. Organic Letters, 22, 3618–3622.

    PubMed  CAS  Google Scholar 

  70. Skubi, K. L., Kidd, J. B., Jung, H., Guzei, I. A., Baik, M.-H., & Yoon, T. P. (2017). Enantioselective excited-state photoreactions controlled by a chiral hydrogen-bonding iridium sensitizer. Journal of the American Chemical Society, 139, 17186–17192.

    PubMed  PubMed Central  CAS  Google Scholar 

  71. Cauble, D. F., Lynch, V., & Krische, M. J. (2003). Studies on the enantioselective catalysis of photochemically promoted transformations: “sensitizing receptors” as chiral catalysts. Journal of Organic Chemistry, 68, 15–21.

    CAS  Google Scholar 

  72. Li, X., Großkopf, J., Jandl, C., & Bach, T. (2021). Enantioselective, visible light mediated aza Paternò-Büchi reactions of quinoxalinones. Angewandte Chemie International Edition, 60, 2684–2688.

    PubMed  CAS  Google Scholar 

  73. Brimioulle, R., & Bach, T. (2013). Enantioselective lewis acid catalysis of intramolecular enone [2+2] photocycloaddition reactions. Science, 342, 840–843.

    PubMed  CAS  Google Scholar 

  74. Zhang, C., Chen, S., Ye, X.-X., Harms, K., Zhang, L., Houk, K. N., & Meggers, E. (2019). Asymmetric photocatalysis by intramolecular hydrogen-atom transfer in photoexcited catalyst-substrate complex. Angewandte Chemie International Edition, 58, 14462–14466.

    PubMed  CAS  Google Scholar 

  75. Xia, W., Shao, Y., Gui, W., & Yang, C. (2011). Efficient synthesis of polysubstituted isochromanones via a novel photochemical rearrangement. Chemical Communications, 47, 11098–11100. The same unusual reaction was carried out under UV irradiation without metal complexation or chiral induction.

    PubMed  CAS  Google Scholar 

  76. Huang, X., Li, X., Xie, X., Harms, K., Riedel, R., & Meggers, E. (2017). Catalytic asymmetric synthesis of a nitrogen heterocycle through stereocontrolled direct photoreaction form the electronically excited state. Nature Communications, 8, 2245.

    PubMed  PubMed Central  Google Scholar 

  77. Nakafuku, K. M., Zhang, Z., Wappes, E. A., Stateman, L. M., Chen, A. D., & Nagib, D. A. (2020). Enantioselective radical C-H amination for the synthesis of β-amino alcohols. Nature Chemistry, 12, 697–704.

    PubMed  PubMed Central  Google Scholar 

  78. Seebach, D., Beck, A. K., & Heckel, A. (2001). TADDOLs, their derivatives, and TADDOL analogues: versatile chiral auxiliaries. Angewandte Chemie International Edition, 40, 92–138.

    PubMed  CAS  Google Scholar 

  79. Wang, W., Clay, A., Krishnan, R., Lajkiewisz, N. J., Brown, L. E., Sivaguru, J., & Porco, J. A., Jr. (2017). Total syntheses of isomeric aglain natural products foveoglin A and perviridine B: Excited-state intramolecular proton-transfer photocycloaddition. Angewandte Chemie International Edition, 56, 14479–14482.

    PubMed  CAS  Google Scholar 

  80. Roche, S. P., Cencic, R., Pelletier, J., & Porco, J. A., Jr. (2010). Biomimetic photocycloaddition of 3-Hydroxyflavones: Synthesis and evaluation of rocaglate derivatives as inhibitors of eukariotic translation. Angewandte Chemie International Edition, 49, 6533–6538.

    PubMed  CAS  Google Scholar 

  81. McMorrow, D., & Kasha, M. (1984). Intramolecular excited-state proton transfer in 3-hydroxyflavone. Hydrogen-bonding solvent perturbations. Journal of Physical Chemistry, 88, 2235–2243.

    CAS  Google Scholar 

  82. Bader, A. N., Pivovarenko, V. G., Demchenko, A. P., Ariese, F., & Gooijer, C. (2004). Excited state and ground state proton transfer rates of 3-hydroxyflavone and its derivatives studied by Shpol’skii spectroscopy: The influence of redistribution of electron density. The Journal of Physical Chemistry B, 108, 10589–10595.

    CAS  Google Scholar 

  83. Rono, L. J., Yayla, H. G., Wang, D. Y., Armstrong, M. F., & Knowles, R. R. (2013). Enantioselective photoredox catalysis enabled by proton-coupled electron transfer: Development of an asymmetric aza-pinacol cyclization. Journal of the American Chemical Society, 135, 17735–17738.

    PubMed  CAS  Google Scholar 

  84. Gentry, E. C., & Knowles, R. R. (2016). Synthetic applications of proton-coupled electron transfer. Accounts of Chemical Research, 49, 1546–1556.

    PubMed  PubMed Central  CAS  Google Scholar 

  85. Roos, C. B., Demaerel, J., Graff, D. E., & Knowles, R. R. (2020). Enantioselective hydroamination of alkenes with sulfonamides enabled by proton-coupled electron transfer. Journal of the American Chemical Society, 142, 5974–5979.

    PubMed  PubMed Central  CAS  Google Scholar 

  86. Heller, B., & Hapke, M. (2007). The fascinating construction of pyridine ring systems by transition metal-catalysed [2+2+2] cycloaddition reactions. Chemical Society Reviews, 36, 1085–1094.

    PubMed  CAS  Google Scholar 

  87. Schulz, W., Pracejus, H., & Oehme, G. (1989). Photoassisted cocyclization of acetylene and nitriles catalyzed by cobalt complexes at ambient temperature and normal pressure. Tetrahedron Letters, 30, 1229–1232.

    CAS  Google Scholar 

  88. Heller, B., Heller, D., & Oehme, G. (1996). Systematic investigation of the photocatalytic alkyne-nitrile heterotrimerisation to pyridine. Journal of Molecular Catalysis A, 110, 211–219.

    CAS  Google Scholar 

  89. Heller, B., Sudermann, B., Fischer, C., You, J., Chen, W., Drexler, H.-J., Knochel, P., Bonrath, W., & Gutnov, A. (2003). Facile and racemization-free conversion of chiral nitriles into pyridine derivatives. Journal of Organic Chemistry, 68, 9221–9225.

    CAS  Google Scholar 

  90. Heller, B., Sudermann, B., Buschmann, H., Drexler, H.-J., You, J., Holzgrabe, U., Heller, E., & Oehme, G. (2002). Photocatalyzed [2+2+2]-cycloaddition of nitriles with acetylene: An effective method for the synthesis of 2-pyridines under mild conditions. Journal of Organic Chemistry, 67, 4414–4422.

    CAS  Google Scholar 

  91. Gutnov, A., Heller, B., Fischer, C., Drexler, H.-J., Spannenberg, A., Sundermann, B., & Sundermann, C. (2004). Cobalt(I)-catalysed [2+2+2] cycloaddition of alkynes and nitriles: Synthesis of enantiomerically enriched atropoisomers of 2-arylpyridines. Angewandte Chemie International Edition, 43, 3795–3797.

    PubMed  CAS  Google Scholar 

  92. Kumarasamy, E., Ayitou, A.J.-L., Vallavoju, N., Raghunathan, R., Iyer, A., Clay, A., Kanadappa, S. K., & Sivaguru, J. (2016). Tale of twisted molecules. Atropslective photoreactions: taming light induced asymmetric transformations through non-biaryl atropisomers. Accounts of Chemical Research, 49, 2713–2724.

    PubMed  CAS  Google Scholar 

  93. Drauz, K., Gröger, H., & May, O. (Eds.). (2012). Enzyme catalysis in organic synthesis (3rd ed.). Wiley-VCH.

    Google Scholar 

  94. Ni, Y., & Hollmann, F. (2016). Artificial Photosynthesis: Hybrid Systems. Advances in Biochemical Engineering/Biotechnology, 159, 137–158.

    Google Scholar 

  95. Maciá-Agulló, J. A., Corma, A., & Garcia, J. (2015). Photocatalysis: The power of combining photocatalysis and enzymes. Chemistry: A European Journal, 21, 10940–10959.

    Google Scholar 

  96. Burek, B. O., Bormann, S., Hollmann, F., Bloh, J. Z., & Holtmann, D. (2019). Hydrogen peroxide driven biocatalysis. Green Chemistry, 21, 3232–3249.

    CAS  Google Scholar 

  97. Hollmann, F., Kara, S., Opperman, D. J., & Wang, Y. (2018). Biocatalytic synthesis of lactones and lactams. Chemistry - An Asian Journal, 13, 3601–3610.

    CAS  Google Scholar 

  98. Alphand, V., & Wohlgemuth, R. (2010). Application of Baeyer–Villiger monooxygenase in organic synthesis. Current Organic Chemistry, 14, 1928–1965.

    CAS  Google Scholar 

  99. Mihovilovic, M. D. (2006). Enzyme mediated Baeyer–Villiger oxidations. Current Organic Chemistry, 10, 1265–1287.

    CAS  Google Scholar 

  100. Mihovilovic, M. D., Müller, B., & Stanetty, P. (2002). Monooxygenase-mediated Baeyer–Villiger oxidations. European Journal of Organic Chemistry, 2002, 3711–3730.

    Google Scholar 

  101. Hollmann, F., Taglieber, A., Schulz, F., & Reez, M. T. (2007). A light-driven stereoselective biocatalytic oxidation. Angewandte Chemie International Edition, 46, 2903–2906.

    PubMed  CAS  Google Scholar 

  102. Krow, G. R. (1993). The Baeyer–Villiger oxidation of ketones and aldehydes. Organic Reactions, 43, 251–798.

    CAS  Google Scholar 

  103. Renz, M., & Meunier, B. (1999). 100 Years of Baeyer–Villiger oxidations. European Journal of Organic Chemistry, 1999, 737–750.

    Google Scholar 

  104. Gargiulo, S., Arends, I. W. C. E., & Hollmann, F. (2011). A photoenzymatic system, for alcohol oxidation. ChemCatChem, 3, 338–342.

    CAS  Google Scholar 

  105. Kroutil, W., Mang, H., Edegger, K., & Faber, K. (2004). Biocatalytic oxidation of primary and secondary alcohols. Advanced Synthesis & Catalysis, 346, 125–142.

    CAS  Google Scholar 

  106. Rauch, M., Schmidt, S., Arends, I. W. C. E., Oppelt, K., Kara, S., & Hollmann, F. (2017). Photobiocatalytic alcohol oxidation using LED light sources. Green Chemistry, 19, 376–379.

    CAS  Google Scholar 

  107. Biegasiewicz, K. F., Cooper, S. J., Gao, X., Oblinsky, D. G., Kim, J. H., Garfinkle, S. E., Joyce, L. A., Sandoval, B. A., Scholes, G. D., & Hyster, T. K. (2019). Photoexcitation of flavoenzymes enables a stereoselective radical cyclization. Science, 364, 1166–1169.

    PubMed  PubMed Central  CAS  Google Scholar 

  108. Black, M. J., Biegasiewicz, K. F., Meichan, A. J., Oblinsky, D. G., Kudisch, B., Scholes, G. D., & Hyster, T. K. (2020). Asymmetric redox-neutral radical cyclization catalysed by flavine-dependent ’ene’-reductases. Nature Chemistry, 12, 71–75.

    PubMed  Google Scholar 

  109. Gritsch, P. J., Leitner, C., Pfaffenbach, M., & Gaich, T. (2014). The Witkop cyclization: A photoinduced C-H activation of the indole system. Angewandte Chemie International Edition, 53, 1208–1217.

    PubMed  CAS  Google Scholar 

  110. Zhang, W., Fernandez Fueyo, E., Hollmann, F., Leemans Martin, L., Pesic, M., Wardenga, R., Höhne, M., & Schmidt, S. (2019). Combining photo-organo redox- and enzyme catalysis facilitates asymmetric C-H bond functionalization. European Journal of Organic Chemistry, 2019, 80–84. 

    PubMed  CAS  Google Scholar 

  111. Page, C. G., Cooper, S. J., DeHovitz, J. S., Oblinsky, D. G., Biegasiewicz, K. F., Antonow, A. H., Armbrust, K. W., Ellis, J. M., Hamann, L. G., Horn, E. J., Oberg, K. M., Scholes, G. D., & Hyster, T. K. (2021). Quarternary charge-transfer complex enables photoenzymatic intermolecular hydroalkylation of olefins. Journal of the American Chemical Society, 143, 97–102.

    PubMed  CAS  Google Scholar 

  112. Sandoval, B. A., Clayman, P. D., Oblinsky, D. G., Oh, S., Nakano, Y., Bird, M., Scholes, G. D., & Hyster, T. K. (2021). Photoenzymatic reductions enabled by direct excitation of flavin-dependent “ene”-reductases. Journal of the American Chemical Society, 143, 1735–1739.

    PubMed  CAS  Google Scholar 

  113. Chen, J., Guan, Z., & He, Y.-H. (2019). Photoenzymatic approaches in organic synthesis. Asian Journal of Organic Chemistry, 8, 1775–1790.

    CAS  Google Scholar 

  114. Jacques, J., Collet, A., & Wilen, S. H. (1994). Enantiomers, racemates, and resolutions. Krieger Publishing Com. Copyright 1981, John Wiley & Sons, Inc.

    Google Scholar 

  115. Nespolo, M., Aroyo, M. I., & Souvignier, B. (2018). Crystallographic shelves: Space-group hierarchy explained. Journal of Applied Crystallography, 51, 1481–1491.

    CAS  Google Scholar 

  116. Levkin, P. A., Torbeev, V. Y., Lenev, D. A., & Kostyanovsky, R. G. (2006). Homo- and heterochirality in crystals. Topics in Stereochemistry, 25, 81–134.

    CAS  Google Scholar 

  117. Sakamoto, M. (2006). Spontaneous chiral crystallization of achiral materials and absolute asymmetric photochemical transformation using the chiral crystalline environment. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 7, 183–196.

    CAS  Google Scholar 

  118. Kuroda, R. (2004). Circular dichroim in the solid state. In Y. Inoue & V. Ramamurthy (Eds.), Chiral photochemistry (pp. 385–413). Marcel Dekker.

    Google Scholar 

  119. Green, B. S., Lahav, M., & Rabinonvich, D. (1979). Asymmetric synthesis via reaction in chiral crystals. Accounts of Chemical Research, 12, 191–197.

    CAS  Google Scholar 

  120. Toda, F., Yagi, M., & Soda, S.-I. (1987). Formation of a chiral β-lactam by photocyclisation of an achiral oxo amide in its chiral crystalline state. Journal of the Chemical Society, Chemical Communications, 18, 1413–1414.

    Google Scholar 

  121. Toda, F., & Miyamoto, H. (1993). Formation of chiral β-lactams by photocyclisation of achiral N, N-diisopropylarylglyoxylamides in their chiral crystalline form. Journal of the Chemical Society Perkin Transactions, I, 1129–1132.

    Google Scholar 

  122. Sekine, A., Hori, K., Ohashi, Y., Yagi, M., & Toda, T. (1989). X-ray Structural studies of chiral β-lactam formation from an achiral oxo amide using the chiral-crystal environment. Journal of the American Chemical Society, 111, 697–699.

    CAS  Google Scholar 

  123. Sakamoto, M., Takahashi, M., Kamiya, K., Yamaguchi, K., Fujita, T., & Watanabe, S. (1996). Crystal-to-crystal solid-state photochemistry: absolute asymmetric β-thiolactam synthesis from an achiral α, β-unsaturated thioamide. Journal of the American Chemical Society, 118, 10664–10665.

    CAS  Google Scholar 

  124. Sakamoto, M., Kimura, M., Shimoto, T., Fujita, T., & Watanabe, S. (1990). Photochemical reaction of N, N-dialkyl-α, β-unsaturated thioamides. Journal of the Chemical Society, Chemical Communications, 18, 1214–1215.

    Google Scholar 

  125. Sakamoto, M., Takahashi, M., Arai, W., Mino, T., Yamaguchi, K., Watanabe, S., & Fujita, T. (2000). Solid-state photochemistry: absolute asymmetric β-thiolactam synthesis from achiral N,N-dibenzyl-α, β-unsaturated thioamides. Tetrahedron, 56, 6795–6804.

    CAS  Google Scholar 

  126. Kellogg, R. M. (2017). Practical stereochemistry. Accounts of Chemical Research, 50, 905–914.

    PubMed  CAS  Google Scholar 

  127. Veeman, M., Resendiz, M. J. E., & Garcia-Garibay, M. A. (2006). Large-scale photochemical reactions of nanocrystalline suspensions: A promising green chemistry method. Organic Letters, 8, 2615–2617.

    Google Scholar 

  128. Scheffer, J. R., & Xia, W. (2005). Asymmetric induction in organic photochemistry via the solid-state ionic chiral auxiliary approach. Topics in Current Chemistry, 254, 233–262.

    CAS  Google Scholar 

  129. Natarajan, A., Wang, K., Ramamurthy, V., Scheffer, J. R., & Patrick, B. (2002). Control of enantioselectivity in the photochemical conversion of α-oxoamides into β-lactam derivatives. Organic Letters, 4, 1443–1446.

    PubMed  CAS  Google Scholar 

  130. Galindo, F. (2005). The photochemical rearrangement of aromatic ethers A review of the Photo-Claisen reaction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 6, 123–138.

    CAS  Google Scholar 

  131. Xia, W., Yang, C., Patrick, B. O., Scheffer, J. R., & Scott, C. (2005). Asymmetric synthesis of dihydrofurans via a formal retro-claisen photorearrangement. Journal of the American Chemical Society, 127, 2725–2730.

    PubMed  CAS  Google Scholar 

  132. Frénau, M., & Hoffmann, N. (2017). The Paternò–Büchi reaction—Mechanisms and application to organic synthesis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 33, 83–108.

    Google Scholar 

  133. D’Auria, M. (2019). The Paternò–Büchi reaction—A comprehensive review. Photochemical & Photobiological Sciences, 18, 2297–2362.

    Google Scholar 

  134. Abe, M. (2010). Formation of a four-membered ring: Oxetanes. In A. Albini & M. Fagnoni (Eds.), Handbook of synthetic photochemistry (pp. 217–239). Wiley-VCH.

    Google Scholar 

  135. Buschmann, H., Scharf, H.-D., Hoffmann, N., Plath, M. W., & Runsink, J. (1989). Chiral induction in photochemical reactions. 10. The principle of isoinversion: A model of stereoselection developed from the diastereoselectivity of the Paternò–Büchi reaction. Journal of the American Chemical Society, 111, 5367–5373.

    CAS  Google Scholar 

  136. Toda, F. (1988). Reaction control of guest compounds in host-gest inclusion complexes. Topics in Current Chemistry, 149, 211–238.

    CAS  Google Scholar 

  137. Koshima, H. (2004). Chiral solid-state photochemistry including supramolecular approaches. In Y. Inoue & V. Ramamurthy (Eds.), Chiral photochemistry (pp. 485–531). Marcel Dekker.

    Google Scholar 

  138. Tanaka, K., & Toda, F. (2000). Solvent-free organic synthesis. Chemical Reviews, 100, 1025–1074.

    PubMed  CAS  Google Scholar 

  139. Toda, F., Miyamoto, H., Kanemoto, K., Tanaka, K., Takahashi, Y., & Takenaka, Y. (1999). Enantioselective photocyclization of N-alkylfuran-2-carboxanilides to trans-dihydrofuran derivatives in inclusion crystals with optically active host compounds derived from tartaric acid. Journal of Organic Chemistry, 64, 2096–2102.

    CAS  Google Scholar 

  140. Jennings, W. B., Farrell, B. M., & Malone, J. F. (2001). Attractive intramolecular edge-to-face interactions in flexible organic molecules. Accounts of Chemical Research, 34, 885–894.

    PubMed  CAS  Google Scholar 

  141. Rekharsky, M. V., & Inoue, Y. (1998). Complexation thermodynamics of cyclodextins. Chemical Reviews, 98, 1875–1918.

    PubMed  CAS  Google Scholar 

  142. Del Valle, E. M. (2004). Cyclodextins and their uses: A review. Process Biochemistry, 39, 1033–1046.

    Google Scholar 

  143. Morin-Crini, N., Fourmentin, S., & Crini, G. (2015). Cyclodextrines—Histoire, propriétés, chimie & applications. Presses universitaires de Franche-Compté.

    Google Scholar 

  144. Mansour, A. T., Buendia, J., Xie, J., Brisset, F., Robin, S., Naoufal, D., Yazbeck, O., & Aitken, D. J. (2017). β-Cyclodextin-mediated enantioselective photochemical electrocyclization of 1,3-dihydro-2H-azepin-2-one. Journal of Organic Chemistry, 82, 9832–9836.

    CAS  Google Scholar 

  145. Weitkamp, J., & Puppe, L. (Eds.). (1999). Catalysis and zeolites. Springer.

    Google Scholar 

  146. Chester, A. W., & Derouane, E. G. (Eds.). (2009). Zeolite characterization and catalysis. Springer.

    Google Scholar 

  147. Pérez Pariente, J., & Sánchez-Sánchez, M. (Eds.). (2018). Structure and reactivity of metals in zeolite materials. Springer Nature.

    Google Scholar 

  148. Ramamurthy, V. (2019). Achiral zeolites as reaction media for chiral photochemistry. Molecules, 24, 3570.

    PubMed Central  Google Scholar 

  149. Sivaguru, S., Nathrajan, A., Kaanumalle, L. S., Shailalja, S., Uppili, S., Joy, A., & Ramamurthy, V. (2003). Asymmetric photoreactions within zeolites: Role of confinement and alkali metal ions. Accounts of Chemical Research, 36, 509–521.

    PubMed  CAS  Google Scholar 

  150. Scaiano, S. C., & García, M. (1999). Intrazeolite Photochemistry: Toward Supramolecular Control of Molecular Photochemistry. Accounts of Chemical Research, 32, 783–793.

    CAS  Google Scholar 

  151. Sivasubrmanian, K., Kaanumalle, L. S., Uppili, S., & Ramamurthy, V. (2007). Value of zeolites in asymmetric induction during photocyclization of pyridines, cyclohexadiones and naphthalenones. Organic & Biomolecular Chemistry, 7, 1569–1576.

    Google Scholar 

  152. Ruch, E., & Ugi, I. (1969). The stereochemical analogy model—A mathematical theory of dynamic stereochemistry. Topics in Stereochemistry, 4, 99–125.

    CAS  Google Scholar 

  153. Alezra, V., & Kawabata, T. (2016). Recent progress in memory of chirality (MOC): An advanced chiral pool. Synthesis, 48, 2997–3016.

    CAS  Google Scholar 

  154. Zhao, H., Hsu, D. C., & Carlier, P. R. (2005). Memory of chirality: An emerging strategy for asymmetric synthesis. ChemInform. https://doi.org/10.1002/chin.200516265.

    Article  Google Scholar 

  155. Gloor, C. S., Dénès, F., & Renaud, P. (2016). Memory in reactions involving monoradicals. Free Radical Research, 50, S102–S111.

    PubMed  CAS  Google Scholar 

  156. Kramer, W. H., & Griesbeck, A. G. (2008). The same and not the same: Chirality, topicity, and memory of chirality. Journal of Chemical Education, 85, 701–709.

    CAS  Google Scholar 

  157. Griesbeck, A. G., Kramer, W., & Lex, J. (2001). Diastereo- and enantioselective synthesis of pyrrolo[1,4]benzodiazepines through decarboxylative photocyclization. Angewandte Chemie International Edition, 40, 577–579.

    PubMed  CAS  Google Scholar 

  158. Salem, L., & Rowland, C. (1972). The electronic properties of diradicals. Angewandte Chemie International Edition, 11, 92–111.

    CAS  Google Scholar 

  159. Carlacci, L., Doubleday, D., Jr., Furlani, T. R., King, H. F., & McIver, J. W., Jr. (1987). Spin-orbit coupling in biradicals. Ab initio MCSCF calculations on trimethylene and the methyl-methyl radical pair. Journal of the American Chemical Society, 109, 5323–5329.

    CAS  Google Scholar 

  160. Michl, J. (1996). Spin-orbit coupling of biradicals. 1. The 2-electron-in-2-orbitals model revisited. Journal of the American Chemical Society, 118, 3568–3579.

    CAS  Google Scholar 

  161. Griesbeck, A. G., Abe, M., & Bondock, S. (2004). Selectivity control in electron spin inversion processes: Regio- and stereochemistry of Paternò–Büchi photocycloadditions as a powerful tool for mapping intersystem crossing processes. Accounts of Chemical Research, 37, 919–928.

    PubMed  CAS  Google Scholar 

  162. Griesbeck, A. G., Mauder, H., & Stadtmüller, S. (1994). Intersystem crossing in triplett 1,4-biradicals: conformational memory effects on the stereoselectivity of photocycloaddition reactions. Accounts of Chemical Research, 27, 70–75.

    CAS  Google Scholar 

  163. Wanyoike, G. N., Onomura, O., Maki, T., & Matsumura, Y. (2002). Highly enhanced enantioselectivity in the memory of chirality via acyliminium ions. Organic Letters, 4, 1875–1877.

    PubMed  CAS  Google Scholar 

  164. Onomura, O. (2016). Aliphatic nitrogen-containing compounds, amines, amino alcohols, and amino acids. In O. Hammerich & B. Speiser (Eds.), Organic electrochemistry (5th Edition) (pp. 1103–1119). CRC Press.

    Google Scholar 

  165. Šumanovac Ramljak, T., Sohora, M., Antol, I., Kontrec, D., Basarić, N., & Mlinarić-Majerski, K. (2014). Memory of chirality in the phthalimide photocyclization. Tetrahedron Letters, 55, 4078–4081.

    Google Scholar 

  166. Sinicropi, A., Barbosa, F., Basosi, R., Giese, B., & Olivucci, M. (2005). Mechanism of the Norrish-Yang Photocyclization reaction of an alanine derivative in the singlet state: Origin of the chiral-memory effect. Angewandte Chemie International Edition, 44, 2390–2393.

    PubMed  CAS  Google Scholar 

  167. Sakamoto, M., Kawanishi, H., Mino, T., Kasashima, Y., & Fujita, T. (2006). Photochemcial asymmetric synthesis of phenyl-bearing quaternary chiral carbons using chiral-memory effect on β-hydrogen abstraction by thiocarbonyl group. Chemical Communications, 44, 4608–4610.

    Google Scholar 

  168. Bonache, M. A., López, P., Martín-Martínez, M., García-López, M. T., Cativiela, C., & González-Muñiz, R. (2006). Stereoselective synthesis of amino acid-derived β-lactams. Experimental evidence for TDDOL as a memory of chirality enhancer. Tetrahedron, 62, 130–138.

    CAS  Google Scholar 

  169. Mori, T., Saito, H., & Inoue, Y. (2003). Complete memory of chirality upon photodecarboxylation of mesityl alkanoate to mesitylalkane: Theoretical and experimental evidence for cheletropic decarboxylation via a spiro-lactonic transition state. Chemical Communications, 18, 2302–2303.

    Google Scholar 

  170. Bhattacharyya, A., De Sarkar, S., & Das, A. (2021). Supramolecular engineering and self-assembly strategies in photoredox catalysis. ACS Catalysis, 11, 710–733.

    CAS  Google Scholar 

  171. Baruah, J. B. (2019). Principles and advances in supramolecular catalysis. CRC Press.

    Google Scholar 

Download references

Acknowledgements

We are grateful for current funding of our research by the ANR (Agence nationale de la recherche, projects: IMPHOCHEM, NoPerox), the Communauté Urbaine du Grand Reims and the Université de Reims Champagne-Ardenne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Hoffmann.

Ethics declarations

Conflict of interest

The author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoffmann, N. Enantioselective synthesis of heterocyclic compounds using photochemical reactions. Photochem Photobiol Sci 20, 1657–1674 (2021). https://doi.org/10.1007/s43630-021-00135-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00135-6

Navigation