Skip to main content
Log in

Theoretical insight on electronic structure and photophysical properties of a series of cyclometalated iridium(III) complexes bearing the substituted phenylpyrazole with different electron-donating or electron-accepting groups

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

By using the density functional theory (DFT) and time-dependent density functional theory (TDDFT), the electronic structure and photophysical properties of a series of cyclometalated iridium(III) complexes bearing the substituted phenylpyrazole have been theoretically investigated. All studied iridium(III) complexes have the distorted octahedral geometry with cis-C,C, cis-O,O, and trans-N,N chelate disposition. The lowest lying singlet → singlet absorptions of all studied iridium(III) complexes are respectively located at 405 nm, 387 nm, 382 nm, 370 nm, and 387 nm. The calculated emission wavelengths for all studied iridium(III) complexes are 654 nm, 513 nm, 506 nm, 505 nm and 499 nm, respectively. The calculated emission wavelength for complex 4 at the CAM-B3LYP level is in good agreement with the experimental value. From the theoretical results, it can be seen that the electron-donating substituent groups have the important effect on the electronic structure and photophysical properties of all studied iridium(III) complexes. We hope that this study can provide valuable guidance for the design of new phosphorescent organic light-emitting diodes (OLEDs) materials.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ding, Y., Liu, D., Li, J. Y., Li, H. T., Ma, H. Y., Li, D. L., & Niu, R. (2020). Saturated red phosphorescent Iridium(III) complexes containing phenylquinoline ligands for efficient organic light-emitting diodes. Dyes Pigments, 179, 108405.

    Article  CAS  Google Scholar 

  2. Hsu, L. Y., Liang, Q. M., Wang, Z. H., Kuo, H. H., Tai, W. S., Su, S. J., Zhou, X. W., Yuan, Y., & Chi, Y. (2019). Bis-tridentate Ir-III phosphors bearing two fused five-six-membered metallacycles: A strategy to improved photostability of blue emitters. Chemistry-A European Journal, 25, 15375–15386.

    Article  CAS  Google Scholar 

  3. Dragonetti, C., Fagnani, F., Marinotto, D., di Biase, A., Roberto, D., Cocchi, M., Fantacci, S., & Colombo, A. (2020). First member of an appealing class of cyclometalated 1,3-di-(2-pyridyl)benzene platinum(ii) complexes for solution-processable OLEDs. Journal of Materials Chemistry C, 8, 7873–7881.

    Article  CAS  Google Scholar 

  4. Cheng, G., Kwak, Y., To, W. P., Lam, T. L., Tong, G. S. M., Sit, M. K., Gong, S. L., Choi, B., Choi, W. I., Yang, C. L., & Che, C. M. (2019). High-efficiency solution-processed organic light-emitting diodes with tetradentate platinum(II) emitters. ACS Journal of Materials Chemistry C, 11, 45161–45170.

    CAS  Google Scholar 

  5. Liao, J. L., Chi, Y., Yeh, C. C., Kao, H. C., Chang, C. H., Fox, M. A., Low, P. J., & Lee, G. H. (2015). Near infrared-emitting tris-bidentate Os(II) phosphors: Control of excited state characteristics and fabrication of OLEDs. Journal of Materials Chemistry C, 3, 4910–4920.

    Article  CAS  Google Scholar 

  6. Song, Y. L., Jiao, B. J., Liu, C. M., Peng, X. L., Wang, M. M., Yang, Y., Zhang, B., & Du, C. X. (2020). Synthesis, structures and luminescent properties of red emissive neutral copper(I) complexes with bisphosphino-substituted benzimidazole. Inorganic Chemistry Communications, 112, 107689.

    Article  CAS  Google Scholar 

  7. Cheng, W., Wang, L. D., Zhou, Y. Y., Bian, Z. Q., Tong, B. H., Liu, Z. W., & Wang, S. (2020). Blue iridium(III) complexes with high internal quantum efficiency based on 4-(pyridin-3-yl)pyrimidine derivative and their electroluminescent properties. Dyes Pigments, 177, 108257.

    Article  CAS  Google Scholar 

  8. Liu, J., Ma, D. G., & Bai, J. (2019). Synthesis of a new iridium complex and its yellow efficient electroluminescence with low efficiency roll-off by exhaustive optimization of device. Journal of Luminescence, 215, 116655.

    Article  CAS  Google Scholar 

  9. Pal, A. K., Krotkus, S., Fontani, M., Mackenzie, C. F. R., Cordes, D. B., Slawin, A. M. Z., Samuel, I. D. W., & Zysman-Colman, E. (2018). High-efficiency deep-blue-emitting organic light-emitting diodes based on iridium(III) carbene complexes. Advanced Materials, 30, 1804231.

    Article  Google Scholar 

  10. Chen, Z., Wang, L. Q., Su, S. K., Zheng, X. Y., Zhu, N. Y., Ho, C. L., Chen, S. M., & Wong, W. Y. (2017). Cyclometalated iridium(III) carbene phosphors for highly efficient blue organic light-emitting diodes. ACS Applied Materials & Interfaces, 9, 40497–40502.

    Article  CAS  Google Scholar 

  11. Sarada, G., Sim, B., Moon, C. K., Cho, W., Kim, K. H., Sree, V. G., Park, E., Kim, J. J., & Jin, S. H. (2016). Synthesis and characterization of highly efficient blue Ir(III) complexes by tailoring beta-diketonate ancillary ligand for highly efficient PhOLED applications. Organic Electronics, 39, 91–99.

    Article  CAS  Google Scholar 

  12. Hwang, J., Yook, K. S., Lee, J. Y., & Kim, Y. H. (2015). Synthesis and characterization of phenylpyridine derivative containing an imide functional group on an iridium(III) complex for solution-processable orange-phosphorescent organic light-emitting diodes. Dyes Pigments, 121, 73–78.

    Article  CAS  Google Scholar 

  13. Baldo, M. A., Lamansky, S., Burrows, P. E., Thompson, M. E., & Forrest, S. R. (1999). Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Applied Physics Letters, 75, 4–6.

    Article  CAS  Google Scholar 

  14. Cleave, V., Yahioglu, G., Le Barny, P., Friend, R. H., & Tessler, N. (1999). Harvesting singlet and triplet energy in polymer LEDs. Advanced Materials, 11, 285–288.

    Article  CAS  Google Scholar 

  15. Xie, L. M., Bai, F. Q., Li, W., Zhang, Z. X., & Zhang, H. X. (2015). Theoretical research on the effect of regulated π-conjugation on the photophysical properties of Ir(III) complexes. Physical Chemistry Chemical Physics: PCCP, 17, 10014–10021.

    Article  CAS  Google Scholar 

  16. Wang, Y., Bai, F. Q., Ma, X. Y., & Zhang, H. X. (2018). A complete evaluation from theoretical aspect on the phosphorescent efficiency improvement through ancillary ligands modifications of a blue Ir(III) complex. Organic Electronics, 59, 293–300.

    Article  CAS  Google Scholar 

  17. Liu, B. Q., Jabed, M. A., Guo, J. L., Xu, W., Brown, S. L., Ugrinov, A., Hobbie, E. K., Kilina, S., Qin, A. J., & Sun, W. F. (2019). Neutral Cyclometalated iridium(III) complexes bearing substituted N-heterocyclic carbene (NHC) ligands for high-performance yellow OLED application. Inorganic Chemistry, 58, 14377–14388.

    Article  CAS  Google Scholar 

  18. Zhou, Y. H., Xu, Q. L., Han, H. B., Zhao, Y., Zheng, Y., Zhou, L., Zuo, J. L., & Zhang, H. J. (2016). Highly efficient organic light-emitting diodes with low efficiency roll-off based on iridium complexes containing pinene sterically hindered spacer. Advanced Optical Materials, 4, 1726–1731.

    Article  CAS  Google Scholar 

  19. Zhou, Y. H., Xu, J., Wu, Z. G., & Zheng, Y. X. (2017). Synthesis, photoluminescence and electroluminescence of one iridium complex with 2-(2,4-difluorophenyl)-4-(trifluoromethyl) pyrimidine and tetraphenylimidodiphosphinate ligands. Journal of Organometallic Chemistry, 848, 226–231.

    Article  CAS  Google Scholar 

  20. Groves, L. M., Schotten, C., Beames, J., Platts, J. A., Coles, S. J., Horton, P. N., Browne, D. L., & Pope, S. J. A. (2017). From ligand to phosphor: Rapid, machine-assisted synthesis of substituted iridium(III) pyrazolate complexes with tuneable luminescence. Chemistry—A European Journal, 23, 9407–9418.

    Article  CAS  Google Scholar 

  21. Niu, Z. G., Han, H. B., Li, M., Zhao, Z., Chen, G. Y., Zheng, Y. X., Li, G. N., & Zuo, J. L. (2018). Tunable emission color of iridium(III) complexes with phenylpyrazole derivatives as the main ligands for organic light emitting diodes. Organometallics, 37, 3154–3164.

    Article  CAS  Google Scholar 

  22. Wang, Y., Bao, P., Wang, J., Jia, R., Bai, F. Q., & Zhang, H. X. (2018). Comprehensive investigation into luminescent properties of Ir(III) complexes: An integrated computational study of radiative and nonradiative decay processes. Inorganic Chemistry, 57, 6561–6570.

    Article  CAS  Google Scholar 

  23. Wang, Y., Wang, J., Zhang, H. X., Szilagyi, I. M., & Bai, F. Q. (2018). Strategies on cyclometalating ligand substitution of several Ir(III) complexes: Theoretical investigation of different molecular behaviors. Organometallics, 37, 2491–2499.

    Article  CAS  Google Scholar 

  24. Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical Review, 136, B864–B871.

    Article  Google Scholar 

  25. Adamo, C., & Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: The PBE0 model. The Journal of Chemical Physics, 110, 6158–6169.

    Article  CAS  Google Scholar 

  26. Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of Chemical Physics, 82, 270–284.

    Article  CAS  Google Scholar 

  27. Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. The Journal of Chemical Physics, 82, 299–310.

    Article  CAS  Google Scholar 

  28. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., … Fox, D. J. (2009). Gaussian 09. Gaussian Inc.

    Google Scholar 

  29. Niehaus, T. A., Hofbeck, T., & Yersin, H. (2015). Charge-transfer excited states in phosphorescent organo-transition metal compounds: A difficult case for time dependent density functional theory? RSC Advances, 5, 63318–63329.

    Article  CAS  Google Scholar 

  30. Cramer, C., & Truhlar, D. (1996). Solvent effects and chemical reactivity. Kluwer.

    Google Scholar 

  31. Zhao, Y., Schultz, N. E., & Truhlar, D. G. (2006). Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. Journal of Chemical Theory and Computation, 2, 364–382.

    Article  Google Scholar 

  32. Zhao, Y., & Truhlar, D. G. (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06 functionals and 12 other functionals. Theoretical Chemistry Accounts, 120, 215–241.

    Article  CAS  Google Scholar 

  33. Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77, 3865–3868.

    Article  CAS  Google Scholar 

  34. Fantacci, S., De Angelis, F., Sgamellotti, A., Marrone, A., & Re, N. (2005). Photophysical properties of [Ru(phen)(2)(dppz)] (2+) intercalated into DNA: An integrated Car-Parrinello and TDDFT study. Journal of the American Chemical Society, 127, 14144–14145.

    Article  CAS  Google Scholar 

  35. Tamayo, A. B., Garon, S., Sajoto, T., Djurovich, P. I., Tsyba, I. M., Bau, R., & Thompson, M. E. (2005). Cationic bis-cyclometalated iridium(III) diimine complexes and their use in efficient blue, green, and red electroluminescent devices. Inorganic Chemistry, 44, 8723–8732.

    Article  CAS  Google Scholar 

  36. Haneder, S., Da Como, E., Feldmann, J., Lupton, J. M., Lennartz, C., Erk, P., Fuchs, E., Molt, O., Munster, I., Schildknecht, C., & Wagenblast, G. (2008). Controlling the radiative rate of deep-blue electrophosphorescent organometallic complexes by singlet-triplet gap engineering. Advanced Materials, 20, 3325–3330.

    Article  CAS  Google Scholar 

  37. Turro, N. (1991). Modern molecular photochemistry. University Science Books.

    Google Scholar 

  38. Yang, C. H., Cheng, Y. M., Chi, Y., Hsu, C. J., Fang, F. C., Wong, K. T., Chou, P. T., Chang, C. H., Tsai, M. H., & Wu, C. C. (2007). Blue-emitting heteroleptic iridium(III) complexes suitable for high-efficiency phosphorescent OLEDs. Angewandte Chemie International Edition, 46, 2418–2421.

    Article  CAS  Google Scholar 

  39. Avilov, I., Minoofar, P., Cornil, J., & De Cola, L. (2007). Influence of substituents on the energy and nature of the lowest excited states of heteroleptic phosphorescent Ir(III) complexes: A joint theoretical and experimental study. Journal of the American Chemical Society, 129, 8247–8258.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial aid from the Program of Science and Technology Development Plan of Jilin Province of China (Grant No. 20200201099JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunying Pang.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1027 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, D., Ji, X., Zhao, L. et al. Theoretical insight on electronic structure and photophysical properties of a series of cyclometalated iridium(III) complexes bearing the substituted phenylpyrazole with different electron-donating or electron-accepting groups. Photochem Photobiol Sci 20, 1487–1495 (2021). https://doi.org/10.1007/s43630-021-00125-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00125-8

Keywords

Navigation