Skip to main content
Log in

Laser photo-thermal therapy of epithelial carcinoma using pterin-6-carboxylic acid conjugated gold nanoparticles

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Gold nanoparticles functionalized with folic acid toward the internalization into cancer cells have received considerable attention recently. Folic acid is recognized by folate receptors, which are overexpressed in several cancer cells; it is limited in normal cells. In this work, pterin-6-carboxylic acid is proposed as an agonist of folic acid since the pterin-6-carboxylic acid structure has a pterin moiety, the same as folic acid that is recognized by the folate receptor. Here a simple photochemical synthesis of gold nanoparticles functionalized with pterin-6-carboxylic acid is studied. These conjugates were used to cause photothermal damage of HeLa cells irradiating with a diode laser of 808 nm. Pterin-6-carboxylic acid-conjugated gold nanoparticles caused the death of the cell after near-infrared irradiation, dose-dependently. These results indicate a possible internalization of AuNPs via folate receptor-mediated endocytosis due to the recognition or interaction between the folate receptors of HeLa cells and pterin, P6CA.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Huang, W. C., & Chen, Y. C. (2008). Photochemical synthesis of polygonal gold nanoparticles. Journal of Nanoparticle Research, 10(4), 697–702. https://doi.org/10.1007/s11051-007-9293-8

    Article  CAS  Google Scholar 

  2. Dong, S., Tang, C., Zhou, H., & Zhao, H. (2004). Photochemical synthesis of gold nanoparticles by the sunlight radiation using a seeding approach. Gold Bulletin, 37(3–4), 187–195. https://doi.org/10.1007/BF03215212

    Article  CAS  Google Scholar 

  3. Ahmed, M., & Narain, R. (2010). Rapid synthesis of gold nanorods using a one-step photochemical strategy. Langmuir, 26(23), 18392–18399. https://doi.org/10.1021/la103339g

    Article  PubMed  CAS  Google Scholar 

  4. Rodríguez-Torres, M. P., Díaz-Torres, L. A., & Romero-Servin, S. (2014). Heparin assisted photochemical synthesis of gold nanoparticles and their performance as SERS substrates. International Journal of Molecular Sciences, 15(10), 19239–19252. https://doi.org/10.3390/ijms151019239

    Article  PubMed Central  CAS  Google Scholar 

  5. Lee, K., Lee, H., Bae, K. H., & Park, T. G. (2010). Heparin immobilized gold nanoparticles for targeted detection and apoptotic death of metastatic cancer cells. Biomaterials, 31(25), 6530–6536. https://doi.org/10.1016/j.biomaterials.2010.04.046

    Article  PubMed  CAS  Google Scholar 

  6. Sega, E. I., & Low, P. S. (2008). Tumor detection using folate receptor-targeted imaging agents. Cancer and Metastasis Reviews, 27(4), 655–664. https://doi.org/10.1007/s10555-008-9155-6

    Article  PubMed  CAS  Google Scholar 

  7. Duan, L., & Zhao, Y. (2018). Selective binding of folic acid and derivatives by imprinted nanoparticle receptors in water. Bioconjugate Chemistry, 29(4), 1438–1445. https://doi.org/10.1021/acs.bioconjchem.8b00121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Boca-Farcau, S., Potara, M., Simon, T., Juhem, A., Baldeck, P., & Astilean, S. (2014). Folic acid-conjugated, SERS-labeled silver nanotriangles for multimodal detection and targeted photothermal treatment on human ovarian cancer cells. Molecular Pharmaceutics, 11(2), 391–399. https://doi.org/10.1021/mp400300m Epub 2013 Dec 12 PMID: 24304361.

    Article  PubMed  CAS  Google Scholar 

  9. Siwowska, K., Schmid, R. M., Cohrs, S., Schibli, R., & Müller, C. (2017). Folate receptor-positive gynecological cancer cells: In vitro and in vivo characterization. Pharmaceuticals, 10(3), 72. https://doi.org/10.3390/ph10030072

    Article  PubMed Central  CAS  Google Scholar 

  10. Wang, L., Wu, C., Qiao, L., Yu, W., Guo, Q., Zhao, M., Yang, G., Zhao, H., & Lou, J. (2017). Clinical significance of folate receptor-positive circulating tumor cells detected by ligand-targeted polymerase chain reaction in lung cancer. Journal of Cancer, 8(1), 104–110. https://doi.org/10.7150/jca.16856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Chen, Y., Cao, W., Zhou, J., Pidhatika, B., Xiong, B., Huang, L., Tian, Q., Shu, Y., Wen, W., Hsing, I., & Wu, H. (2015). Poly(l -lysine)- graft -folic acid-coupled poly(2-methyl-2-oxazoline) (PLL- g -PMOXA- c -FA): A bioactive copolymer for specific targeting to folate receptor-positive cancer cells. ACS Applied Materials and Interfaces, 7(4), 2919–2930. https://doi.org/10.1021/am508399w

    Article  PubMed  CAS  Google Scholar 

  12. Liu, Q., Xu, S., Niu, C., Li, M., He, D., Lu, Z., Ma, L., Na, N., Huang, F., Jiang, H., & Ouyang, J. (2015). Distinguish cancer cells based on targeting turn-on fluorescence imaging by folate functionalized green emitting carbon dots. Biosensors and Bioelectronics, 64, 119–125. https://doi.org/10.1016/j.bios.2014.08.052

    Article  PubMed  CAS  Google Scholar 

  13. Qin, X. C., Guo, Z. Y., Liu, Z. M., Zhang, W., Wan, M. M., & Yang, B. W. (2013). Folic acid-conjugated graphene oxide for cancer targeted chemo-photothermal therapy. Journal of Photochemistry and Photobiology, B: Biology, 120, 156–162. https://doi.org/10.1016/j.jphotobiol.2012.12.005

    Article  CAS  Google Scholar 

  14. Xiao, Z., Ji, C., Shi, J., Pridgen, E. M., Frieder, J., Wu, J., & Farokhzad, O. C. (2012). DNA self-assembly of targeted near-infrared-responsive gold nanoparticles for cancer thermo-chemotherapy. Angewandte Chemie, 51(47), 11853–11857. https://doi.org/10.1002/anie.201204018

    Article  PubMed  CAS  Google Scholar 

  15. Bertel, L., Méndez, S. C., & Martínez, F. (2018). Use in vitro of gold nanoparticles functionalized with folic acid as a photothermal agent on treatment of HeLa cells. Journal Mex Chemical Society, 62(1), 1–13. https://doi.org/10.29356/jmcs.v62i1.385

    Article  CAS  Google Scholar 

  16. Bellotti, E., Cascone, M. G., Barbani, N., Rossin, D., Rastaldo, R., Giachino, C., & Cristallini, C. (2021). Targeting cancer cells overexpressing folate receptors with new terpolymer-based nanocapsules: Toward a novel targeted DNA delivery system for cancer therapy. Biomedicines, 9(9), 1275. https://doi.org/10.3390/biomedicines9091275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Tsai, S.-W., Liaw, J.-W., Hsu, F.-Y., Chen, Y.-Y., Lyu, M.-J., & Yeh, M.-H. (2008). Surface-modified gold nanoparticles with folic acid as optical probes for cellular imaging. Sensors, 8(10), 6660–6673. https://doi.org/10.3390/s8106660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Li, G., Li, D., Zhang, L., Zhai, J., & Wang, E. (2009). One-step synthesis of folic acid protected gold nanoparticles and their receptor-mediated intracellular uptake. Chemistry A European Journal, 15(38), 9868–9873. https://doi.org/10.1002/chem.200900914

    Article  CAS  Google Scholar 

  19. Zhang, Z., Jia, J., Lai, Y., Ma, Y., Weng, J., & Sun, L. (2010). Conjugating folic acid to gold nanoparticles through glutathione for targeting and detecting cancer cells. Bioorganic & Medicinal Chemistry, 18(15), 5528–5534. https://doi.org/10.1016/j.bmc.2010.06.045

    Article  CAS  Google Scholar 

  20. Zhang, H., Chen, H. J., Du, X., & Wen, D. (2014). Photothermal conversion characteristics of gold nanoparticle dispersions. Solar Energy, 100, 141–147. https://doi.org/10.1016/j.solener.2013.12.004

    Article  CAS  Google Scholar 

  21. Mendes, R., Pedrosa, P., Lima, J. C., Fernandes, A. R., & Baptista, P. V. (2017). Photothermal enhancement of chemotherapy in breast cancer by visible irradiation of Gold Nanoparticles. Scientific Reports, 7(1), 10872. https://doi.org/10.1038/s41598-017-11491-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Tong, L., Zhao, Y., Huff, T. B., Hansen, M. N., Wei, A., & Cheng, J.-X. (2007). Gold nanorods mediate tumor cell death by compromising membrane integrity. Advanced Materials, 19, 3136–3141. https://doi.org/10.1002/adma.200701974

    Article  PubMed  CAS  Google Scholar 

  23. Chen, C., Ke, J., Edward Zhou, X., Yi, W., Brunzelle, J. S., Li, J., Yong, E. L., Xu, H. E., & Melcher, K. (2013). Structural basis for molecular recognition of folic acid by folate receptors. Nature, 500(7463), 486–489. https://doi.org/10.1038/nature12327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Blach, D., Alves De Souza, C. E., Méndez, S. C., & Martínez, F. O. (2021). Conjugated anisotropic gold nanoparticles through pterin derivatives for a selective plasmonic photothermal therapy: In vitro studies in HeLa and normal human endocervical cells. Gold Bulletin, 54, 9–23. https://doi.org/10.1007/s13404-020-00288-9

    Article  CAS  Google Scholar 

  25. Castillo, J., Bertel, L., Páez-Mozo, E., & Martínez, F. (2013). Photochemical synthesis of the bioconjugate folic acid-gold nanoparticles. Nanomaterials and Nanotechnology, 3, 1–6. https://doi.org/10.5772/57144

    Article  CAS  Google Scholar 

  26. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of immunological methods, 65(1–2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4G

    Article  PubMed  CAS  Google Scholar 

  27. Nealon, G. L., Donnio, B., Greget, R., Kappler, J. P., Terazzi, E., & Gallani, J. L. (2012). Magnetism in gold nanoparticles. Nanoscale, 4(17), 5244–5258. https://doi.org/10.1039/c2nr30640a

    Article  PubMed  CAS  Google Scholar 

  28. Eaton, P., Quaresma, P., Soares, C., Neves, C., de Almeida, M. P., Pereira, E., & West, P. (2017). A direct comparison of experimental methods to measure dimensions of synthetic nanoparticles. Ultramicroscopy, 182, 179–190. https://doi.org/10.1016/j.ultramic.2017.07.001

    Article  PubMed  CAS  Google Scholar 

  29. Kowalczyk, B., Lagzi, I., & Grzybowski, B. A. (2011). Nanoseparations: Strategies for size and/or shape-selective purification of nanoparticles. Current Opinion in Colloid and Interface Science, 16(2), 135–148. https://doi.org/10.1016/j.cocis.2011.01.004

    Article  CAS  Google Scholar 

  30. Qin, Z., Wang, Y., Randrianalisoa, J., Raeesi, V., Chan, W. C. W., Lipiński, W., & Bischof, J. C. (2016). Quantitative comparison of photothermal heat generation between gold nanospheres and nanorods. Science and Reports, 6, 29836. https://doi.org/10.1038/srep29836

    Article  CAS  Google Scholar 

  31. Wangoo, N., Bhasin, K. K., Mehta, S. K., & Suri, C. R. (2008). Synthesis and capping of water-dispersed gold nanoparticles by an amino acid: Bioconjugation and binding studies. Journal of Colloid and Interface Science, 323(2), 247–254. https://doi.org/10.1016/j.jcis.2008.04.043

    Article  PubMed  CAS  Google Scholar 

  32. Kang, K. A., Wang, J., Jasinski, J. B., & Achilefu, S. (2011). Fluorescence manipulation by gold nanoparticles: From complete quenching to extensive enhancement. Journal of Nanobiotechnology, 9, 1–13. https://doi.org/10.1186/1477-3155-9-16

    Article  CAS  Google Scholar 

  33. Chhabra, R., Sharma, J., Wang, H., Zou, S., Lin, S., Yan, H., Lindsay, S., & Liu, Y. (2009). Distance-dependent interactions between gold nanoparticles and fluorescent molecules with DNA as tunable spacers. Nanotechnology, 20, 48. https://doi.org/10.1088/0957-4484/20/48/485201

    Article  CAS  Google Scholar 

  34. Avila, R., Tamariz, E., Medina-Villalobos, N., Andilla, J., Marsal, M., & Loza-Alvarez, P. (2018). Effects of near infrared focused laser on the fluorescence of labelled cell membrane. Science and Reports, 8(1), 17674. https://doi.org/10.1038/s41598-018-36010-1

    Article  CAS  Google Scholar 

  35. Vines, J. B., Yoon, J. H., Ryu, N. E., Lim, D. J., & Park, H. (2019). Gold nanoparticles for photothermal cancer therapy. Frontiers in Chemistry, 7, 1–16. https://doi.org/10.3389/fchem.2019.00167

    Article  CAS  Google Scholar 

  36. Chithrani, B. D., Ghazani, A. A., & Chan, W. C. (2006). Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters, 6(4), 662–668. https://doi.org/10.1021/nl052396o

    Article  PubMed  CAS  Google Scholar 

  37. Panzarini, E., Mariano, S., Carata, E., Mura, F., Rossi, M., & Dini, L. (2018). Intracellular transport of silver and gold nanoparticles and biological responses: An update. International Journal of Molecular Sciences, 19, 5. https://doi.org/10.3390/ijms19051305

    Article  CAS  Google Scholar 

  38. Albanese, A., & Chan, W. (2011). Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano, 5, 5478–5489. https://doi.org/10.1021/nn2007496

    Article  PubMed  CAS  Google Scholar 

  39. Nakamura, H., & Watano, S. (2018). Direct permeation of nanoparticles across cell membrane: A review. KONA Powder and Particle Journal, 2018(35), 49–65. https://doi.org/10.14356/kona.2018011

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support for this study by the Universidad Industrial de Santander-UIS (Project DIEF 2320) and the teams of Laboratorio de Microscopia for SEM images and Laboratorio de espectroscopia Atómica y Molecular for ATR-FTIR spectra (Parque Tecnológico Guatiguará of Universidad Industrial de Santander, UIS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linda Bertel or Fernando Martínez-Ortega.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertel, L., Mendez-Sanchez, S.C. & Martínez-Ortega, F. Laser photo-thermal therapy of epithelial carcinoma using pterin-6-carboxylic acid conjugated gold nanoparticles. Photochem Photobiol Sci 20, 1599–1609 (2021). https://doi.org/10.1007/s43630-021-00122-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00122-x

Navigation