Skip to main content
Log in

The phosphatase/kinase balance affects phytochrome A and its native pools, phyA′ and phyA″, in etiolated maize roots: evidence from the induction of phyA′ destruction by a protein phosphatase inhibitor sodium fluoride

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Phytochrome A (phyA) comprises two native types, phyA′ and phyA″, with distinct spectroscopic, photochemical, and functional properties, differing at the N-terminal extension, probably, by the state of phosphorylation. To find out if and how protein phosphatases (PP) affect the state of the phyA species in planta, we studied the effect of the non-specific phosphatase inhibitor NaF on etiolated maize seedlings with the use of low-temperature fluorescence spectroscopy and photochemistry. In roots, phosphatase inhibition facilitated photoreceptor destruction in its labile phyA′ form and shifted the phyA′/phyA″ ratio towards the more stable phyA″. The effect of NaF was not observed in stems. It was similar, though less pronounced, in comparison to the effects of the serine/threonine PP inhibitors, okadaic and cantharidic acids (OA and CA), which likewise facilitate the destruction of phyA′ in etiolated maize stems, not, however, in roots (Sineshchekov et al., Photochem. Photobiol 89:83–96, 2013). The phyA′/phyA″ balance thus depends on the kinase/phosphatase equilibrium in the root cells. The relatively low effect of NaF on phyA in roots, together with the lack of the effect of OA and CA in them, may imply that the mechanism controlling the phyA′/phyA″ balance in roots can be different from that in shoots.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CA:

Cantharidic acid

FR:

Far-red light

γ1 :

The extent of the Pr → lumi-R phototransformation

HIR:

High-irradiance response

JA:

Jasmonic acid

λa, λe, λmax :

Wavelengths of the actinic and excitation light and of the maximum of phytochrome fluorescence, respectively

LFR:

Low-fluence response

lumi-R:

The first photoproduct of the Pr phototransformation at 77–85 K

NaF:

Sodium fluoride

NTE:

N-Terminal extension

phy:

Phytochrome

Ptot :

Total phy content

Pr:

The red-light-absorbing phy form

Pfr:

The far-red-light-absorbing phy form

R:

Red light

PP1 and PP2A:

Protein phosphatases 1 and 2A

phyA and phyB:

Phytochromes A and B

phyA′ and phyA″:

Subpopulations of phyA

T:

Temperature

VLFR:

Very low-fluence response

References

  1. Legris, M., Ince, Y. Ç., & Fankhause, C. (2019). Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. Nature Communications, 10, 1–15.

    Google Scholar 

  2. Casal, J. J., Candia, A. N., & Sellaro, R. (2014). Light perception and signaling by phytochrome A. Journal of Experimental Botany, 65, 2835–2845.

    CAS  PubMed  Google Scholar 

  3. Kneissl, J., Shinomura, T., Furuy, M., & Bolle, C. (2008). A rice phytochrome A in Arabidopsis: The role of the N-terminus under red and far-red light. Molecular Plant, 1, 84–102.

    CAS  PubMed  Google Scholar 

  4. Long, C., & Iino, M. (2001). Light-dependent osmoregulation in pea stem protoplasts. Photoreceptors, tissue specificity, ion regulation, and physiological implications. Plant Physiology, 125, 1854–1869.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Takano, M., Inagaki, N., Xie, X., Yuzurihara, N., Hihara, F., Ishizuka, T., Yano, M., Nishimura, M., Miyao, A., Hirochika, H., & Shinomura, T. (2005). Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. The Plant Cell, 17, 3311–3325.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sineshchekov, V. (2019). Two molecular species of phytochrome A with distinct modes of action. Functional Plant Biology, 46, 118–135.

    CAS  PubMed  Google Scholar 

  7. Sineshchekov, V., Sudnitsin, A., Adam, E., Schäfer, E., & Viczian, A. (2014). phyA-GFP is spectroscopically and photochemically similar to phyA and comprises both its native types, phyA′ and phyA′′. Photochemical & Photobiological Sciences, 13, 1671–1679.

    CAS  Google Scholar 

  8. Casal, J. J., Davis, S. J., Kirchenbauer, D., Viczian, A., Yanovsky, M. J., Clough, R. C., & Vierstra, R. D. (2002). The serine-rich N-terminal domain of oat phytochrome A helps regulate light responses and subnuclear localization of the photoreceptor. Plant Physiology, 129, 1127–1137.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sineshchekov, V. A., Koppel, L. A., & Bolle, C. (2018). Two native types of phytochrome A, phyAʹ and phyAʹʹ, differ by the state of phosphorylation at the N-terminus as revealed by fluorescence investigations of the Ser/Ala mutant of rice phyA expressed in transgenic Arabidopsis. Functional Plant Biology, 45, 150–159.

    CAS  PubMed  Google Scholar 

  10. Sineshchekov, V. A., Loskovich, A. V., Riemann, M., & Nick, P. (2004). The jasmonate-free rice mutant hebiba is affected in the response of phyA′/phyA′′ pools and protochlorophyllide biosynthesis to far-red light. Photochemical and Photobiological Sciences, 3, 1058–1062.

    CAS  PubMed  Google Scholar 

  11. Riemann, M., Bouyer, D., Hisada, A., Müller, A., Yatou, O., Weiler, E. W., Takano, M., Furuya, M., & Nick, P. (2009). Phytochrome A requires jasmonate for photodestruction. Planta, 229, 1035–1045.

    CAS  PubMed  Google Scholar 

  12. Sineshchekov, V., Koppel, L., Riemann, M., & Nick, P. (2021). Phytochrome A and its functional manifestations in etiolated and far-red light-grown seedlings of the wild-type rice and its hebiba and cpm2 mutants deficient in the defense-related phytohormone jasmonic acid. Photochemistry and Photobiology, 97, 335–342.

    CAS  PubMed  Google Scholar 

  13. McMichael, R. W., Jr., & Lagarias, J. C. (1990). Phosphopeptide mapping of Avena phytochrome phosphorylated by protein kinases in vitro. Biochemistry, 29, 3872–3878.

    CAS  PubMed  Google Scholar 

  14. Yeh, K.-C., & Lagarias, J. C. (1998). Eukaryotic phytochromes: Light-regulated serine/threonine protein kinases with histidine kinase ancestry. Proceedings of the National academy of Sciences of the United States of America, 95, 13976–13981.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lapko, V. N., Jiang, X. Y., Smith, D. L., & Song, P. S. (1997). Posttranslational modification of oat phytochrome A: Phosphorylation of a specific serine in a multiple serine cluster. Biochemistry, 36, 10595–10599.

    CAS  PubMed  Google Scholar 

  16. Han, Y. J., Kim, H. S., Kim, Y. M., Shin, A. Y., Lee, S. S., Bhoo, S. H., & Kim, J. I. (2010). Functional characterization of phytochrome autophosphorylation in plant light signaling. Plant and Cell Physiology, 51, 596–609.

    CAS  PubMed  Google Scholar 

  17. Hoang, Q. T., Han, Y. J., & Kim, J. I. (2019). Plant phytochromes and their phosphorylation. International Journal of Molecular Sciences, 20, 3450.

    CAS  PubMed Central  Google Scholar 

  18. Zhou, Y., Yang, L., Duan, J., Cheng, J., Shen, Y., Wang, X., & Li, J. (2018). Hinge region of Arabidopsis phyA plays an important role in regulating phyA function. Proceedings of the National Academy of Sciences, 115, E11864–E11873.

    CAS  Google Scholar 

  19. Saijo, Y., Zhu, D., Li, J., Rubio, V., Zhou, Z., Shen, Y., & Deng, X. W. (2008). Arabidopsis COP1/SPA1 complex and FHY1/FHY3 associate with distinct phosphorylated forms of phytochrome A in balancing light signaling. Molecular Cell, 31, 607–613.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim, J. I., Shen, Y., Han, Y. J., Park, J. E., Kirchenbauer, D., Soh, M. S., & Song, P. S. (2004). Phytochrome phosphorylation modulates light signaling by influencing the protein–protein interaction. The Plant Cell, 16, 2629–2640.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, S., Li, C., Zhou, Y., Wang, X., Li, H., Feng, Z., & Li, J. (2018). TANDEM ZINC-FINGER/PLUS3 is a key component of phytochrome A signaling. The Plant Cell, 30, 835–852.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shin, A. Y., Han, Y. J., Baek, A., Ahn, T., Kim, S. Y., Nguyen, T. S., & Kim, J. I. (2016). Evidence that phytochrome functions as a protein kinase in plant light signalling. Nature Communications, 7, 1–13.

    Google Scholar 

  23. Hoang, Q. T., Cho, J. Y., Choi, D. M., Shin, A. Y., Kim, J. A., Han, Y. J., & Kim, J. I. (2021). Protein kinase activity of phytochrome A positively correlates with photoresponses in Arabidopsis. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2021.706316

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sineshchekov, V., Koppel, L., & Kim, J. I. (2019). The dephosphorylated S8A and S18A mutants of (oat) phytochrome A comprise its two species, phyA′ and phyA′′, suggesting that autophosphorylation at these sites is not involved in the phyA differentiation. Photochemical and Photobiological Sciences, 18, 1242–1248.

    CAS  PubMed  Google Scholar 

  25. Sineshchekov, V., Koppel, L., Shor, E., Kochetova, G., Galland, P., & Zeidler, M. (2013). Protein phosphatase activity and acidic/alkaline balance as factors regulating the state of phytochrome A and its two native pools in the plant cell. Photochemistry and Photobiology, 89, 83–96.

    CAS  PubMed  Google Scholar 

  26. Shelden, E., & Wadswort, P. (1996). Stimulation of microtubule dynamic turnover in living cells treated with okadaic acid. Cell Motility and the Cytoskeleton, 35, 24–34.

    CAS  PubMed  Google Scholar 

  27. Senna, R., Simonin, V., Silva-Neto, M. A. C., & Fialho, E. (2006). Induction of acid phosphatase activity during germination of maize (Zea mays) seeds. Plant Physiology and Biochemistry, 44, 467–473.

    CAS  PubMed  Google Scholar 

  28. Grover, M., Dhingra, A., Sharma, A. K., Maheshwari, S. C., & Tyagi, A. K. (1999). Involvement of phytochrome (s), Ca2+, and phosphorylation in light-dependent control of transcript levels for plastid genes (psbA, psaA and rbcL) in rice (Oryza sativa). Physiologia Plantarum, 105, 701–707.

    CAS  Google Scholar 

  29. Jaumot, M. J., & Hancock, F. (2001). Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions. Oncogene, 20, 3949–3958.

    CAS  PubMed  Google Scholar 

  30. MacKintosh, C., Lyon, G. D., & MacKintosh, R. W. (1994). Protein phosphatase inhibitors activate anti-fungal defence responses of soybean cotyledons and cell cultures. The Plant Journal, 5, 137–147.

    CAS  Google Scholar 

  31. Chang, S. C., & Kaufman, P. B. (2000). Effects of staurosporine, okadaic acid, and sodium fluoride on protein phosphorylation in graviresponding oat shoot pulvini. Plant Physiology and Biochemistry, 38, 315–323.

    CAS  PubMed  Google Scholar 

  32. Goschorska, M., Gutowska, I., Olszewska, M., Baranowska-Bosiacka, I., Rać, M., Olszowski, T., & Chlubek, D. (2015). Effect of sodium fluoride on the catalase activity in THP-1 macrophages. Fluoride, 48, 274–282.

    CAS  Google Scholar 

  33. Pant, S., Pant, P., & Bhiravamurthy, P. V. (2008). Effects of fluoride on early root and shoot growth of typical crop plants of India. Fluoride, 41, 57.

    CAS  Google Scholar 

  34. Chandra, P., Vishnoi, N., & Singh, D. P. (2012). Assessment of fluoride contamination of water and soil and its phytotoxic effect on the growth parameters in selected vegetable crops. Global Journal of Applied Environmental Sciences, 2, 55–65.

    Google Scholar 

  35. Miller, G. W. (1993). The effect of fluoride on higher plants with special emphasis on early physiological and biochemical disorders. Fluoride, 26, 3–22.

    CAS  Google Scholar 

  36. Sineshchekov, V. A. (1994). Two spectroscopically and photochemically distinguishable phytochromes in etiolated seedlings of monocots and dicots. Photochemistry and Photobiology, 59, 77–86.

    CAS  Google Scholar 

  37. Baunthiyal, M., & Ranghar, S. (2014). Physiological and biochemical responses of plants under fluoride stress: An overview. Fluoride, 47, 287–293.

    CAS  Google Scholar 

  38. Sineshchekov, V. A., Ogorodnikova, O. B., & Weller, J. L. (1999). Fluorescence and photochemical properties of phytochromes A and B in etiolated pea seedlings. Journal of Photochemistry and Photobiology, B: Biology, 49, 204–211.

    CAS  Google Scholar 

  39. Clough, R. C., & Vierstra, R. D. (1997). Phytochrome degradation. Plant, Cell & Environmen, 20, 713–721.

    CAS  Google Scholar 

  40. Stone, H. J., & Pratt, L. H. (1979). Characterization of the destruction of phytochrome in the red-absorbing form. Plant Physiology, 63, 680–682.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Schwarz, H., & Schneider, H. A. W. (1987). Immunological assay of phytochrome in small sections of roots and other organs of maize (Zea mays L.) seedlings. Planta, 170, 152–160.

    CAS  PubMed  Google Scholar 

  42. Cantón, F. R., & Quail, P. H. (1999). Both phyA and phyB mediate light-imposed repression of phyA gene expression in Arabidopsis. Plant Physiology, 121, 1207–1215.

    PubMed  PubMed Central  Google Scholar 

  43. Frances, S., White, M. J., Edgerton, M. D., Jones, A. M., Elliott, R. C., & Thompson, W. F. (1992). Initial characterization of a pea mutant with light-independent photomorphogenesis. The Plant Cell, 4, 1519–1530.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sineshchekov, V. A., Frances, S., & White, M. J. (1995). Fluorescence and photochemical characterization of phytochrome in de-etiolated pea mutant lip. Journal of Photochemistry and Photobiology B: Biology, 28, 47–51.

    CAS  Google Scholar 

  45. Kim, D.-H., Kang, J.-G., Yang, S.-S., Chung, K.-S., Song, P.-S., & Park, C.-M. (2002). A phytochrome-associated protein phosphatase 2A modulates light signals in flowering time control in Arabidopsis. The Plant Cell, 14, 3043–3056.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ryu, J. S., Kim, J. I., Kunkel, T., Kim, B. C., Cho, D. S., Hong, S. H., Kim, S. H., Fernandez, A. P., Kim, Y., Alonso, J. M., Ecker, J. R., Nagy, F., Lim, P. O., Song, P.-S., Schäfer, E., & Nam, H. G. (2005). Phytochrome-specific type 5 phosphatase controls light signal flux by enhancing phytochrome stability and affinity for a signal transducer. Cell, 120, 290–292.

    Google Scholar 

  47. Phee, B. K., Kim, J. I., Shin, D. H., Yoo, J., Park, K., Han, Y. J., Kwon, Y. K., Cho, M. H., Jeon, J. S., Bhoo, S. H., & Hahn, T. R. (2008). A novel protein phosphatase indirectly regulates phytochrome-interacting factor 3 via phytochrome. The Biochemical Journal, 415, 247–255.

    CAS  PubMed  Google Scholar 

  48. Correll, M. J., & Kiss, J. Z. (2005). The roles of phytochromes in elongation and gravitropism of roots. Plant and Cell Physiology, 46, 317–323.

    CAS  PubMed  Google Scholar 

  49. Lee, H. J., Ha, J. H., Kim, S. G., Choi, H. K., Kim, Z. H., Han, Y. J., & Park, C. M. (2016). Stem-piped light activates phytochrome B to trigger light responses in Arabidopsis thaliana roots. Science Signaling, 9, ra106.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Prof. P. Galland for his meticulous reading of the manuscript and helpful suggestions. There is no financial support to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaly Sineshchekov.

Ethics declarations

Conflict of interest

There are not conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sineshchekov, V., Shor, E. & Koppel, L. The phosphatase/kinase balance affects phytochrome A and its native pools, phyA′ and phyA″, in etiolated maize roots: evidence from the induction of phyA′ destruction by a protein phosphatase inhibitor sodium fluoride. Photochem Photobiol Sci 20, 1429–1437 (2021). https://doi.org/10.1007/s43630-021-00110-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00110-1

Keywords

Navigation