Skip to main content
Log in

Revisiting the BaBiO3 semiconductor photocatalyst: synthesis, characterization, electronic structure, and photocatalytic activity

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

This article revisits the properties of BaBiO3 examined extensively in the last two decades because of its electronic properties as a superconductor and as a semiconductor photocatalyst. Solid-state syntheses of this bismuthate have often involved BaCO3 as the barium source, which may lead to the formation of BaBiO3/BaCO3 heterostructures that could have an impact on the electronic properties and, more importantly, on the photocatalytic activity of this bismuthate. Accordingly, we synthesized BaBiO3 by a solid-state route to avoid the use of a carbonate; it was characterized by XRD, SEM, and EDX, while elemental mapping characterized the composition and the morphology of the crystalline BaBiO3 and its thin films with respect to structure, optoelectronic, and photocatalytic properties. XPS, periodic DFT calculations, and electrochemical impedance spectroscopy ascertained the electronic and electrical properties, while Raman and DRS spectroscopies assessed the relevant optical properties. The photocatalytic activity was determined via the degradation of phenol in aqueous media. Although some results accorded with earlier studies, the newer electronic structural data on this bismuthate, together with the photocatalytic experiments carried out in the presence of selective radical trapping agents, led to elucidating some of the mechanistic details of the photocatalytic processes that previous views of the BaBiO3 band structure failed to address or clarify. Analytical refinement of the XRD data inferred the as-synthesized BaBiO3 adopted the C2/m symmetry rather than the I2/m structure reported earlier, while Tauc plots from DRS spectra yielded a bandgap of 2.05 eV versus the range of 1.1–2.25 eV reported by others; the corresponding flatband potentials were 1.61 eV (EVB) and − 0.44 eV (ECB). The photocatalytic activity of BaBiO3 was somewhat greater than that of the well-known Evonik P25 TiO2 photocatalyst under comparable experimental conditions.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Namatame, H., Fujimori, A., Takagi, H., Uchida, S., de Groot, F. M. F., & Fuggle, J. C. (1993). Electronic structure and the metal-semiconductor transition in BaPb1–xBixO3 studied by photoemission and x-ray absorption spectroscopy. Physical Review B: Condensed Matter, 48, 16917–16925.

    Article  CAS  Google Scholar 

  2. Tang, J., Zou, Z., & Ye, J. (2007). Efficient photocatalysis on BaBiO3 driven by visible light. Journal of Physical Chemistry C, 111, 12779–12785.

    Article  CAS  Google Scholar 

  3. Yan, B., Jansen, M., & Fesler, C. (2013). A large-energy-gap oxide topological insulator based on the superconductor BaBiO3. Nature Physics, 9, 709–711.

    Article  CAS  Google Scholar 

  4. Khraisheh, M., Khazndar, A., & Al-Ghouti, M. A. (2015). Visible light-driven metal-oxide photocatalytic CO2 conversion. International Journal of Energy Research, 39, 1142–1152.

    Article  CAS  Google Scholar 

  5. Kumar, N., Golledge, S. L., & Cann, D. P. (2016). Synthesis and electrical properties of BaBiO3 and high resistivity BaTiO3–BaBiO3 ceramics. Journal of Advanced Dielectrics, 6, 1650032.

    Article  CAS  Google Scholar 

  6. Plumb, N. C., Gawryluk, D. J., Wang, Y., Ristic, Z., Park, J., Lv, B. Q., Wang, Z., Matt, C. E., Xu, N., Shang, T., Conder, K., Mesot, J., Johnston, S., Shi, M., & Radovic, M. (2016). Momentum-resolved electronic structure of the high-Tc superconductor parent compound BaBiO3. Physical Review Letters, 117, 037002.

    Article  CAS  PubMed  Google Scholar 

  7. Bhatia, A., Hautier, G., Nilgianskul, T., Miglio, A., Rignanese, G.-M., Gonze, X., & Suntivich, J. (2016). High-mobility bismuth-based transparent p-type oxide from high-throughput material screening. Chemistry of Materials, 28, 30–34.

    Article  CAS  Google Scholar 

  8. Weng, B., Xiao, Z., Meng, W., Grice, C. R., Poudel, T., Deng, X., & Yan, Y. (2017). Bandgap engineering of barium bismuth niobate double perovskite for photoelectrochemical water oxidation. Advanced Energy Materials, 7, 1602260.

    Article  CAS  Google Scholar 

  9. Ge, J., Yin, W.-J., & Yan, Y. (2018). Solution-processed Nb-substituted BaBiO3 double perovskite thin films for photoelectrochemical water reduction. Chemistry of Materials, 30, 1017–1031.

    Article  CAS  Google Scholar 

  10. Huerta-Flores, A. M., Sánchez-Martínez, D., del Rocío Hernández-Romero, M., Zarazúa-Morín, M. E., & Torres-Martínez, L. M. (2019). Visible-light-driven BaBiO3 perovskite photocatalysts: Effect of physicochemical properties on the photoactivity towards water splitting and the removal of rhodamine B from aqueous systems. Journal of Photochemistry and Photobiology A: Chemistry, 368, 70–77.

    Article  CAS  Google Scholar 

  11. Chouhan, A. S., Athresh, E., Ranjan, R., Raghavan, S., & Avasthi, S. (2018). BaBiO3: a potential absorber for all-oxide photovoltaics. Materials Letters, 210, 218–222.

    Article  CAS  Google Scholar 

  12. Uchida, S., Kitazawa, K., & Tanaka, S. (1987). Superconductivity and metal-semiconductor transition in BaPb1–xBixO3. Phase Transitions, 8, 95–128.

    Article  CAS  Google Scholar 

  13. Sleight, A. W., Gillson, J. L., & Bierstedt, P. E. (1975). High-temperature superconductivity in the BaPb1–xBixO3 systems. Solid State Communications, 17, 27–28.

    Article  CAS  Google Scholar 

  14. Takagi, H., Uchida, S., Tajima, S., Kitazawa, K., & Tanaka, S. (1986). Proc. Intern. Conf. Physics of Semiconductors, Stockholm, Sweden; O. Engstrom (Ed.), World Scientific Publishers, Singapore, p. 1851.

  15. Kim, K. H., Jung, C. U., Noh, T. W., & Kim, S. C. (1997). Optical indirect transitions of semiconducting BaPb1−xBixO3. Physical Review B, 55, 15393.

    Article  CAS  Google Scholar 

  16. Kunc, K., Zeyher, R., Liechtenstein, A. I., Methfessel, M., & Andersen, O. K. (1991). Ab-initio calculation of the charge and lattice modulation in BaBiO3. Solid State Communications, 80, 325–329.

    Article  CAS  Google Scholar 

  17. Franchini, C., Sanna, A., Marsman, M., & Kresse, G. (2010). Structural, vibrational, and quasiparticle properties of the Peierls semiconductor BaBiO3: A hybrid functional and self-consistent GW+vertex-corrections study. Physical Review B, 81, 085213.

    Article  CAS  Google Scholar 

  18. Shtarev, D. S., Shtareva, A. V., Mikhailovski, VJu., & Nashchochin, E. O. (2019). On the influence of strontium carbonate on improving the photocatalytic activity of strontium bismuthate Sr6Bi2O11. Catalysis Today, 335, 492–501.

    Article  CAS  Google Scholar 

  19. Shtarev, D. S., Shtareva, A. V., Kevorkyants, R., & Syuy, A. V. (2021). Synthesis, characterization, optoelectronic and photocatalytic properties of Sr2Bi2O5/SrCO3 and Sr3Bi2O6/SrCO3 heterostructures with varying SrCO3 content. Chemosphere, 267, 129229. https://doi.org/10.1016/j.chemosphere.2020.129229

    Article  CAS  PubMed  Google Scholar 

  20. Shtarev, D. S., Shtareva, A. V., Ryabchuk, V. K., Rudakova, A. V., & Serpone, N. (2019). Considerations of trends in heterogeneous photocatalysis. Correlations between conduction and valence band energies with bandgap energies of various photocatalysts. ChemCatChem, 11, 3534–3541.

    Article  CAS  Google Scholar 

  21. Shtarev, D. S., Ryabchuk, V. K., Rudakova, A. V., Shtareva, A. V., Molokeev, M. S., Kirichenko, E. A., & Serpone, N. (2020). Phenomenological rule from correlations of conduction/valence band energies and bandgap energies in semiconductor photocatalysts: calcium bismuthates versus strontium bismuthates. ChemCatChem, 12, 1551–1555.

    Article  CAS  Google Scholar 

  22. Bruker AXS TOPAS V4. (2008). General profile and structure analysis software for powder diffraction data.—User’s Manual. Bruker AXS, Karlsruhe, Germany.

  23. NIST X-ray Photoelectron Spectroscopy Database: see http://srdata.nist.gov/ and/or https://doi.org/10.18434/T4T88K

  24. Shtarev, D. S., Shtareva, A. V., Ryabchuk, V. K., Rudakova, A. V., Murzin, P. D., Molokeev, M. S., Koroleva, A. V., Blokh, A. I., & Serpone, N. (2020). Solid-state synthesis, characterization, UV-induced coloration and photocatalytic activity—The Sr6Bi2O11, Sr3Bi2O6 and Sr2Bi2O5 bismuthates. Catalysis Today, 340, 70–85.

    Article  CAS  Google Scholar 

  25. Braslavsky, S. E., Braun, A. M., Cassano, A. E., Emeline, A. V., Litter, M. I., Palmisano, L., Parmon, V. N., & Serpone, N. (2011). Glossary of terms used in photocatalysis and radiation catalysis (IUPAC Recommendations 2011). Pure & Applied Chemistry, 83, 931–1014.

    Article  CAS  Google Scholar 

  26. Shtarev, D. S., Shtareva, A. V., Blokh, A. I., Goncharova, P. S., & Makarevich, K. S. (2017). On the question of the optimal concentration of benzoquinone when it is used as a radical scavenger. Applied Physics A, 123, 602.

    Article  CAS  Google Scholar 

  27. Goedecker, S., Teter, M., & Hutter, J. (1996). Separable dual-space Gaussian pseudopotentials. Physical Review B, 54, 1703–1710.

    Article  CAS  Google Scholar 

  28. Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77, 3865–3868.

    Article  CAS  PubMed  Google Scholar 

  29. Perdew, J. P., Burke, K., & Ernzerhof, M. (1997). Generalized gradient approximation made simple (Erratum). Physical Review Letters, 78, 1396–1396.

    Article  CAS  Google Scholar 

  30. Gonze, X., Amadon, B., Anglade, P. M., Beuken, J.-M., Bottin, F., Boulanger, P., Bruneval, F., Caliste, D., Caracas, R., Cote, M., Deutsch, T., Genovese, L., Ghosez, Ph., Giantomassi, M., Goedecker, S., Hamann, D., Hermet, P., Jollet, F., Jomard, G., … Zwanziger, J. W. (2009). ABINIT: first-principles approach to material and nanosystem properties. Computer Physics Communications, 180, 2582–2615.

    Article  CAS  Google Scholar 

  31. Troullier, N., & Martins, J. L. (1991). Efficient pseudopotentials for plane-wave calculations. Physical Review B, 43, 1993–2006.

    Article  CAS  Google Scholar 

  32. Hartwigsen, C., Goedecker, S., & Hutter, J. (1998). Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Physical Review B, 58, 3641–3662.

    Article  CAS  Google Scholar 

  33. Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Reviw B, 13, 5188–5192.

    Article  Google Scholar 

  34. Williams, T., Kelley, C., Merritt, E.A., Bersch, C., Bröker, H.-B., Campbell, J., Cunningham, R., Denholm, D., Elber, G., Fearick, R., Grammes, C., Hart, L., Hecking, L., Juhász, P., Koenig, T., Kotz, D., Kubaitis, E., Lang, R., Lecomte, T., Lehmann, A., Lodewyck, J., Mai, A., Märkisch, B., Mikulík, P., Sebald, D., Steger, C., Takeno, S., Tkacik, T., van der Woude, J., van Zandt, J.R., Woo, A., & Zellner, J. (2018). Gnuplot 5.2: An interactive plotting program. see https://www.solvercube-com/gnuplot-a-command-line-driven-graphing-utility/ (accessed Mar 2021).

  35. Efremov, V. A., Zakharov, N. D., Kuz’micheva, G. M., Mukhin, B. V., & Chernyshev, V. V. (1993). Yttrium-scandium-gallium garnet: the crystal structure. Russian Journal of Inorganic Chemistry, 38, 203–207.

    Google Scholar 

  36. Campbell, B. J., Stokes, H. T., Tanner, D. E., & Hatch, D. M. (2006). ISODISPLACE: A web-based tool for exploring structural distortions. Journal of Applied Crystallography, 39, 607–614.

    Article  CAS  Google Scholar 

  37. “checkCIF”, a service of the International Union of Crystallography: See https://checkcif.iucr.org/

  38. FIZKarlsruhe, Leibnitz Institute for Information Infrastructure, Advancing Science: See http://www.fiz-karlsruhe.de/request_for_deposited_data.html

  39. Castro, M. C., Jr., Carvalho, E. F. V., Paraguassu, W., Ayala, A. P., Snyder, F. C., Lufaso, M. W., & de Arahujo Paschoal, C. W. (2009). Temperature-dependent Raman spectra of Ba2BiSbO6 ceramics. Journal of Raman Spectroscopy, 40, 1205–1210.

    Article  CAS  Google Scholar 

  40. de Waal, D., Range, K.-J., Konigstein, M., & Kiefer, W. (1998). Raman spectra of the barium oxide peroxide and strontium oxide peroxide series. Journal of Raman Spectroscopy, 29, 109–113.

    Article  Google Scholar 

  41. Talha, M., & Lee, Y. W. (2020). Raman modes and dielectric relaxation properties of epitaxial BaBiO3 thin films. Materials Research Express, 7, 016420.

    Article  CAS  Google Scholar 

  42. Hardcastle, F. D., & Wachs, I. E. (1992). The molecular structure of bismuth oxide by Raman spectroscopy. Journal of Solid State Chemistry, 97, 319–331.

    Article  CAS  Google Scholar 

  43. Poungchan, G., Ksapabutr, B., & Panapoy, M. (2016). One-step synthesis of flower-like carbon-doped ZrO2 for visible-light-responsive photocatalyst. Materials & Design, 89, 137–145.

    Article  CAS  Google Scholar 

  44. Shtarev, D. S., Shtareva, A. V., Kevorkyants, R., Rudakova, A. V., Molokeev, M. S., Bakiev, T. V., Bulanin, K. M., Ryabchuk, V. K., & Serpone, N. (2020). Materials synthesis, characterization and DFT calculations of the visible-light-active perovskite-like barium bismuthate Ba1.264(4)Bi1.971(4)O4 photocatalyst. Journal of Materials Chemistry C, 8, 3509–3519.

    Article  CAS  Google Scholar 

  45. Ji, X., Lu, J.-F., Wang, Q., & Zhang, D. (2020). Impurity doping approach on bandgap narrowing and improved photocatalysis of Ca2Bi2O5. Powder Technology, 376, 708–723.

    Article  CAS  Google Scholar 

  46. Chambers, S. A., Droubay, T., Kaspar, T. C., Gutowski, M., & van Schilfgaarde, M. (2004). Accurate valence band maximum determination for SrTiO3 (001). Surface Science, 554, 81–89.

    Article  CAS  Google Scholar 

  47. Fu, H., Pan, C., Yao, W., & Zhu, Y. (2005). Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. Journal of Physical Chemistry B, 109, 22432–22439.

    Article  CAS  PubMed  Google Scholar 

  48. Nelson, D. L., & Cox, M. M. (2012). Lehninger principles of biochemistry (6th ed.). New York: WH Freeman and Company.

    Google Scholar 

  49. Drake, H. L., Kusel, K., & Matthies, C. (2006). Acetogenic prokaryotes. The Prokaryotes, 2, 354–420.

    Article  Google Scholar 

  50. Pavitt, A. S., Bylaska, E., & Tratnyek, P. G. (2017). Oxidation potentials of phenols and anilines: correlation analysis of electrochemical and theoretical values. Environmental Science: Processes & Impacts, 19, 339–349. https://doi.org/10.1039/C6EM00694A

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank the Russian Science Foundation for a Grant (Project No. 19-73-10013) in support of our study. The authors are also grateful to the staff of the following Institutes/Centers for their valuable technical assistance and in providing the needed equipment: (i) the Khabarovsk Innovation and Analytical Center of the Yu. A. Kosygin Institute of Tectonics and Geophysics FEB RAS; and (ii) the Resource Centers of the Research Park at Saint-Petersburg State University, especially the Center for Physical Methods of Surface Investigation and the Nanophotonics Center. One of us (NS) is grateful to the staff of the PhotoGreen Laboratory of the University of Pavia, Italy, for their continued hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick Serpone.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 986 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shtarev, D.S., Shtareva, A.V., Kevorkyants, R. et al. Revisiting the BaBiO3 semiconductor photocatalyst: synthesis, characterization, electronic structure, and photocatalytic activity. Photochem Photobiol Sci 20, 1147–1160 (2021). https://doi.org/10.1007/s43630-021-00086-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00086-y

Keywords

Navigation