Skip to main content
Log in

N-doped ZnO as an efficient photocatalyst for thiocyanation of indoles and phenols under visible-light

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In this study, nitrogen-doped ZnO nanorods (N–ZnO NRs) were synthesized via a very simple hydrothermal process, fully characterized, and this photocatalyst was successfully exploited in thiocyanation reactions of indoles and phenols at room temperature under visible light irradiation. Two important classes of aromatic compounds indoles, and phenols using N–ZnO NRs as photocatalyst treated with ammonium thiocyanate as thiocyanation agent formed the corresponding thiocyano compounds in good yields. Nitrogen is one of the most appropriate p-type dopants that is nontoxic, similar to the atomic radius to oxygen, and lower electronegativity and ionization energy than the O atom. Therefore, the N doping converts ZnO into the p-type ZnO semiconductor structure. This potent, simple, and versatile protocol afforded thiocyanation reactions of indole and phenols under visible light. The reactions proceeded through a radical pathway by applying air molecular oxygen as a low cost and environmentally friendly terminal oxidant. The proposed mechanism based on control experiments was thoroughly described.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Rajeshwara, K., Osugi, M. E., Chanmanee, W., Chenthamarakshan, C. R., Zanoni, M. V. B., Kajitvichyanukul, P., & Krishnan-Ayer, R. (2008). Journal of photochemistry and photobiology C: photochemistry reviews, 9, 171–192.

    Article  Google Scholar 

  2. Rehman, S., Ullah, R., Butt, A. M., & Gohar, N. D. (2009). Journal of Hazardous Materials, 170, 560–269.

    Article  CAS  Google Scholar 

  3. Chungui, T., Qi, Z., Aiping, W., Meijia, J., Zhenglan, L., Baojiang, J., & Honggang, F. (2012). Chemical Communications, 48, 2858–2860.

    Article  Google Scholar 

  4. Wang, G., Chen, D., Zhang, H., Zhang, J. Z., & Li, J. H. (2008). Journal of Physical Chemistry, 112, 8850–8855.

    CAS  Google Scholar 

  5. Hornyak, G. L., Dutta, J., Tibbals, H. F., & Rao, A. (2008). Introduction to nanoscience. Boca Raton: CRC Press.

    Book  Google Scholar 

  6. Lin, H., Huang, C. P., Li, W., Ni, C., Shah, S. I., & Tseng, Y. H. (2006). Applied Catalysis B: Environmental, 68(1–2), 1–11.

    CAS  Google Scholar 

  7. Xu, Z., Chenghua, S., Hua, Y., Zhi, G. C., Zheng, X., Delai, Y., Gao, Q. L., Xinyong, L., & Lianzhou, W. (2013). Journal of Physical Chemistry C, 117, 4937–4942.

    Google Scholar 

  8. Chen, S., Zhao, W., Zhang, S., & Liu, W. (2009). Chemical Engineering Journal, 148, 263.

    Article  Google Scholar 

  9. Hongchun, Q., Weiying, L., Yujing, X., Tao, H., & Appl, A. C. S. (2011). Mater. Interfaces., 3, 3152–3156.

    Article  Google Scholar 

  10. Swapna, R., & Santhosh Kumar, M. C. (2013). Materials Science and Engineering B, 178(16), 1032–1103.

    Article  CAS  Google Scholar 

  11. Chen, X., Lou, Y. B., Samia, A. C. S., et al. (2005). Advanced Functional Materials, 15(1), 41–49.

    Article  CAS  Google Scholar 

  12. Silva, I. M. P., Byzynski, G., Ribeiro, C., et al. (2016). Journal of Molecular Catalysis A: Chemical, 417, 89–100.

    Article  CAS  Google Scholar 

  13. Mishra, C. B., Kumari, S., & Tiwari, M. (2015). European Journal of Medicinal Chemistry, 92, 1–34.

    Article  CAS  Google Scholar 

  14. Ayati, A., Emami, S., Asadipour, A., Shafiee, A., & Foroumadi, A. (2015). European Journal of Medicinal Chemistry, 97, 699–718.

    Article  CAS  Google Scholar 

  15. Piscitelli, S. C., Goss, T. F., Wilton, J. H., D'andrea, D. T., Goldstein, H., & Schentag, J. J. (1991). Antimicrobial agents and chemotherapy35(9), 1765-1771.

  16. Rezayati, S., & Ramazani, A. (2020). Tetrahedron, 76(36), 131382.

    Article  CAS  Google Scholar 

  17. Majedi, S., Sreerama, L., & Vessally, E. (2020). and F. Behmagham J. Chem. Lett., 1(1), 25–31.

    Google Scholar 

  18. Nair, V., & Nair, L. G. (1998). Tetrahedron Letters, 39, 4585–4586.

    Article  CAS  Google Scholar 

  19. Nair, V., George, T. G., Nair, L. G., & Panicker, S. B. (1999). Tetrahedron Letters, 40, 1195–1196.

    Article  CAS  Google Scholar 

  20. De Mico, A., Margarita, R., Mariani, A., & Piancatelli, G. (1996). Tetrahedron Letters, 37, 1889–1892.

    Article  Google Scholar 

  21. Yadav, J. S., Reddy, B. V. S., & Krishna, B. B. M. (2008). Synthesis, 2008(23), 3779–3782.

    Article  Google Scholar 

  22. Wu, G., Liu, Q., Shen, Y., Wu, W., & Wu, L. (2005). Tetrahedron Letters, 46, 5831–5834.

    Article  CAS  Google Scholar 

  23. Pan, X.-Q., Lei, M.-Y., Zou, J.-P., & Zhang, W. (2009). Tetrahedron Letters, 50, 347–349.

    Article  CAS  Google Scholar 

  24. Koohgard, M., Sarvestani, A. M., & Hosseini-Sarvari, M. (2020). New Journal of Chemistry, 44, 14505–14512.

    Article  CAS  Google Scholar 

  25. Irie, H., Washizuka, S., Yoshino, N., & Hashimoto, K. (2003). Chemical Communications, (11), 1298-1299.

  26. Minami, T., Sato, H., Nanto, H., & Takata, S. (1986). Japanese. Journal of Applied Physics, 25, L776.

    Article  CAS  Google Scholar 

  27. Zhu, X., Wu, H. Z., Qiu, D. J., et al. (2010). Optics Communications, 283(13), 2695–2699.

    Article  CAS  Google Scholar 

  28. Meng, A., Li, X., Wang, X., et al. (2014). Ceramics International, 40(7), 9303–9309.

    Article  CAS  Google Scholar 

  29. Söllradl, S., Greiwe, M., Bukas, V. J., et al. (2015). Chemistry of Materials, 27(12), 4188–4195.

    Article  Google Scholar 

  30. Rajbongshi, B. M., Ramchiary, A., & Samdarshi, S. (2014). Materials Letters, 134, 111–114.

    Article  CAS  Google Scholar 

  31. Wang, L., Wang, C., Liu, W., Chen, Q., & He, M. (2016). Tetrahedron Letters, 57(16), 1771–1774.

    Article  CAS  Google Scholar 

  32. Fan, W., Yang, Q., Xu, F., & Li, P. (2014). Journal of Organic Chemistry, 79(21), 10588–10592.

    Article  CAS  Google Scholar 

  33. Koohgard, M., Hosseinpour, Z., Sarvestani, A. M., & Hosseini-Sarvari, M. (2020). Catalysis Science and Technology, 10(5), 1401–1407.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shiraz University.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Mona Hosseini-Sarvari.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8544 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini-Sarvari, M., Sarvestani, A.M. N-doped ZnO as an efficient photocatalyst for thiocyanation of indoles and phenols under visible-light. Photochem Photobiol Sci 20, 903–911 (2021). https://doi.org/10.1007/s43630-021-00068-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00068-0

Keywords

Navigation