Skip to main content
Log in

Tautomeric influence on the photoinduced birefringence of 4-substituted phthalimide 2-hydroxy Schiff bases in PMMA matrix

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photoinduced birefringence of two 4-substituted phthalimide 2-hydroxy Schiff bases, containing salicylic (4) and 2-hydroxy-1-naphthyl (5) moieties has been investigated in PMMA matrix. Their optical behaviour as nanocomposite films was revealed by combined use of DFT quantum chemical calculations (in ground and excited state) and experimental optical spectroscopy (UV–Vis and fluorescence). The results have shown that solid-state reversible switching takes place by enol/keto tautomerization and Z/E isomerization. Birefringence study was performed in the PMMA nanocomposite films using pump lasers at λrec = 355 nm and λrec = 442 nm. Fast response time and high stability of anisotropy up to 58% for (4) and 95% for (5) after turning off the excitation laser, was observed, which makes these materials appropriate candidates for cutting-edge optical information technology materials. The possibility for multiple cycles of recording, reading and optical erasure of the photoinduced birefringence at λrec = 442 nm in 5 has been demonstrated. The obtained results have shown that the maximum value of the measured birefringence is close to the anisotropic characteristics of the most frequently used azo materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Scheme 3.
Scheme 4.
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Antonov, L. (2020). Tautomerism: Concepts and Applications in Science and Technology | Wiley, https://www.wiley.com/en-us/Tautomerism%3A+Concepts+and+Applications+in+Science+and+Technology-p-9783527339952, (accessed 12 November 2020).

  2. Antonov, L. (2020). Tautomerism: Methods and Theories | Wiley, https://www.wiley.com/en-bg/Tautomerism:+Methods+and+Theories-p-9783527332946, (accessed 12 November 2020).

  3. Xie, X., Crespo, G. A., Mistlberger, G., & Bakker, E. (2014). Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane. Nature Chemistry, 6, 202–207.

    CAS  PubMed  Google Scholar 

  4. Padalkar, V. S., & Seki, S. (2016). Excited-state intramolecular proton-transfer (ESIPT)-inspired solid state emitters. Chemical Society Reviews, 45, 169–202.

    CAS  PubMed  Google Scholar 

  5. Kwon, J. E., & Park, S. Y. (2011). Advanced organic optoelectronic materials: Harnessing excited-state intramolecular proton transfer (ESIPT) process. Advanced Materials, 23, 3615–3642.

    CAS  PubMed  Google Scholar 

  6. Levin, P. P., Liubimov, A. V., Shashkov, A. S., Mardaleishvili, I. R., Venidiktova, O. V., Shienok, A. I., Koltsova, L. S., Astafiev, A. A., Barachevsky, V. A., & Zaichenko, N. L. (2020). Multiple fluorescence of tetraarylimidazole and azomethinocoumarin dyad with dual excited-state intramolecular proton transfer. Dyes and Pigments, 183, 108716.

    CAS  Google Scholar 

  7. García-López, M. C., Muñoz-Flores, B. M., Jiménez-Pérez, V. M., Moggio, I., Arias, E., Chan-Navarro, R., & Santillan, R. (2014). Synthesis and photophysical characterization of organotin compounds derived from Schiff bases for organic light emitting diodes. Dyes and Pigments, 106, 188–196.

    Google Scholar 

  8. Ibarra-Rodríguez, M., Muñoz-Flores, B. M., Chan-Navarro, R., Waksman, N., Saucedo-Yañez, A., Sánchez, M., & Jiménez-Pérez, V. M. (2019). Fluorescent molecular rotors (FMRs) of organoboron derived from Schiff bases and their multi-stimuli responsive. Opt. Mater. (Amst), 89, 123–131.

    Google Scholar 

  9. Peng, H., Han, Y., Lin, N., & Liu, H. (2019). Two pyridine-derived Schiff-bases as turn-on fluorescent sensor for detection of aluminium ion. Optical Materials (Amst), 95, 109210.

    CAS  Google Scholar 

  10. Sedgwick, A. C., Wu, L., Han, H. H., Bull, S. D., He, X. P., James, T. D., Sessler, J. L., Tang, B. Z., Tian, H., & Yoon, J. (2018). Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chemical Society Reviews, 47, 8842–8880.

    CAS  PubMed  Google Scholar 

  11. Bhuiyan, M. D. H., Teshome, A., Gainsford, G. J., Ashraf, M., Clays, K., Asselberghs, I., & Kay, A. J. (2010). Synthesis, characterization, linear and non-linear optical (NLO) properties of some Schiff’s bases. Optical Materials (Amst), 32, 669–672.

    CAS  Google Scholar 

  12. Gester, R., Torres, A., Bistafa, C., Araújo, R. S., da Silva, T. A., & Manzoni, V. (2020). Theoretical study of a recently synthesized azo dyes useful for OLEDs. Materials Letters, 280, 128535.

    CAS  Google Scholar 

  13. Ziołek, M., Kubicki, J., MacIejewski, A., Naskrȩcki, R., & Grabowska, A. (2006). Enol-keto tautomerism of aromatic photochromic Schiff base N, N′ -bis(salicylidene)- p -phenylenediamine: Ground state equilibrium and excited state deactivation studied by solvatochromic measurements on ultrafast time scale. The Journal of Chemical Physics, 10(1063/1), 2179800.

    Google Scholar 

  14. Nagy, P., & Herzfeld, R. (1998). Study of enol-keto tautomerism of N-(2-hydroxy-1 -naphthylidene) anils. Spectroscopy Letters, 31, 221–232.

    CAS  Google Scholar 

  15. Grabowska, A., Kownacki, K., Karpiuk, J., Dobrin, S., & Kaczmarek, L. (1997). Photochromism and proton transfer reaction cycle of new internally H-bonded Schiff bases. Chemical Physical Letters, 267, 132–140.

    CAS  Google Scholar 

  16. Satam, M. A., Telore, R. D., & Sekar, N. (2014). Photophysical properties of Schiff’s bases from 3-(1,3-benzothiazol-2-yl)- 2-hydroxy naphthalene-1-carbaldehyde. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 132, 678–686.

    CAS  Google Scholar 

  17. Wu, C. H., Karas, L. J., Ottosson, H., & Wu, J. I. C. (2019). Excited-state proton transfer relieves antiaromaticity in molecules. Proceeding of the National Academy of Science U. S. A., 116, 20303–20308.

    CAS  Google Scholar 

  18. Tang, Z., Bai, T., Zhou, P., & Zhou, P. (2020). Sensing Mechanism of a Fluorescent Probe for Cysteine: Photoinduced Electron Transfer and Invalidity of Excited-State Intramolecular Proton Transfer. Journal of Physical Chemistry A, 124, 6920–6927.

    CAS  Google Scholar 

  19. Zhao, J., Ji, S., Chen, Y., Guo, H., & Yang, P. (2012). Excited state intramolecular proton transfer (ESIPT): from principal photophysics to the development of new chromophores and applications in fluorescent molecular probes and luminescent materials . Physical Chemistry Chemical Physics, 14, 8803–8817.

    CAS  PubMed  Google Scholar 

  20. Yordanov, D., Deneva, V., Georgiev, A., Crochet, A., Fromm, K. M., & Antonov, L. (2020). Indirect solvent assisted tautomerism in 4-substituted phthalimide 2-hydroxy-Schiff bases. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 237, 118416.

    CAS  Google Scholar 

  21. Jacquemin, P. L., Robeyns, K., Devillers, M., & Garcia, Y. (2014). Reversible photochromism of an N-salicylidene aniline anion. Chemical Communications, 50, 649–651.

    CAS  PubMed  Google Scholar 

  22. Miniewicz, A., Orlikowska, H., Sobolewska, A., & Bartkiewicz, S. (2018). Kinetics of thermal: Cis - Trans isomerization in a phototropic azobenzene-based single-component liquid crystal in its nematic and isotropic phases. Physical Chemistry Chemical Physics: PCCP, 20, 2904–2913.

    CAS  PubMed  Google Scholar 

  23. Ohshima, A., Momotake, A., & Arai, T. (2004). Photochromism, thermochromism, and solvatochromism of naphthalene-based analogues of salicylideneaniline in solution. Journal of Photochemistry and Photobiology, A: Chemistry, 162, 473–479.

    CAS  Google Scholar 

  24. Amimoto, K., & Kawato, T. (2005). Photochromism of organic compounds in the crystal state. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 6, 207–226.

    CAS  Google Scholar 

  25. Avadanei, M., Cozan, V., Shova, S., & Paixão, J. A. (2014). Solid state photochromism and thermochromism of two related N-salicylidene anilines. Chemical Physics, 444, 43–51.

    CAS  Google Scholar 

  26. Kawato, T., Koyama, H., Kanatomi, H., & Isshiki, M. (1985). Photoisomerization and thermoisomerization I: Unusual photochromism of N-(3,5-di-tert-butyl-salicylidene) amines. Journal of Photochemistry, 28, 103–110.

    CAS  Google Scholar 

  27. Hadjoudis, E., Vittorakis, M., & Moustakali-Mavridis, I. (1987). Photochromism and thermochromism of schiff bases in the solid state and in rigid glasses. Tetrahedron, 43, 1345–1360.

    CAS  Google Scholar 

  28. Castiglioni, F., Danowski, W., Perego, J., Leung, F. K. C., Sozzani, P., Bracco, S., Wezenberg, S. J., Comotti, A., & Feringa, B. L. (2020). Modulation of porosity in a solid material enabled by bulk photoisomerization of an overcrowded alkene. Nature Chemistry, 12, 595–602.

    CAS  PubMed  Google Scholar 

  29. Sarkar, N., Sarkar, A., & Sivaram, S. (2001). Isomerization Behavior of Aromatic Azo Chromophores Bound to Semicrystalline Polymer Films. Journal of Applied Polymer Science, 81, 2923–2928.

    CAS  Google Scholar 

  30. Eisenbach, C. (1978). Effect of polymer matrix on the cis-trans isomerization of azobenzene residues in bulk polymers. Die Makromol. Chemie, 179, 2489–2506.

    CAS  Google Scholar 

  31. Yamaki, S. B., De Oliveira, M. G., & Atvars, T. D. Z. (2004). The effect of dye-polymer interactions on the kinetics of the isomerization of 4-dimethyl-aminoazobenzene and mercury dithizonate. Journal of the Brazilian Chemical Society, 15, 253–261.

    CAS  Google Scholar 

  32. Frisch, M., & Clemente, F. (2009). Gaussian 09, Revision A. 01, MJ Frisch, GW Trucks, HB Schlegel, GE Scuseria, MA Robb, JR Cheeseman, G. Scalmani, V. Barone, B. Mennucci, GA Petersson, H. Nakatsuji, M. Caricato, X. Li, HP Hratchian, AF Izmaylov, J. Bloino, G. Zhe

  33. Zhao, Y., & Truhlar, D. G. (2008). Density functionals with broad applicability in chemistry. Accounts of Chemical Research, 41, 157–167.

    CAS  PubMed  Google Scholar 

  34. Zhao, Y., & Truhlar, D. G. (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120, 215–241.

    CAS  Google Scholar 

  35. Schäfer, A., Huber, C., & Ahlrichs, R. (1994). Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. The Journal of Chemical Physics, 100, 5829–5835.

    Google Scholar 

  36. Improta, R. (2011). in Computational Strategies for Spectroscopy (pp. 37–75). Hoboken: John Wiley & Sons Inc.

    Google Scholar 

  37. Adamo, C., & Jacquemin, D. (2013). The calculations of excited-state properties with time-dependent density functional theory. Chemical Society Reviews, 42, 845–856.

    CAS  PubMed  Google Scholar 

  38. Peng, C., Ayala, P. Y., Schlegel, H. B., & Frisch, M. J. (1996). Using redundant internal coordinates to optimize equilibrium geometries and transition states. Journal of Computational Chemistry, 17, 49–56.

    CAS  Google Scholar 

  39. Joshi, H., Kamounah, F. S., Gooijer, C., Van Der Zwan, G., & Antonov, L. (2002). Excited state intramolecular proton transfer in some tautomeric azo dyes and schiff bases containing an intramolecular hydrogen bond. Journal of Photochemistry and Photobiology, A: Chemistry, 152, 183–191.

    CAS  Google Scholar 

  40. Georgiev, A., Todorov, P., & Dimov, D. (2020). Excited state proton transfer and E/Z photoswitching performance of 2-hydroxy-1-naphthalene and 1-naphthalene 5,5′-dimethyl- and 5,5′-diphenylhydantoin Schiff bases. Journal of Photochemistry and Photobiology A: Chemistry, 386, 112143.

    CAS  Google Scholar 

  41. Bléger, D., & Hecht, S. (2015). Visible-light-activated molecular switches. Angewandte Chemie International Edition, 54, 11338–11349.

    PubMed  Google Scholar 

  42. Silva, L. M., Silva, D. L., Boas, M. V., Bretonniere, Y., Andraud, C., & Vivas, M. G. (2020). Probing the high performance of photoinduced birefringence in V-shaped azo/PMMA guest–host films. RSC Advances, 10, 40806–40814.

    CAS  Google Scholar 

  43. Zhu, M., Guo, H., Cai, K., Yang, F., & Wang, Z. (2017). Novel fluorescence-enhancing effect based on light-induced E/Z isomerization of perylene diimides with Schiff-base groups on bay-positions. Dyes and Pigments, 140, 179–186.

    CAS  Google Scholar 

  44. Ozhogin, I. V., Dorogan, I. V., Lukyanov, B. S., Mukhanov, E. L., Tkachev, V. V., Chernyshev, A. V., Lukyanova, M. B., Aldoshin, S. M., & Minkin, V. I. (2016). New spiropyrans based on 1,3-benzoxazine-2-one: Acid catalyzed synthesis and theoretical insight into the photochromic activity. Tetrahedron Letters, 57, 2382–2385.

    CAS  Google Scholar 

  45. Ozhogin, I. V., Chernyavina, V. V., Lukyanov, B. S., Malay, V. I., Rostovtseva, I. A., Makarova, N. I., Tkachev, V. V., Lukyanova, M. B., Metelitsa, A. V., & Aldoshin, S. M. (2019). Synthesis and study of new photochromic spiropyrans modified with carboxylic and aldehyde substituents. Journal of Molecular Structure, 1196, 409–416.

    CAS  Google Scholar 

  46. Ozhogin, I. V., Mukhanov, E. L., Chernyshev, A. V., Pugachev, A. D., Lukyanov, B. S., & Metelitsa, A. V. (2020). Synthesis and study of new photochromic unsymmetrical bis-spiropyrans with nonequivalent heteroarene fragments conjugated through the common 2H,8H-pyrano[2,3-f]chromene moiety. Journal of Molecular Structure, 1221, 128808.

    CAS  Google Scholar 

  47. Giménez, R., Piñol, M., Serrano, J. L., Viñuales, A. I., Rosenhauer, R., & Stumpe, J. (2006). Photo-induced anisotropic films based on liquid crystalline copolymers containing stilbene units. Polymer (Guildf), 47, 5707–5714.

    Google Scholar 

  48. He, T., Wang, C., Pan, X., Yang, H., & Lu, G. (2009). Photoinduced anisotropy and polarization holography in a stilbene-containing fluorinated polyimide. Optics Letters, 34, 665.

    CAS  PubMed  Google Scholar 

  49. Ovdenko, V. M., Multian, V. V., Uklein, A. V., Kulai, I. V., Kolendo, O. Y., & Gayvoronsky, V. Y. (2020). Novel efficient nonlinear optical azo- And azomethine polymers containing an antipyrine fragment: Synthesis and characterization. Journal of Materials Chemistry C, 8, 9032–9045.

    CAS  Google Scholar 

  50. Weis, P., Tian, W., & Wu, S. (2018). Photoinduced Liquefaction of Azobenzene-Containing Polymers. Chemistry A European Journal, 24, 6494–6505.

    CAS  Google Scholar 

  51. Kinashi, K., Fukami, T., Yabuhara, Y., Motoishi, S., Sakai, W., Kawamoto, M., Sassa, T., & Tsutsumi, N. (2016). Molecular design of azo-carbazole monolithic dyes for updatable full-color holograms. NPG Asia Materials, 8, 311.

    Google Scholar 

  52. Tawa, K., Kamada, K., Sakaguchi, T., & Ohta, K. (1998). Photoinduced anisotropy in a polymer doped with azo dyes in the photostationary state studied by polarized FT-IR spectroscopy. Applied spectroscopy, 52(12), 1536–1540.

    CAS  Google Scholar 

  53. Wang, X. (2017). Springer, Heidelberg, pp. 117–149.

  54. Feringa, B. L., & Browne, W. R. (2011). Molecular Switches (p. 1). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.

    Google Scholar 

  55. Aritake, Y., Takanashi, T., Yamazaki, A., & Akitsu, T. (2011). Polarized spectroscopy and hybrid materials of chiral Schiff base Ni(II), Cu(II), Zn(II) complexes with included or separated azo-groups. Polyhedron, 30, 886–894.

    CAS  Google Scholar 

  56. Nielsen, M. (2015). Molecular Switches

  57. Nedelchev, L. L., Matharu, A. S., Hvilsted, S., & Ramanujam, P. S. (2003). Photoinduced anisotropy in a family of amorphous azobenzene polyesters for optical storage. Applied Optics, 42, 5918.

    CAS  PubMed  Google Scholar 

  58. Li, S., Feng, Y., Long, P., Qin, C., & Feng, W. (2017). The light-switching conductance of an anisotropic azobenzene-based polymer close-packed on horizontally aligned carbon nanotubes. Journal of Materials Chemistry C, 5, 5068–5075.

    CAS  Google Scholar 

  59. Janssens, S., Breukers, R., Swanson, A., & Raymond, S. (2017). Photoinduced properties of Bis-azo chromophore host guest systems-birefringence and all optical tuneable polymer waveguide Bragg gratings. Journal of Applied Physics, 122, 023107.

    Google Scholar 

  60. Kozanecka-Szmigiel, A., Konieczkowska, J., Switkowski, K., Antonowicz, J., Trzebicka, B., Szmigiel, D., & Schab-Balcerzak, E. (2016). Influence of supramolecular interactions on photoresponsive behavior of azobenzene poly(amide imide)s. Journal of Photochemistry and Photobiology, A: Chemistry, 318, 114–123.

    CAS  Google Scholar 

  61. Kozanecka-Szmigiel, A., Konieczkowska, J., Szmigiel, D., Switkowski, K., Siwy, M., Kuszewski, P., & Schab-Balcerzak, E. (2015). Photoinduced birefringence of novel azobenzene poly(esterimide)s; The effect of chromophore substituent and excitation conditions. Dyes and Pigments, 114, 151–157.

    CAS  Google Scholar 

  62. Kozanecka-Szmigiel, A., Switkowski, K., Schab-Balcerzak, E., & Szmigiel, D. (2015). Photoinduced birefringence of azobenzene polymer at blue excitation wavelengths. Applied Physics B: Lasers and Optics, 119, 227–231.

    CAS  Google Scholar 

  63. Kozanecka-Szmigiel, A., Switkowski, K., Schab-Balcerzak, E., & Grabiec, E. (2011). Two-photon-induced birefringence in azo-dye bearing polyimide; the birefringence changes versus the writing power. Applied Physics B: Lasers and Optics, 105, 851–855.

    CAS  Google Scholar 

  64. Silva, L. M., Silva, D. L., Boas, M. V., Bretonniere, Y., Andraud, C., & Vivas, M. G. (2020). Probing the high performance of photoinduced birefringence in V-shaped azo/PMMA guest-host films. RSC Advances, 10, 40806–40814.

    CAS  Google Scholar 

  65. Stoilova, A., Georgiev, A., Nedelchev, L., Nazarova, D., & Dimov, D. (2019). Structure-property relationship and photoinduced birefringence of the azo and azo-azomethine dyes thin films in PMMA matrix. Optical Materials, 87, 16–23.

    CAS  Google Scholar 

  66. Nedelchev, L., Ivanov, D., Mateev, G., Blagoeva, B., Kostadinova, D., Berberova, N., & Nazarova, D. (2016). Multiple cycles of recording/reading/erasing birefringence in azopolymers. Bulgarian Chemical Communications, 48, 33–36.

    Google Scholar 

  67. Georgiev, A., Dimov, D., Stoilova, A., Markova, F., & Nazarova, D. (2019). Vapour deposited nanocomposite films of perylene bis azo-imides with improved photoresponsiveness by visible light. Optical Materials. (Amst). https://doi.org/10.1016/j.optmat.2018.12.050

    Article  Google Scholar 

  68. Ikeda, T., & Tsutsumi, O. (1995). Optical switching and image storage by means of azobenzene liquid-crystal films. Science, 268, 1873–1875.

    CAS  PubMed  Google Scholar 

  69. Lausten, R., Rochon, P., Ivanov, M., Cheben, P., Janz, S., Desjardins, P., Ripmeester, J., Siebert, T., & Stolow, A. (2005). Optically reconfigurable azobenzene polymer-based fiber Bragg filter. Applied Optics, 44, 7039–7042.

    CAS  PubMed  Google Scholar 

  70. Stewart, D. R., Ohlberg, D. A. A., Beck, P. A., Chen, Y., Williams, R. S., Jeppesen, J. O., Nielsen, K. A., & Stoddart, J. F. (2004). Molecule-independent electrical switching in Pt/organic monolayer/Ti devices. Nano Letters, 4, 133–136.

    CAS  Google Scholar 

  71. Weibel, N., Grunder, S., & Mayor, M. (2007). Functional molecules in electronic circuits. Organic and Biomolecular Chemistry, 5, 2343–2353.

    CAS  PubMed  Google Scholar 

  72. Schulze, M., Bronner, C., & Tegeder, P. (2014). Adsorption energetics of azobenzenes on noble metal surfaces. Journal of Physics Condensed Matter. https://doi.org/10.1088/0953-8984/26/35/355004

    Article  PubMed  Google Scholar 

  73. Mitra, M., Majumdar, B., Paul, R., & Paul, S. (1990). Molecular properties and order parameters of Schiff’s base compounds. Molecular Crystals and Liquid Crystals, 180(2), 187–199.

    Google Scholar 

  74. Ogiri, S., Ikeda, M., Kanazawa, A., Shiono, T., & Ikeda, T. (1999). Polymerization of liquid-crystalline monomers having a Schiff-base structure. Polymer (Guildf), 40, 2145–2150.

    CAS  Google Scholar 

  75. Valverde, C., Ribeiro, Í. N., Soares, J. V. B., Baseia, B., & Osório, F. A. P. (2019). Prediction of the Linear and Nonlinear Optical Properties of a Schiff Base Derivatives via DFT. Advanced in Condensed Matter Physics. https://doi.org/10.1155/2019/8148392

    Article  Google Scholar 

  76. Nigam, N., Kumar, S., Dutta, P. K., Pei, S., & Ghosh, T. (2016). Chitosan containing azo-based Schiff bases: Thermal, antibacterial and birefringence properties for bio-optical devices. RSC Advances, 6, 5575–5581.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financial supported by the Bulgarian National Science Fund under project ДH 18/5 “Novel azo materials and application of their photophysical properties as reversible optical optical storage devices”. Research equipment of Distributed Research Infrastructure INFRAMAT, part of Bulgarian National Roadmap for Research Infrastructures, supported by Bulgarian Ministry of Education and Science was used in this investigation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anton Georgiev or Liudmil Antonov.

Ethics declarations

Conflict of interest

The authors declared that the article content has no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1203 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blagoeva, B., Stoilova, A., Dimov, D. et al. Tautomeric influence on the photoinduced birefringence of 4-substituted phthalimide 2-hydroxy Schiff bases in PMMA matrix. Photochem Photobiol Sci 20, 687–697 (2021). https://doi.org/10.1007/s43630-021-00056-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00056-4

Keywords

Navigation