Skip to main content

Advertisement

Log in

Long-wavelength UVA enhances UVB-induced cell death in cultured keratinocytes: DSB formation and suppressed survival pathway

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Solar UV radiation consists of both UVA and UVB. The wavelength-specific molecular responses to UV radiation have been studied, but the interaction between UVA and UVB has not been well understood. In this study, we found that long-wavelength UVA, UVA1, augmented UVB-induced cell death, and examined the underlying mechanisms. Human keratinocytes HaCaT were exposed to UVA1, followed by UVB irradiation. Irradiation by UVA1 alone showed no effect on cell survival, whereas the UVA1 pre-irradiation remarkably enhanced UVB-induced cell death. UVA1 delayed the repair of pyrimidine dimers formed by UVB and the accumulation of nucleotide excision repair (NER) proteins to damaged sites. Gap synthesis during NER was also decreased, suggesting that UVA1 delayed NER, and unrepaired pyrimidine dimers and single-strand breaks generated in the process of NER were left behind. Accumulation of this unrepaired DNA damage might have led to the formation of DNA double-strand breaks (DSBs), as was detected using gel electrophoresis analysis and phosphorylated histone H2AX assay. Combined exposure enhanced the ATM–Chk2 signaling pathway, but not the ATR–Chk1 pathway, confirming the enhanced formation of DSBs. Moreover, UVA1 suppressed the UVB-induced phosphorylation of Akt, a survival signal pathway. These results indicated that UVA1 influenced the repair of UVB-induced DNA damage, which resulted in the formation of DSBs and enhanced cell death, suggesting the risk of simultaneous exposure to high doses of UVA1 and UVB.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ATM:

Ataxia telangiectasia-mutated

ATR:

ATM and Rad3-related

BER:

Base excision repair

BSA:

Bovine serum albumin

BSFGE:

Biased sinusoidal field gel electrophoresis

CPDs:

Cyclobutane pyrimidine dimers

DSBs:

Double-strand breaks

DMEM:

Dulbecco’s modified Eagle’s medium

EdU:

5-Ethynyl-2′-deoxyuridine

FBS:

Fetal bovine serum

γ-H2AX:

Phosphorylated histone H2AX

NER:

Nucleotide excision repair

8-oxodG:

8-Oxo-7,8-dihydro-2′-deoxyguanosine

PI:

Propidium iodide

PI3K:

Phosphatidylinositol-3 kinase

6-4PPs:

Pyrimidine (6–4) pyrimidone photoproducts

SSBs:

Single strand breaks

ssDNA:

Single-stranded DNA

UV:

Ultraviolet

UVR:

UV radiation

References

  1. El Ghissassi, F., Baan, R., Straif, K., Grosse, Y., Secretan, B., Bouvard, V., Benbrahim-Tallaa, L., Guha, N., Freeman, C., Galichet, L., & Cogliano, V. (2009). A review of human carcinogens—Part D: radiation. The Lancet. Oncology, 10(8), 751–752

    Article  PubMed  Google Scholar 

  2. Cadet, J., & Douki, T. (2018). Formation of UV-induced DNA damage contributing to skin cancer development. Photochemical and Photobiological Sciences, 17(12), 1816–1841

    Article  CAS  PubMed  Google Scholar 

  3. Mouret, S., Charveron, M., Favier, A., Cadet, J., & Douki, T. (2008). Differential repair of UVB-induced cyclobutane pyrimidine dimers in cultured human skin cells and whole human skin. DNA Repair (Amst), 7(5), 704–712

    Article  CAS  Google Scholar 

  4. Courdavault, S., Baudouin, C., Sauvaigo, S., Mouret, S., Candéias, S., Charveron, M., Favier, A., Cadet, J., & Douki, T. (2004). Unrepaired cyclobutane pyrimidine dimers do not prevent proliferation of UV-B-irradiated cultured human fibroblasts. Photochemistry and Photobiology, 79(2), 145–151

    Article  CAS  PubMed  Google Scholar 

  5. Mouret, S., Baudouin, C., Charveron, M., Favier, A., Cadet, J., & Douki, T. (2006). Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proceedings of the National Academy of Sciences of the United States of America, 103(37), 13765–13770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ikehata, H., Kawai, K., Komura, J., Sakatsume, K., Wang, L., Imai, M., Higashi, S., Nikaido, O., Yamamoto, K., Hieda, K., Watanabe, M., Kasai, H., & Ono, T. (2008). UVA1 genotoxicity is mediated not by oxidative damage but by cyclobutane pyrimidine dimers in normal mouse skin. The Journal of Investigative Dermatology, 128(9), 2289–2296

    Article  CAS  PubMed  Google Scholar 

  7. Mouret, S., Philippe, C., Gracia-Chantegrel, J., Banyasz, A., Karpati, S., Markovitsi, D., & Douki, T. (2010). UVA-induced cyclobutane pyrimidine dimers in DNA: a direct photochemical mechanism? Organic and Biomolecular Chemistry, 8(7), 1706–1711

    Article  CAS  PubMed  Google Scholar 

  8. Ikehata, H. (2018). Mechanistic considerations on the wavelength-dependent variations of UVR genotoxicity and mutagenesis in skin: The discrimination of UVA-signature from UV-signature mutation. Photochemical and Photobiological Sciences, 17(12), 1861–1871

    Article  CAS  PubMed  Google Scholar 

  9. Kappes, U. P., & Rünger, T. M. (2005). No major role for 7,8-dihydro-8-oxoguanine in ultraviolet light-induced mutagenesis. Radiation Research, 164(4 Pt 1), 440–445

    Article  CAS  PubMed  Google Scholar 

  10. Premi, S., Wallisch, S., Mano, C. M., Weiner, A. B., Bacchiocchi, A., Wakamatsu, K., Bechara, E. J., Halaban, R., Douki, T., & Brash, D. E. (2015). Photochemistry. Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure. Science (New York, NY), 347(6224), 842–847

    Article  CAS  Google Scholar 

  11. Schuch, A. P., Moreno, N. C., Schuch, N. J., Menck, C. F. M., & Garcia, C. C. M. (2017). Sunlight damage to cellular DNA: Focus on oxidatively generated lesions. Free Radical Biology and Medicine, 107, 110–124

    Article  CAS  PubMed  Google Scholar 

  12. Greinert, R., Volkmer, B., Henning, S., Breitbart, E. W., Greulich, K. O., Cardoso, M. C., & Rapp, A. (2012). UVA-induced DNA double-strand breaks result from the repair of clustered oxidative DNA damages. Nucleic Acids Research, 40(20), 10263–10273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rapp, A., & Greulich, K. O. (2004). After double-strand break induction by UV-A, homologous recombination and nonhomologous end joining cooperate at the same DSB if both systems are available. Journal of Cell Science, 117(Pt 21), 4935–4945

    Article  CAS  PubMed  Google Scholar 

  14. Garinis, G. A., Mitchell, J. R., Moorhouse, M. J., Hanada, K., de Waard, H., Vandeputte, D., Jans, J., Brand, K., Smid, M., van der Spek, P. J., Hoeijmakers, J. H., Kanaar, R., & van der Horst, G. T. (2005). Transcriptome analysis reveals cyclobutane pyrimidine dimers as a major source of UV-induced DNA breaks. EMBO Journal, 24(22), 3952–3962

    Article  CAS  Google Scholar 

  15. Ward, I. M., & Chen, J. (2001). Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. Journal of Biological Chemistry, 276(51), 47759–47762

    Article  CAS  Google Scholar 

  16. Halicka, H. D., Huang, X., Traganos, F., King, M. A., Dai, W., & Darzynkiewicz, Z. (2005). Histone H2AX phosphorylation after cell irradiation with UV-B: Relationship to cell cycle phase and induction of apoptosis. Cell Cycle, 4(2), 339–345

    Article  CAS  PubMed  Google Scholar 

  17. Cannan, W. J., Tsang, B. P., Wallace, S. S., & Pederson, D. S. (2014). Nucleosomes suppress the formation of double-strand DNA breaks during attempted base excision repair of clustered oxidative damages. Journal of Biological Chemistry, 289(29), 19881–19893

    Article  CAS  Google Scholar 

  18. Eccles, L. J., Lomax, M. E., & O’Neill, P. (2010). Hierarchy of lesion processing governs the repair, double-strand break formation and mutability of three-lesion clustered DNA damage. Nucleic Acids Research, 38(4), 1123–1134

    Article  CAS  PubMed  Google Scholar 

  19. Matsumoto, M., Yaginuma, K., Igarashi, A., Imura, M., Hasegawa, M., Iwabuchi, K., Date, T., Mori, T., Ishizaki, K., Yamashita, K., Inobe, M., & Matsunaga, T. (2007). Perturbed gap-filling synthesis in nucleotide excision repair causes histone H2AX phosphorylation in human quiescent cells. Journal of Cell Science, 120(Pt 6), 1104–1112

    Article  CAS  PubMed  Google Scholar 

  20. Ray, A., Blevins, C., Wani, G., & Wani, A. A. (2016). ATR- and ATM-mediated DNA damage response is dependent on excision repair assembly during G1 but not in S phase of cell cycle. PLoS ONE, 11(7), e0159344

    Article  PubMed  PubMed Central  Google Scholar 

  21. Courdavault, S., Baudouin, C., Charveron, M., Canguilhem, B., Favier, A., Cadet, J., & Douki, T. (2005). Repair of the three main types of bipyrimidine DNA photoproducts in human keratinocytes exposed to UVB and UVA radiations. DNA Repair (Amst), 4(7), 836–844

    Article  CAS  Google Scholar 

  22. Runger, T. M. (2007). How different wavelengths of the ultraviolet spectrum contribute to skin carcinogenesis: the role of cellular damage responses. The Journal of Investigative Dermatology, 127(9), 2103–2105

    Article  PubMed  Google Scholar 

  23. Talve, L., Stenbäck, F., & Jansén, C. T. (1990). UVA irradiation increases the incidence of epithelial tumors in UVB-irradiated hairless mice. Photodermatology, Photoimmunology and Photomedicine, 7(3), 109–115

    CAS  PubMed  Google Scholar 

  24. Willis, I., Menter, J. M., & Whyte, H. J. (1981). The rapid induction of cancers in the hairless mouse utilizing the principle of photoaugmentation. The Journal of Investigative Dermatology, 76(5), 404–408

    Article  CAS  PubMed  Google Scholar 

  25. Bech-Thomsen, N., Poulsen, T., Christensen, F. G., Lundgren, K., & Wulf, H. C. (1994). Near-visible-UV radiation delays UVB tumorigenesis. Journal of Photochemistry and Photobiology B: Biology, 22(2), 119–123

    Article  CAS  Google Scholar 

  26. Reeve, V. E., Domanski, D., & Slater, M. (2006). Radiation sources providing increased UVA/UVB ratios induce photoprotection dependent on the UVA dose in hairless mice. Photochemistry and Photobiology, 82(2), 406–411

    Article  CAS  PubMed  Google Scholar 

  27. Ibuki, Y., Allanson, M., Dixon, K. M., & Reeve, V. E. (2007). Radiation sources providing increased UVA/UVB ratios attenuate the apoptotic effects of the UVB waveband UVA-dose-dependently in hairless mouse skin. The Journal of Investigative Dermatology, 127(9), 2236–2244

    Article  CAS  PubMed  Google Scholar 

  28. Ibuki, Y., & Goto, R. (2000). Suppression of apoptosis by UVB irradiation: survival signaling via PI3-kinase/Akt pathway. Biochemical and Biophysical Research Communications, 279(3), 872–878

    Article  CAS  PubMed  Google Scholar 

  29. Katsumi, S., Kobayashi, N., Imoto, K., Nakagawa, A., Yamashina, Y., Muramatsu, T., Shirai, T., Miyagawa, S., Sugiura, S., Hanaoka, F., Matsunaga, T., Nikaido, O., & Mori, T. (2001). In situ visualization of ultraviolet-light-induced DNA damage repair in locally irradiated human fibroblasts. The Journal of Investigative Dermatology, 117(5), 1156–1161

    Article  CAS  PubMed  Google Scholar 

  30. Halliday, G. M., & Rana, S. (2008). Waveband and dose dependency of sunlight-induced immunomodulation and cellular changes. Photochemistry and Photobiology, 84, 35–46

    CAS  PubMed  Google Scholar 

  31. Cleaver, J. E. (2011). gammaH2Ax: Biomarker of damage or functional participant in DNA repair “all that glitters is not gold!” Photochemistry and Photobiology, 87(6), 1230–1239

    Article  CAS  PubMed  Google Scholar 

  32. Smith, J., Tho, L. M., Xu, N., & Gillespie, D. A. (2010). The ATM–Chk2 and ATR–Chk1 pathways in DNA damage signaling and cancer. Advances in Cancer Research, 108, 73–112

    Article  CAS  PubMed  Google Scholar 

  33. Scharer, O. D. (2013). Nucleotide excision repair in eukaryotes. Cold Spring Harbor Perspectives in Biology, 5(10), a012609

    Article  PubMed  PubMed Central  Google Scholar 

  34. Krokan, H. E., & Bjoras, M. (2013). Base excision repair. Cold Spring Harbor Perspectives in Biology, 5(4), a012583

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kimeswenger, S., Dingelmaier-Hovorka, R., Foedinger, D., & Jantschitsch, C. (2018). UVA1 impairs the repair of UVB-induced DNA damage in normal human melanocytes. Experimental Dermatology, 27(3), 276–279

    Article  CAS  PubMed  Google Scholar 

  36. McAdam, E., Brem, R., & Karran, P. (2016). Oxidative stress-induced protein damage inhibits DNA repair and determines mutation risk and therapeutic efficacy. Molecular Cancer Research, 14(7), 612–622

    Article  CAS  PubMed  Google Scholar 

  37. Brem, R., Macpherson, P., Guven, M., & Karran, P. (2017). Oxidative stress induced by UVA photoactivation of the tryptophan UVB photoproduct 6-formylindolo[3,2-b]carbazole (FICZ) inhibits nucleotide excision repair in human cells. Science and Reports, 7(1), 4310

    Article  Google Scholar 

  38. Karran, P., & Brem, R. (2016). Protein oxidation, UVA and human DNA repair. DNA Repair (Amst), 44, 178–185

    Article  CAS  Google Scholar 

  39. Guven, M., Brem, R., Macpherson, P., Peacock, M., & Karran, P. (2015). Oxidative damage to RPA limits the nucleotide excision repair capacity of human cells. The Journal of Investigative Dermatology, 135(11), 2834–2841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kumar, N., Moreno, N. C., Feltes, B. C., Menck, C. F., & Houten, B. V. (2020). Cooperation and interplay between base and nucleotide excision repair pathways: From DNA lesions to proteins. Genetics and Molecular Biology, 43(1 suppl. 1), e20190104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hanasoge, S., & Ljungman, M. (2007). H2AX phosphorylation after UV irradiation is triggered by DNA repair intermediates and is mediated by the ATR kinase. Carcinogenesis, 28(11), 2298–2304

    Article  CAS  PubMed  Google Scholar 

  42. Bowden, G. T. (2004). Prevention of non-melanoma skin cancer by targeting ultraviolet-B-light signalling. Nature Reviews Cancer, 4(1), 23–35

    Article  CAS  PubMed  Google Scholar 

  43. Allanson, M., & Reeve, V. E. (2005). Ultraviolet A (320–400 nm) modulation of ultraviolet B (290–320 nm)-induced immune suppression is mediated by carbon monoxide. The Journal of Investigative Dermatology, 124(3), 644–650

    Article  CAS  PubMed  Google Scholar 

  44. Tyrrell, R. M., & Reeve, V. E. (2006). Potential protection of skin by acute UVA irradiation—From cellular to animal models. Progress in Biophysics and Molecular Biology, 92(1), 86–91

    Article  CAS  PubMed  Google Scholar 

  45. Xiang, Y., Liu, G., Yang, L., & Zhong, J. L. (2011). UVA-induced protection of skin through the induction of heme oxygenase-1. Bioscience Trends, 5(6), 239–244

    Article  CAS  PubMed  Google Scholar 

  46. Henseleit, U., Zhang, J., Wanner, R., Haase, I., Kolde, G., & Rosenbach, T. (1997). Role of p53 in UVB-induced apoptosis in human HaCaT keratinocytes. The Journal of Investigative Dermatology, 109(6), 722–727

    Article  CAS  PubMed  Google Scholar 

  47. Graindorge, D., Martineau, S., Machon, C., Arnoux, P., Guitton, J., Francesconi, S., Frochot, C., Sage, E., & Girard, P. M. (2015). Singlet oxygen-mediated oxidation during UVA radiation alters the dynamic of genomic DNA replication. PLoS ONE, 10(10), e0140645

    Article  PubMed  PubMed Central  Google Scholar 

  48. Montaner, B., O’Donovan, P., Reelfs, O., Perrett, C. M., Zhang, X., Xu, Y. Z., Ren, X., Macpherson, P., Frith, D., & Karran, P. (2007). Reactive oxygen-mediated damage to a human DNA replication and repair protein. EMBO Reports, 8(11), 1074–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Vivienne Reeve (University of Sydney) for giving us an excellent suggestion for this research. We also thank Mr. Takuto Okuya for his experimental assistance. This work was supported by Shiseido Female Researcher Science Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuko Ibuki.

Ethics declarations

Conflict of interest

None declared.

Supplementary Information

Below is the link to the electronic supplementary material.

43630_2021_50_MOESM1_ESM.docx

Supplementary file1The wavelength characteristics of UVA1 and UVB radiation, cell survival when irradiation order of UVA1 and UVB is reversed, apoptotic and necrotic cell measurement, the recovery of cell survival by a time interval between UVA1 and UVB exposure, XPA recruitment, quantification of western blotting bands. See https://doi.org/10.1039/x0xx00000x (DOCX 847 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibuki, Y., Komaki, Y., Yang, G. et al. Long-wavelength UVA enhances UVB-induced cell death in cultured keratinocytes: DSB formation and suppressed survival pathway. Photochem Photobiol Sci 20, 639–652 (2021). https://doi.org/10.1007/s43630-021-00050-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00050-w

Keywords

Navigation