Skip to main content
Log in

Ultrafast photoreduction dynamics of a new class of CPD photolyases

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

NewPHL is a recently discovered subgroup of ancestral DNA photolyases. Its domain architecture displays pronounced differences from that of canonical photolyases, in particular at the level of the characteristic electron transfer chain, which is limited to merely two tryptophans, instead of the "classical" three or four. Using transient absorption spectroscopy, we show that the dynamics of photoreduction of the oxidized FAD cofactor in the NewPHL begins similarly as that in canonical photolyases, i.e., with a sub-ps primary reduction of the excited FAD cofactor by an adjacent tryptophan, followed by migration of the electron hole towards the second tryptophan in the tens of ps regime. However, the resulting tryptophanyl radical then undergoes an unprecedentedly fast deprotonation in less than 100 ps in the NewPHL. In spite of the stabilization effect of this deprotonation, almost complete charge recombination follows in two phases of ~ 950 ps and ~ 50 ns. Such a rapid recombination of the radical pair implies that the first FAD photoreduction step, i.e., conversion of the fully oxidized to the semi-quinone state, should be rather difficult in vivo. We hence suggest that the flavin chromophore likely switches only between its semi-reduced and fully reduced form in NewPHL under physiological conditions.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sancar, A. (2003). Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chemical Reviews, 103(6), 2203–2237. https://doi.org/10.1021/cr0204348

    Article  CAS  PubMed  Google Scholar 

  2. Cadet, J., Sage, E., & Douki, T. (2005). Ultraviolet radiation-mediated damage to cellular DNA. Mutation Research, 571(1–2), 3–17. https://doi.org/10.1016/j.mrfmmm.2004.09.012

    Article  CAS  PubMed  Google Scholar 

  3. Weber, S. (2005). Light-driven enzymatic catalysis of DNA repair: a review of recent biophysical studies on photolyase. Biochimica et Biophysica Acta - Bioenergetics, 1707(1), 1–23. https://doi.org/10.1016/j.bbabio.2004.02.010

    Article  CAS  Google Scholar 

  4. Müller, M., & Carell, T. (2009). Structural biology of DNA photolyases and cryptochromes. Current Opinion in Structural Biology, 19(3), 277–285. https://doi.org/10.1016/j.sbi.2009.05.003

    Article  CAS  PubMed  Google Scholar 

  5. Brettel, K., & Byrdin, M. (2010). Reaction mechanisms of DNA photolyase. Current Opinion in Structural Biology, 20, 693–701. https://doi.org/10.1016/j.sbi.2010.07.003

    Article  CAS  PubMed  Google Scholar 

  6. Yamamoto, J., Plaza, P., & Brettel, K. (2017). Repair of (6–4) lesions in DNA by (6–4) photolyase: 20 years of quest for the photoreaction mechanism. Photochemistry and Photobiology, 93(1), 51–66. https://doi.org/10.1111/php.12696

    Article  CAS  PubMed  Google Scholar 

  7. Ritz, T., Adem, S., & Schulten, K. (2000). A model for photoreceptor-based magnetoreception in birds. Biophysical Journal, 78(2), 707–718. https://doi.org/10.1016/s0006-3495(00)76629-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cashmore, A. R. (2003). Cryptochromes: enabling plants and animals to determine circadian time. Cell, 114(5), 537–543. https://doi.org/10.1016/j.cell.2003.08.004

    Article  CAS  PubMed  Google Scholar 

  9. Chaves, I., Pokorny, R., Byrdin, M., Hoang, N., Ritz, T., Brettel, K., Essen, L.-O., van der Horst, G. T. J., Batschauer, A., & Ahmad, M. (2011). The cryptochromes: Blue light photoreceptors in plants and animals. Annual Review of Plant Biology, 62, 335–364. https://doi.org/10.1146/annurev-arplant-042110-103759

    Article  CAS  PubMed  Google Scholar 

  10. Hore, P. J., & Mouritsen, H. (2016). The radical-pair mechanism of magnetoreception. Annual Review of Biophysics, 45, 299–344. https://doi.org/10.1146/annurev-biophys-032116-094545

    Article  CAS  PubMed  Google Scholar 

  11. Wang, Q., & Lin, C. (2020). Mechanisms of cryptochrome-mediated photoresponses in plants. Annual Review of Plant Biology, 71, 103–129. https://doi.org/10.1146/annurev-arplant-050718-100300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Heelis, P. F., & Sancar, A. (1986). Photochemical properties of Escherichia coli DNA photolyase: A flash photolysis study. Biochemistry, 25(25), 8163–8166. https://doi.org/10.1021/bi00373a006

    Article  CAS  PubMed  Google Scholar 

  13. Okamura, T., Sancar, A., Heelis, P. F., Hirata, Y., & Mataga, N. (1989). Doublet-quartet intersystem crossing of flavin radical in DNA photolyase. Journal of the American Chemical Society, 111(15), 5967–5969. https://doi.org/10.1021/ja00197a082

    Article  CAS  Google Scholar 

  14. Heelis, P. F., Okamura, T., & Sancar, A. (1990). Excited-state properties of Escherichia coli DNA photolyase in the picosecond to millisecond time scale. Biochemistry, 29(24), 5694–5698. https://doi.org/10.1021/bi00476a008

    Article  CAS  PubMed  Google Scholar 

  15. Aubert, C., Vos, M. H., Mathis, P., Eker, A. P. M., & Brettel, K. (2000). Intraprotein radical transfer during photoactivation of DNA photolyase. Nature, 405(6786), 586–590. https://doi.org/10.1038/35014644

    Article  CAS  PubMed  Google Scholar 

  16. Lukacs, A., Eker, A. P. M., Byrdin, M., Brettel, K., & Vos, M. H. (2008). Electron hopping through the 15 Angström triple tryptophan molecular wire in DNA photolyase occurs within 30 ps. Journal of the American Chemical Society, 130(44), 14394–14395. https://doi.org/10.1021/ja805261m

    Article  CAS  PubMed  Google Scholar 

  17. Liu, Z. Y., Tan, C., Guo, X. M., Li, J., Wang, L. J., Sancar, A., & Zhong, D. P. (2013). Determining complete electron flow in the cofactor photoreduction of oxidized photolyase. Proceedings of the National Academy of Sciences of the United States of America, 110(32), 12966–12971. https://doi.org/10.1073/pnas.1311073110

    Article  PubMed  PubMed Central  Google Scholar 

  18. Byrdin, M., Lukacs, A., Thiagarajan, V., Eker, A. P. M., Brettel, K., & Vos, M. H. (2010). Quantum yield measurements of short-lived photoactivation intermediates in DNA photolyase: Toward a detailed understanding of the triple tryptophan electron transfer chain. The Journal of Physical Chemistry A, 114(9), 3207–3214. https://doi.org/10.1021/jp9093589

    Article  CAS  PubMed  Google Scholar 

  19. Liu, Z. Y., Tan, C., Guo, X. M., Li, J., Wang, L. J., & Zhong, D. P. (2014). Dynamic determination of active-site reactivity in semiquinone photolyase by the cofactor photoreduction. Journal of Physical Chemistry Letters, 5(5), 820–825. https://doi.org/10.1021/jz500077s

    Article  CAS  Google Scholar 

  20. Müller, P., Brettel, K., Grama, L., Nyitrai, M., & Lukacs, A. (2016). Photochemistry of wild-type and N378D mutant E. coli DNA photolyase with oxidized FAD cofactor studied by transient absorption spectroscopy. ChemPhysChem, 17(9), 1329–1340. https://doi.org/10.1002/cphc.201501077.

  21. Engelhard, C., Wang, X., Robles, D., Moldt, J., Essen, L.-O., Batschauer, A., Bittl, R., & Ahmad, M. (2014). Cellular metabolites enhance the light sensitivity of Arabidopsis cryptochrome through alternate electron transfer pathways. The Plant Cell, 26(11), 4519–4531. https://doi.org/10.1105/tpc.114.129809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ignatz, E., Geisselbrecht, Y., Kiontke, S., & Essen, L. O. (2018). Nicotinamide adenine dinucleotides arrest photoreduction of class II DNA photolyases in FADH state. Photochemistry and Photobiology, 94(1), 81–87. https://doi.org/10.1111/php.12834

    Article  CAS  PubMed  Google Scholar 

  23. Kao, Y. T., Tan, C., Song, S. H., Ozturk, N., Li, J., Wang, L. J., Sancar, A., & Zhong, D. P. (2008). Ultrafast dynamics and anionic active states of the flavin cofactor in cryptochrome and photolyase. Journal of the American Chemical Society, 130(24), 7695–7701. https://doi.org/10.1021/ja801152h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brazard, J., Usman, A., Lacombat, F., Ley, C., Martin, M. M., & Plaza, P. (2011). New insights into the ultrafast photophysics of oxidized and reduced FAD in solution. The Journal of Physical Chemistry A, 115(15), 3251–3262. https://doi.org/10.1021/jp110741y

    Article  CAS  PubMed  Google Scholar 

  25. Immeln, D., Weigel, A., Kottke, T., & Perez Lustres, J. L. (2012). Primary events in the blue light sensor plant cryptochrome: Intraprotein electron and proton transfer revealed by femtosecond spectroscopy. Journal of the American Chemical Society, 134(30), 12536–12546. https://doi.org/10.1021/ja302121z

    Article  CAS  PubMed  Google Scholar 

  26. Biskup, T., Hitomi, K., Getzoff, E. D., Krapf, S., Koslowski, T., Schleicher, E., & Weber, S. (2011). Unexpected electron transfer in cryptochrome identified by time-resolved EPR spectroscopy. Angewandte Chemie-International Edition, 50(52), 12647–12651. https://doi.org/10.1002/anie.201104321

    Article  CAS  PubMed  Google Scholar 

  27. Krapf, S., Weber, S., & Koslowski, T. (2012). The road not taken: A theoretical view of an unexpected cryptochrome charge transfer path. Physical Chemistry Chemical Physics, 14(32), 11518–11524. https://doi.org/10.1039/c2cp40793k

    Article  CAS  PubMed  Google Scholar 

  28. Aubert, C., Mathis, P., Eker, A. P. M., & Brettel, K. (1999). Intraprotein electron transfer between tyrosine and tryptophan in DNA photolyase from Anacystis nidulans. Proceedings of the National Academy of Sciences of the United States of America, 96, 5423–5427. https://doi.org/10.1073/pnas.96.10.5423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Giovani, B., Byrdin, M., Ahmad, M., & Brettel, K. (2003). Light-induced electron transfer in a cryptochrome blue-light photoreceptor. Nature Structural Biology, 10(6), 489–490. https://doi.org/10.1038/nsb933

    Article  CAS  PubMed  Google Scholar 

  30. Biskup, T., Paulus, B., Okafuji, A., Hitomi, K., Getzoff, E. D., Weber, S., & Schleicher, E. (2013). Variable electron transfer pathways in an amphibian cryptochrome. Journal of Biological Chemistry, 288(13), 9249–9260. https://doi.org/10.1074/jbc.M112.417725

    Article  CAS  Google Scholar 

  31. Geisselbrecht, Y., Fruehwirth, S., Schroeder, C., Pierik, A. J., Klug, G., & Essen, L.-O. (2012). CryB from Rhodobacter sphaeroides: A unique class of cryptochromes with new cofactors. EMBO Reports, 13(3), 223–229. https://doi.org/10.1038/embor.2012.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lacombat, F., Espagne, A., Dozova, N., Plaza, P., Müller, P., Brettel, K., Franz-Badur, S., & Essen, L.-O. (2019). Ultrafast oxidation of a tyrosine by proton-coupled electron transfer promotes light activation of an animal-like cryptochrome. Journal of the American Chemical Society, 141(34), 13394–13409. https://doi.org/10.1021/jacs.9b03680

    Article  CAS  PubMed  Google Scholar 

  33. Kiontke, S., Geisselbrecht, Y., Pokorny, R., Carell, T., Batschauer, A., & Essen, L.-O. (2011). Crystal structures of an archaeal class II DNA photolyase and its complex with UV-damaged duplex DNA. EMBO Journal, 30(21), 4437–4449. https://doi.org/10.1038/emboj.2011.313

    Article  CAS  Google Scholar 

  34. Lacombat, F., Espagne, A., Dozova, N., Plaza, P., Ignatz, E., Kiontke, S., & Essen, L.-O. (2018). Femtosecond transient absorption study of the primary photoreduction events of a class II photolyase. Physical Chemistry Chemical Physics, 20, 25446–25457. https://doi.org/10.1039/C8CP04548H

    Article  CAS  PubMed  Google Scholar 

  35. Müller, P., Ignatz, E., Kiontke, S., Brettel, K., & Essen, L. O. (2018). Sub-nanosecond tryptophan radical deprotonation mediated by a protein-bound water cluster in class II DNA photolyases. Chemical Science, 9(5), 1200–1212. https://doi.org/10.1039/c7sc03969g

    Article  CAS  PubMed  Google Scholar 

  36. Scheerer, P., Zhang, F., Kalms, J., von Stetten, D., Krauß, N., Oberpichler, I., & Lamparter, T. (2015). The class III cyclobutane pyrimidine dimer photolyase structure reveals a new antenna chromophore binding site and alternative photoreduction pathways. Journal of Biological Chemistry, 290(18), 11504–11514. https://doi.org/10.1074/jbc.M115.637868

    Article  CAS  Google Scholar 

  37. Müller, P., Yamamoto, J., Martin, R., Iwai, S., & Brettel, K. (2015). Discovery and functional analysis of a 4th electron-transferring tryptophan conserved exclusively in animal cryptochromes and (6–4) photolyases. Chemical Communications, 51, 15502–15505. https://doi.org/10.1039/c5cc06276d

    Article  PubMed  Google Scholar 

  38. Nohr, D., Franz, S., Rodriguez, R., Paulus, B., Essen, L. O., Weber, S., & Schleicher, E. (2016). Extended electron-transfer in animal cryptochromes mediated by a tetrad of aromatic amino acids. Biophysical Journal, 111(2), 301–311. https://doi.org/10.1016/j.bpj.2016.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Martin, R., Lacombat, F., Espagne, A., Dozova, N., Plaza, P., Yamamoto, J., Müller, P., Brettel, K., & de la Lande, A. (2017). Ultrafast flavin photoreduction in an oxidized animal (6–4) photolyase through an unconventional tryptophan tetrad. Physical Chemistry Chemical Physics, 19(36), 24493–24504. https://doi.org/10.1039/c7cp04555g

    Article  CAS  PubMed  Google Scholar 

  40. Emmerich, H. J., Saft, M., Schneider, L., Kock, D., Batschauer, A., & Essen, L. O. (2020). A topologically distinct class of photolyases specific for UV lesions within single-stranded DNA. Nucleic Acids Research, 48(22), 12845–12857. https://doi.org/10.1093/nar/gkaa1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, Y. F., Heelis, P. F., & Sancar, A. (1991). Active site of DNA photolyase: Tryptophan-306 is the intrinsic hydrogen atom donor essential for flavin radical photoreduction and DNA repair in vitro. Biochemistry, 30(25), 6322–6329. https://doi.org/10.1021/bi00239a034

    Article  CAS  PubMed  Google Scholar 

  42. Byrdin, M., Villette, S., Eker, A. P. M., & Brettel, K. (2007). Observation of an intermediate tryptophanyl radical in W306F mutant DNA photolyase from Escherichia coli supports electron hopping along the triple tryptophan chain. Biochemistry, 46(35), 10072–10077. https://doi.org/10.1021/bi700891f

    Article  CAS  PubMed  Google Scholar 

  43. Byrdin, M., Sartor, V., Eker, A. P. M., Vos, M. H., Aubert, C., Brettel, K., & Mathis, P. (2004). Intraprotein electron transfer and proton dynamics during photoactivation of DNA photolyase from E. coli: review and new insights from an "inverse" deuterium isotope effect. Biochimica et Biophysica Acta - Bioenergetics, 1655(1–3), 64–70. https://doi.org/10.1016/j.bbabio.2003.07.001.

  44. Yamamoto, J., Shimizu, K., Kanda, T., Hosokawa, Y., Iwai, S., Plaza, P., & Muller, P. (2017). Loss of fourth electron-transferring tryptophan in animal (6–4) photolyase impairs DNA repair activity in bacterial cells. Biochemistry, 56(40), 5356–5364. https://doi.org/10.1021/acs.biochem.7b00366

    Article  CAS  PubMed  Google Scholar 

  45. Macheroux, P. (1999). UV-visible spectroscopy as a tool to study flavoproteins. In S. K. Chapman, & G. A. Reid (Eds.), Flavoprotein Protocols (pp. 1–7, Methods in Molecular Biology, Vol. 131).

  46. Brazard, J., Usman, A., Lacombat, F., Ley, C., Martin, M. M., Plaza, P., Mony, L., Heijde, M., Zabulon, G., & Bowler, C. (2010). Spectro-temporal characterization of the photoactivation mechanism of two new oxidized cryptochrome/photolyase photoreceptors. Journal of the American Chemical Society, 132(13), 4935–4945. https://doi.org/10.1021/ja1002372

    Article  CAS  PubMed  Google Scholar 

  47. Yadav, D., Lacombat, F., Dozova, N., Rappaport, F., Plaza, P., & Espagne, A. (2014). Real-time monitoring of chromophore isomerization and deprotonation during the photoactivation of the fluorescent protein Dronpa. The Journal of Physical Chemistry B, 119(6), 2404–2414. https://doi.org/10.1021/jp507094f

    Article  CAS  PubMed  Google Scholar 

  48. Yoshimura, A., Hoffman, M. Z., & Sun, H. (1993). An evaluation of the excited-state absorption-spectrum of Ru(bpy)32+ in aqueous and acetonitrile solutions. Journal of Photochemistry and Photobiology A: Chemistry, 70(1), 29–33. https://doi.org/10.1016/1010-6030(93)80005-t

    Article  CAS  Google Scholar 

  49. Byrdin, M., Thiagarajan, V., Villette, S., Espagne, A., & Brettel, K. (2009). Use of ruthenium dyes for subnanosecond detector fidelity testing in real time transient absorption. Review of Scientific Instruments, 80(4), 043102. https://doi.org/10.1063/1.3117208

    Article  CAS  Google Scholar 

  50. Ekvall, K., van der Meulen, P., Dhollande, C., Berg, L. E., Pommeret, S., Naskrecki, R., & Mialocq, J. C. (2000). Cross phase modulation artifact in liquid phase transient absorption spectroscopy. Journal of Applied Physics, 87(5), 2340–2352. https://doi.org/10.1063/1.372185

    Article  CAS  Google Scholar 

  51. Byrdin, M., Villette, S., Espagne, A., Eker, A. P. M., & Brettel, K. (2008). Polarized transient absorption to resolve electron transfer between tryptophans in DNA photolyase. The Journal of Physical Chemistry B, 112(22), 6866–6871. https://doi.org/10.1021/jp711435y

    Article  CAS  PubMed  Google Scholar 

  52. van Stokkum, I. H. M., Delmar, S. L., & van Grondelle, R. (2004). Global and target analysis of time-resolved spectra. Biochimica et Biophysica Acta - Bioenergetics, 1657(2–3), 82–104. https://doi.org/10.1016/j.bbabio.2004.04.011

    Article  CAS  Google Scholar 

  53. Henry, E. R., & Hofrichter, J. (1992). Singular value decomposition - Application to analysis of experimental data. Methods in Enzymology, 210, 129–193. https://doi.org/10.1016/0076-6879(92)10010-B

    Article  CAS  Google Scholar 

  54. Solar, S., Getoff, N., Surdhar, P. S., Armstrong, D. A., & Singh, A. (1991). Oxidation of tryptophan and N-methylindole by N3, Br2•−, and (SCN)2•− radicals in light-water and heavy-water solutions: A pulse radiolysis study. The Journal of Physical Chemistry, 95(9), 3639–3643. https://doi.org/10.1021/j100162a038

    Article  CAS  Google Scholar 

  55. Berndt, A., Kottke, T., Breitkreuz, H., Dvorsky, R., Hennig, S., Alexander, M., & Wolf, E. (2007). A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome. Journal of Biological Chemistry, 282(17), 13011–13021. https://doi.org/10.1074/jbc.M608872200

    Article  CAS  Google Scholar 

  56. Liu, B., Liu, H., Zhong, D., & Lin, C. (2010). Searching for a photocycle of the cryptochrome photoreceptors. Current Opinion in Plant Biology, 13(5), 578–586. https://doi.org/10.1016/j.pbi.2010.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Müller, P., Bouly, J.-P., Hitomi, K., Balland, V., Getzoff, E. D., Ritz, T., & Brettel, K. (2014). ATP binding turns plant cryptochrome into an efficient natural photoswitch. Scientific Reports, 4, 5175. https://doi.org/10.1038/srep05175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Müller, P., & Brettel, K. (2012). [Ru(bpy)3]2+ as a reference in transient absorption spectroscopy: Differential absorption coefficients for formation of the long-lived 3MLCT excited state. Photochemical & Photobiological Sciences, 11(4), 632–636. https://doi.org/10.1039/c2pp05333k

    Article  CAS  Google Scholar 

  59. Weigel, A., Dobryakov, A., Klaumünzer, B., Sajadi, M., Saalfrank, P., & Ernsting, N. P. (2011). Femtosecond stimulated Raman spectroscopy of flavin after optical excitation. The Journal of Physical Chemistry B, 115(13), 3656–3680. https://doi.org/10.1021/jp1117129

    Article  CAS  PubMed  Google Scholar 

  60. Massey, V., & Palmer, G. (1966). On existence of spectrally distinct classes of flavoprotein semiquinones. A new method for quantitative production of flavoprotein semiquinones. Biochemistry, 5(10), 3181–3189. https://doi.org/10.1021/bi00874a016.

  61. Gauden, M., Yeremenko, S., Laan, W., van Stokkum, I. H. M., Ihalainen, J. A., van Grondelle, R., Hellingwerf, K. J., & Kennis, J. T. M. (2005). Photocycle of the flavin-binding photoreceptor AppA, a bacterial transcriptional antirepressor of photosynthesis genes. Biochemistry, 44(10), 3653–3662. https://doi.org/10.1021/bi047359a

    Article  CAS  PubMed  Google Scholar 

  62. Marcus, R. A., & Sutin, N. (1985). Electron transfers in chemistry and biology. Biochimica et Biophysica Acta, 811, 265–322. https://doi.org/10.1016/0304-4173(85)90014-X

    Article  CAS  Google Scholar 

  63. Moser, C. C., & Dutton, P. L. (1992). Engineering protein-structure for electron-transfer function in photosynthetic reaction centers. Biochimica et Biophysica Acta, 1101(2), 171–176. https://doi.org/10.1016/0005-2728(92)90205-g

    Article  CAS  PubMed  Google Scholar 

  64. Popović, D. M., Zmirić, A., Zarić, S. D., & Knapp, E.-W. (2002). Energetics of Radical Transfer in DNA Photolyase. Journal of the American Chemical Society, 124(14), 3775–3782. https://doi.org/10.1021/ja016249d

    Article  CAS  PubMed  Google Scholar 

  65. Lüdemann, G., Solov’yov, I. A., Kubař, T., & Elstner, M. (2015). Solvent Driving Force Ensures Fast Formation of a Persistent and Well-Separated Radical Pair in Plant Cryptochrome. Journal of the American Chemical Society, 137(3), 1147-1156. https://doi.org/10.1021/ja510550g

  66. Cailliez, F., Muller, P., Firmino, T., Pernot, P., & de la Lande, A. (2016). Energetics of Photoinduced Charge Migration within the Tryptophan Tetrad of an Animal (6–4) Photolyase. Journal of the American Chemical Society, 138(6), 1904–1915. https://doi.org/10.1021/jacs.5b10938

    Article  CAS  PubMed  Google Scholar 

  67. Nunthaboot, N., Tanaka, F., Kokpol, S., Chosrowjan, H., Taniguchi, S., & Mataga, N. (2009). Simulation of ultrafast non-exponential fluorescence decay induced by electron transfer in FMN binding protein. Journal of Photochemistry and Photobiology A: Chemistry, 201(2–3), 191–196. https://doi.org/10.1016/j.jphotochem.2008.10.025

    Article  CAS  Google Scholar 

  68. Tanaka, F., Lugsanangarm, K., Nunthaboot, N., Nueangaudom, A., Pianwanit, S., Kokpol, S., Taniguchi, S., & Chosrowjan, H. (2015). Classification of the mechanisms of photoinduced electron transfer from aromatic amino acids to the excited flavins in flavoproteins. Physical Chemistry Chemical Physics, 17(26), 16813–16825. https://doi.org/10.1039/c5cp01432h

    Article  CAS  PubMed  Google Scholar 

  69. Lugsanangarm, K., Tamaoki, H., Nishina, Y., Kitamura, M., Nunthaboot, N., Tanaka, F., Taniguchi, S., & Chosrowjan, H. (2020). Simultaneous analyses of the rates of photoinduced charge separation and recombination between the excited flavin and tryptophans in some flavoproteins: Molecular dynamics simulation. AIP Advances, 10(10), 14. https://doi.org/10.1063/5.0014718

    Article  CAS  Google Scholar 

  70. Scheiner, S., & Čuma, M. (1996). Relative stability of hydrogen and deuterium bonds. Journal of the American Chemical Society, 118(6), 1511–1521. https://doi.org/10.1021/ja9530376

    Article  CAS  Google Scholar 

  71. Payne, G., Heelis, P. F., Rohrs, B. R., & Sancar, A. (1987). The active form of Escherichia coli DNA photolyase contains a fully reduced flavin and not a flavin radical, both in vivo and in vitro. Biochemistry, 26(22), 7121–7127. https://doi.org/10.1021/bi00396a038

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present work has benefited from the platform of Biophysics of I2BC supported by French Infrastructure for Integrated Structural Biology (FRISBI) ANR-10-INBS-05.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pascal Plaza, Pavel Müller or Lars-Oliver Essen.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

FOREWORD: This article is dedicated to Klaus Brettel on the occasion of his retirement. Klaus has played a major role in the careers of several authors of the present article. Mentor and dear friend for some of us, close collaborator for others, he has guided us and provided us with the example of research of the highest scientific level, conducted with unfailing rigor, most discerning standards and absolute honesty.

Pushing the limits of flash photolysis to unravel the secrets of biological electron and proton transfer - a topical issue in honour of Klaus Brettel.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1453 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lacombat, F., Espagne, A., Dozova, N. et al. Ultrafast photoreduction dynamics of a new class of CPD photolyases. Photochem Photobiol Sci 20, 733–746 (2021). https://doi.org/10.1007/s43630-021-00048-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00048-4

Keywords

Navigation