Skip to main content
Log in

FRET theoretical predictions concerning freely diffusive dyes inside spherical container: how to choose the best pair?

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

FRET has been massively used to see if biomolecules were bounded or not by labelling both biomolecules by one dye of a FRET pair. This should give a digital answer to the question (fluorescence of the acceptor: high FRET efficency: molecules associated, fluorescence of the donor: low FRET efficency: molecules dissociated). This has been used, inter alia, at the single-molecule scale in containers, such as liposomes. One perspective of the field is to reduce the container’s size to study the effect of confinement on binding. The problem is that if the two dyes are encapsulated inside a small liposome, they could have a significant probability to be close one from the other one (and thus to undergo a high FRET efficiency event without binding). This is why we suggest here a theoretical model which gives mean FRET efficiency as a function of liposome radius (the model applies to any spherical container) and Förster radius to help the experimentalist to choose their experimental set-up. Besides, the influence of side effect on mean FRET efficiency has been studied as well. We show here that if this “background FRET” is most of the time non-quantitative, it can remain significant and which makes data analysis trickier. We could show as well that if this background FRET obviously increases when liposome radius decreases, this variation was lower than the one which could be expected because of side effect. We show as well the FRET efficiency function distribution which let the experimentalist know the probability to get one FRET efficiency value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li, Z., Hayman, R. B., & Walt, D. R. (2008). Detection of single-molecule DNA hybridization using enzymatic amplification in an array of femtoliter-sized reaction vessels. Journal of the American Chemical Society, 130, 12622–12623.

    Article  CAS  PubMed  Google Scholar 

  2. Zsila, F., Bikadi, Z., Malik, D., Hari, P., Pechan, I., Berces, A., & Hazai, E. (2011). Evaluation of drug–human serum albumin binding interactions with support vector machine aided online automated docking. Bioinformatics, 27, 1806–1813.

    Article  CAS  PubMed  Google Scholar 

  3. Vinogradov, S. V. (2006). Colloidal microgels in drug delivery applications. Current Pharmaceutical Design, 12, 4703–4712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Paschke, R., Paetz, C., Mueller, T., Schmoll, H.-J., Mueller, H., Sorkau, E., & Sinn, E. (2003). Biomolecules linked to transition metal complexes-new chances for chemotherapy. Current Medicinal Chemistry, 10, 2033–2044.

    Article  CAS  PubMed  Google Scholar 

  5. Ji, T. H., & Benson, A. (1968). Association of lipids and proteins in chloroplast lamellar membrane. Biochimica et Biophysica Acta (BBA)-Biomembranes, 150, 686–693.

    Article  CAS  Google Scholar 

  6. Carrero, G., McDonald, D., Crawford, E., de Vries, G., & Hendzel, M. J. (2003). Using FRAP and mathematical modeling to determine the in vivo kinetics of nuclear proteins. Methods, 29, 14–28.

    Article  CAS  PubMed  Google Scholar 

  7. Nosek, L., Semchonok, D., Boekema, E. J., Ilík, P., & Kouřil, R. (2017). Structural variability of plant photosystem II megacomplexes in thylakoid membranes. The Plant Journal, 89, 104–111.

    Article  CAS  PubMed  Google Scholar 

  8. Amunts, A., Drory, O., & Nelson, N. (2007). The structure of a plant photosystem I supercomplex at 3.4 Å resolution. Nature, 447, 58–63.

    Article  CAS  PubMed  Google Scholar 

  9. Acín-Pérez, R., Fernández-Silva, P., Peleato, M. L., Pérez-Martos, A., & Enriquez, J. A. (2008). Respiratory active mitochondrial supercomplexes. Molecular cell, 32, 529–539.

    Article  PubMed  CAS  Google Scholar 

  10. Schägger, H., & Pfeiffer, K. (2000). Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. The EMBO journal, 19, 1777–1783.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Butler, T. Z., Pavlenok, M., Derrington, I. M., Niederweis, M., & Gundlach, J. H. (2008). Single-molecule DNA detection with an engineered MspA protein nanopore. Proceedings of the National Academy of Sciences, 105, 20647–20652.

    Article  CAS  Google Scholar 

  12. Junesch, J., Emilsson, G., Xiong, K., Kumar, S., Sannomiya, T., Pace, H., et al. (2015). Location-specific nanoplasmonic sensing of biomolecular binding to lipid membranes with negative curvature. Nanoscale, 7, 15080–15085.

    Article  CAS  PubMed  Google Scholar 

  13. Seidel, M., & Gauglitz, G. (2003). Miniaturization and parallelization of fluorescence immunoassays in nanotiter plates. TrAC Trends in Analytical Chemistry, 22, 385–394.

    Article  CAS  Google Scholar 

  14. Steemers, F. J., Ferguson, J. A., & Walt, D. R. (2000). Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays. Nature biotechnology, 18, 91–94.

    Article  CAS  PubMed  Google Scholar 

  15. Ali, M., Nasir, S., Nguyen, Q. H., Sahoo, J. K., Tahir, M. N., Tremel, W., & Ensinger, W. (2011). Metal ion affinity-based biomolecular recognition and conjugation inside synthetic polymer nanopores modified with iron–terpyridine complexes. Journal of the American Chemical Society, 133, 17307–17314.

    Article  CAS  PubMed  Google Scholar 

  16. Cisse, I., Okumus, B., Joo, C., & Ha, T. (2007). Fueling protein–DNA interactions inside porous nanocontainers. Proceedings of the National Academy of Sciences, 104, 12646–12650.

    Article  CAS  Google Scholar 

  17. Jares-Erijman, E. A., & Jovin, T. M. (2003). FRET imaging. Nature biotechnology, 21, 1387–1395.

    Article  CAS  PubMed  Google Scholar 

  18. Jofre, A., Case, J., & Hicks, S. (2010). Single molecule observations of DNA hybridization kinetics. Biophysical Journal, 98, 16a.

    Article  Google Scholar 

  19. Ha, T., Enderle, T., Ogletree, D. F., Chemla, D. S., Selvin, P. R., & Weiss, S. (1996). Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proceedings of the National Academy of Sciences, 93, 6264–6268.

    Article  CAS  Google Scholar 

  20. Truong, K., & Ikura, M. (2001). The use of FRET imaging microscopy to detect protein–protein interactions and protein conformational changes in vivo. Current Opinion in Structural Biology, 11, 573–578.

    Article  CAS  PubMed  Google Scholar 

  21. Rhoades, E., Gussakovsky, E., & Haran, G. (2003). Watching proteins fold one molecule at a time. Proceedings of the National Academy of Sciences of the United States of America, 100, 3197–3202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee, J. Y., Okumus, B., Kim, D. S., & Ha, T. (2005). Extreme conformational diversity in human telomeric DNA. Proc Natl Acad Sci U S A, 102, 18938–18943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Benítez, J. J., Keller, A. M., Ochieng, P., Yatsunyk, L. A., Huffman, D. L., Rosenzweig, A. C., & Chen, P. (2008). Probing transient copper chaperone− wilson disease protein interactions at the single-molecule level with nanovesicle trapping. Journal of the American Chemical Society, 130, 2446–2447.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Okumus, B., Arslan, S., Fengler, S. M., Myong, S., & Ha, T. (2009). Single molecule nanocontainers made porous using a bacterial toxin. Journal of the American Chemical Society, 131, 14844–14849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mandal, A. K., Ghosh, S., Das, A. K., Mondal, T., & Bhattacharyya, K. (2013). Effect of NaCl on ESPT‐mediated FRET in a CTAC micelle: a femtosecond and FCS study. ChemPhysChem, 14, 788–796.

    Article  CAS  PubMed  Google Scholar 

  26. Gooding, J. J., & Gaus, K. (2016). Single‐molecule sensors: challenges and opportunities for quantitative analysis. Angewandte Chemie International Edition, 55, 11354–11366.

    Article  CAS  PubMed  Google Scholar 

  27. Főrster, T. (1959). 10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation. Discussions of the Faraday Society, 27, 7–17.

    Article  Google Scholar 

  28. Rolinski, O. J., & Birch, D. J. (2000). Determination of acceptor distribution from fluorescence resonance energy transfer: theory and simulation. The Journal of Chemical Physics, 112, 8923–8933.

    Article  CAS  Google Scholar 

  29. Vermette, P., Griesser, H. J., Kambouris, P., & Meagher, L. (2004). Characterization of surface-immobilized layers of intact liposomes. Biomacromolecules, 5, 1496–1502.

    Article  CAS  PubMed  Google Scholar 

  30. Tachiya, M. (1982). Kinetics of quenching of luminescent probes in micellar systems. II. Journal of Chemical Physics, 76, 340–348.

    Article  CAS  Google Scholar 

  31. Wolfram Reasearch Inc, https://reference.wolfram.com/language/ref/NIntegrate.html

  32. ATTO-TEC, https://www.atto-tec.com/?cat=c45_R-0--Values--FRET--r-0-values-fret.html

  33. TermoFisher Scientific, https://www.thermofisher.com/fr/fr/home/references/molecular-probes-the-handbook/tables/r0-values-for-some-alexa-fluor-dyes.html.html

  34. Huang, C., Quinn, D., Sadovsky, Y., Suresh, S., & Hsia, K. J. (2017). Formation and size distribution of self-assembled vesicles. Proceedings of the National Academy of Sciences, 114, 2910–2915.

    Article  CAS  Google Scholar 

  35. Maulucci, G., De Spirito, M., Arcovito, G., Boffi, F., Castellano, A. C., & Briganti, G. (2005). Particle size distribution in DMPC vesicles solutions undergoing different sonication times. Biophysical Journal, 88, 3545–3550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Auer, A., Strauss, M. T., Schlichthaerle, T., & Jungmann, R. (2017). Fast, background-free DNA-PAINT imaging using FRET-based probes. Nano letters, 17, 6428–6434.

    Article  CAS  PubMed  Google Scholar 

  37. Bienert, R., Zimmermann, B., Rombach-Riegraf, V., & Gräber, P. (2011). Time‐dependent FRET with single enzymes: domain motions and catalysis in H+‐ATP synthases. ChemPhysChem, 12, 510–517.

    Article  CAS  PubMed  Google Scholar 

  38. Seyfert, K., Oosaka, T., Yaginuma, H., Ernst, S., Noji, H., Iino, R., & Börsch, M. (2011). Subunit rotation in a single FoF1-ATP synthase in a living bacterium monitored by FRET. Single Molecule Spectroscopy and Imaging IV, 7905, 79050K.

    Article  CAS  Google Scholar 

  39. Mork, A. J., Weidman, M. C., Prins, F., & Tisdale, W. A. (2014). Magnitude of the Förster radius in colloidal quantum dot solids. The Journal of Physical Chemistry C, 118, 13920–13928.

    Article  CAS  Google Scholar 

  40. Dexter, D. L. (1953). A theory of sensitized luminescence in solids. The Journal of Chemical Physics, 21, 836–850.

    Article  CAS  Google Scholar 

  41. Oliver, R. C., Lipfert, J., Fox, D. A., Lo, R. H., Doniach, S., & Columbus, L. (2013). Dependence of micelle size and shape on detergent alkyl chain length and head group. PLoS ONE, 1, 8.

    Google Scholar 

  42. Yao, X., Choudhury, A. D., Yamanaka, Y. J., Adalsteinsson, V. A., Gierahn, T. M., Williamson, C. A., et al. (2014). Ex vivo expansion of circulating lung tumor cells based on one-step microfluidics-based immunomagnetic isolation. Integrative Biology : Quantitative Biosciences from Nano to Macro, 6, 388–398.

    Article  CAS  Google Scholar 

  43. Zambrana-Puyalto, X., Maccaferri, N., Ponzellini, P., Giovannini, G., De Angelis, F., & Garoli, D. (2019). Site-selective functionalization of plasmonic nanopores for enhanced fluorescence emission rate and Förster resonance energy transfer. Nanoscale Advances, 1, 2454–2461.

    Article  CAS  Google Scholar 

  44. Gnap, B., Bespalova, I., Yefimova, S., & Sorokin, A. (2011). FRET between cyanine dyes in nanopores of bulk sol-gel silica matrix. Functional Materials, 1, 1.

    Google Scholar 

  45. Gopich, I. V., & Szabo, A. (2012). Theory of the energy transfer efficiency and fluorescence lifetime distribution in single-molecule FRET. Proceedings of the National Academy of Sciences, 109, 7747–7752.

    Article  CAS  Google Scholar 

  46. Kratky, O., & Porod, G. (1949). Röntgenuntersuchung gelöster fadenmoleküle. Recueil des Travaux Chimiques des Pays-Bas, 68, 1106–1122.

    Article  CAS  Google Scholar 

  47. Borochov, N., Eisenberg, H., & Kam, Z. (1981). Dependence of DNA conformation on the concentration of salt. Biopolymers, 20, 231–235.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Dr. Fabio Lisi for his kind assistance during this manuscript completion. J.J.G. acknowledges funding from the ARC centre of Excellence in Convergent Bio-Nano Science and Technology (CE140100036), the ARC Laureate Fellowship (FL150100060) program and a National Health and Medical Research Council program grant (1091261). K. G. acknowledges funding from the ARC Centre of Excellence in Advanced Molecular Imaging (CE140100011), the Australian Research Council (LP140100967 and DP130100269) and National Health and Medical Research Council of Australia (1059278 and 1037320).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guillaume Longatte or John Justin Gooding.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longatte, G., Gaus, K. & Gooding, J.J. FRET theoretical predictions concerning freely diffusive dyes inside spherical container: how to choose the best pair?. Photochem Photobiol Sci 20, 275–283 (2021). https://doi.org/10.1007/s43630-021-00016-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00016-y

Navigation