Skip to main content
Log in

Highly efficient solar photocatalytic degradation of a textile dye by TiO2/graphene quantum dots nanocomposite

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Herein, two sunlight responsive photocatalysts including TiO2 nanoparticles (NPs) and TiO2/graphene quantum dots (GQDs) nanocomposite for degrading a textile dye, Reactive Black 5 (RB5), were prepared. The results showed that 100% of 50 ppm RB5 could be degraded by TiO2 NPs and TiO2/GQDs within 60 and 30 min sunlight irradiation, respectively. Hence, much better photocatalytic activity in degradation of RB5 was achieved by TiO2/GQDs under sunlight irradiation compared with pure TiO2 NPs due to its lower band gap (2.13 eV) and electron/hole recombination rate. The photocatalytic degradation mechanism of RB5 by TiO2 NPs was elucidated by adding some scavengers to the solution. The main reactive species contributing to RB5 degradation were surface hydroxyl radicals. The first-order solar degradation rate constant of RB5 for TiO2/GQDs is greater than that of TiO2 NPs under sunlight illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang, Y., Suzuki, H., Xie, J., Tomita, O., Martin, D. J., Higashi, M., et al. (2018). Mimicking natural photosynthesis: Solar to renewable H2 fuel synthesis by Z-scheme water splitting systems. Chemical Reviews, 118, 5201–5241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ong, W. J., Tan, L. L., Ng, Y. H., Yong, S. T., & Chai, S. P. (2016). Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chemical Reviews, 116, 7159–7329.

    Article  CAS  PubMed  Google Scholar 

  3. Meng, A., Zhang, L., Cheng, B., & Yu, J. (2019). TiO2−MnOx−Pt hybrid multiheterojunction film photocatalyst with enhanced photocatalytic CO2-reduction activity. ACS Applied Materials & Interfaces, 11, 5581–5589.

    Article  CAS  Google Scholar 

  4. Shah, B. R., & Patel, U. D. (2019). Aqueous pollutants in water bodies can be photocatalytically reduced by TiO2 nano-particles in the presence of natural organic matters. Separation and Purification Technology, 209, 748–755.

    Article  CAS  Google Scholar 

  5. Shah, B. R., & Patel, U. D. (2018). Reductive photocatalytic decolorization of an azo dye Reactive Black 5 using TiO2: Mechanism and role of reductive species. Desalination Water Treatment, 130, 214–225.

    Article  CAS  Google Scholar 

  6. Lee, C. J., Javed, H., Zhang, D., Kim, J. H., Westerhoff, P., Li, Q., et al. (2018). Porous electrospun fibers embedding TiO2 for adsorption and photocatalytic degradation of water pollutants. Environmental Science and Technology, 52(7), 4285–4293.

    Article  CAS  PubMed  Google Scholar 

  7. Wang, C., Wu, Y., Lu, J., Zhao, J., Cui, J., Wu, X., et al. (2017). Bio-inspired synthesis of photocatalytic nanocomposite membranes based on synergy of Au–TiO2 and polydopamine for the degradation of tetracycline under visible light. ACS Applied Materials & Interfaces, 9(28), 23687–23697.

    Article  CAS  Google Scholar 

  8. Kou, J., Lu, C., Wang, J., Chen, Y., Xu, Z., & Varma, R. S. (2017). Selectivity enhancement in heterogeneous photocatalytic transformations. Chemical Reviews, 117, 1445–1514.

    Article  CAS  PubMed  Google Scholar 

  9. Leyland, N. S., Podporska-Carroll, J., Browne, J., Hinder, S. J., Quilty, B., & Pillai, S. C. (2016). Highly efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections. Scientific Reports, 6, 24770–24779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, Z., Ma, Y., Bu, X., Wu, Q., Hang, Z., Dong, Z., et al. (2018). Facile one-step synthesis of TiO2/Ag/SnO2 ternary heterostructures with enhanced visible light photocatalytic activity. Scientific Reports, 8, 10532–10543.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nolan, M., Iwaszuk, A., Lucid, A. K., Carey, J. J., & Fronzi, M. (2016). Design of novel visible light active photocatalyst materials: surface modified TiO2. Advanced Materials, 28, 5425–5446.

    Article  CAS  PubMed  Google Scholar 

  12. Yang, Y., Yin, L. C., Gong, Y., Niu, P., Wang, J. Q., Gu, L., et al. (2018). An unusual strong visible-light absorption band in red anatase TiO2 photocatalyst induced by atomic hydrogen-occupied oxygen vacancies. Advanced Materials, 30, 1704479–1704486.

    Article  Google Scholar 

  13. Niu, P., Wu, T., Wen, L., Tan, J., Yang, Y., Zheng, S., et al. (2018). Substitutional carbon-modified anatase TiO2 decahedral plates directly derived from titanium oxalate crystals via topotactic transition. Advanced Materials, 30, 1705999–1706006.

    Article  Google Scholar 

  14. Yu, Z., Chen, X. Q., Kang, X., Xie, Y., Zhu, H., Wang, S., et al. (2018). Noninvasively modifying band structures of wide-bandgap metal oxides to boost photocatalytic activity. Advanced Materials, 30, 1706259–1706266.

    Article  Google Scholar 

  15. Ghobadi, A., Ulusoy, T. G., Garifullin, R., Guler, M. O., & Okyay, A. K. (2016). A heterojunction design of single layer hole tunneling ZnO passivation wrapping around TiO2 nanowires for superior photocatalytic performance. Scientific Reports, 6, 30587–30601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, K., Huang, Z., Zeng, X., Huang, B., Gao, S., & Lu, J. (2017). Synergetic effect of Ti3+ and oxygen doping on enhancing photoelectrochemical and photocatalytic properties of TiO2/g-C3N4 heterojunctions. ACS Applied Materials & Interfaces, 9(13), 11577–11586.

    Article  CAS  Google Scholar 

  17. Xu, F., Zhang, J., Zhu, B., Yu, J., & Xu, J. (2018). CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction. Applied Catalysis, B: Environmental, 230, 194–202.

    Article  CAS  Google Scholar 

  18. Won, D. I., Lee, J. S., Ba, Q., Cho, Y. J., Cheong, H. Y., Choi, S., et al. (2018). Development of a lower energy photosensitizer for photocatalytic CO2 reduction: modification of porphyrin dye in hybrid catalyst system. ACS Catalysis, 8(2), 1018–1030.

    Article  CAS  Google Scholar 

  19. Nguyen, C. H., Fu, C. C., & Juang, R. S. (2018). Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: efficiency and degradation pathways. Journal of Cleaner Production, 202, 413–427.

    Article  CAS  Google Scholar 

  20. Bhatt, D. K., & Patel, U. D. (2019). Mechanism underlying visible-light photocatalytic activity of Ag/AgBr: experimental and theoretical approaches. Journal of Physics and Chemistry of Solids, 135, 109118.

    Article  CAS  Google Scholar 

  21. Wang, M., Deng, K., Lu, W., Deng, X., Li, K., Shi, Y., et al. (2018). Rational design of multifunctional Fe@γ-Fe2O3@HTiO2 nanocomposites with enhanced magnetic and photoconversion effects for wide applications: from photocatalysis to imaging-guided photothermal cancer therapy. Advanced Materials, 30, 1706747–1706755.

    Article  Google Scholar 

  22. Benjwal, P., De, B., & Kar, K. K. (2018). 1-D and 2-D morphology of metal cation co-doped (Zn, Mn) TiO2 and investigation of their photocatalytic activity. Applied Surface Science, 427, 262–272.

    Article  CAS  Google Scholar 

  23. Markad, G. B., Kapoor, S., Haram, S. K., & Thakur, P. (2017). Metal free, carbon-TiO2 based composites for the visible light photocatalysis. Solar Energy, 144, 127–133.

    Article  CAS  Google Scholar 

  24. Jia, T., Fu, F., Yu, D., Cao, J., & Sun, G. (2017). Facile synthesis and characterization of N-doped TiO2/C nanocomposites with enhanced visible-light photocatalytic performance. Applied Surface Science, 430, 438–447.

    Article  Google Scholar 

  25. Wei, H., McMaster, W. A., Tan, J. Z. Y., Chen, D., & Caruso, R. A. (2018). Tricomponent brookite/anatase TiO2/g-C3N4 heterojunction in mesoporous hollow microspheres for enhanced visible-light photocatalysis. Journal of Materials Chemistry A, 6, 7236–7245.

    Article  CAS  Google Scholar 

  26. Ton, N. N. T., Dao, A. T. N., Kato, K., Ikenaga, T., Trinh, D. X., & Taniike, T. (2018). One-pot synthesis of TiO2/graphene nanocomposites for excellent visible light photocatalysis based on chemical exfoliation method. Carbon, 133, 109–117.

    Article  CAS  Google Scholar 

  27. Hunge, Y. M., Mahadik, M. A., Moholkar, A. V., & Bhosale, C. H. (2017). Photoelectrocatalytic degradation of oxalic acid using WO3 and stratified WO3/TiO2 photocatalysts under sunlight illumination. Ultrasonics Sonochemistry, 35, 233–242.

    Article  CAS  PubMed  Google Scholar 

  28. Rajender, G., Kumar, J., & Giri, P. K. (2018). Interfacial charge transfer in oxygen deficient TiO2-graphene quantum dot hybrid and its influence on the enhanced visible light photocatalysis. Applied Catalysis, B: Environmental, 224, 960–972.

    Article  CAS  Google Scholar 

  29. Qu, A., Xie, H., Xu, X., Zhang, Y., Wen, S., & Cui, Y. (2016). High quantum yield graphene quantum dots decorated TiO2 nanotubes for enhancing photocatalytic activity. Applied Surface Science, 375, 230–241.

    Article  CAS  Google Scholar 

  30. Sun, X., Li, H. J., Ou, N., Lyu, B., Gui, B., Tian, S., et al. (2019). Visible-light driven TiO2 photocatalyst coated with graphene quantum dots of tunable nitrogen doping. Molecules, 24(2), 344.

    Article  PubMed Central  Google Scholar 

  31. Monga, A., Bathla, A., & Pal, B. (2017). Cu-Au bimetallic co-catalysis for the improved photocatalytic activity of TiO2 under visible light radiation. Solar Energy, 155, 1403–1410.

    Article  CAS  Google Scholar 

  32. Hao, R., Wang, G., Jiang, C., Tang, H., & Xu, Q. (2017). In situ hydrothermal synthesis of g-C3N4/TiO2 heterojunction photocatalysts with high specific surface area for Rhodamine B degradation. Applied Surface Science, 411, 400–410.

    Article  CAS  Google Scholar 

  33. Shafaee, M., Goharshadi, E. K., Mashreghi, M., & Sadeghiniad, M. (2018). TiO2 nanoparticles and TiO2@graphene quantum dots nancomposites as effective visible/solar light photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 357, 90–102.

    Article  CAS  Google Scholar 

  34. Chandra, M., Bhunia, K., & Pradhan, D. (2018). Controlled synthesis of CuS/TiO2 heterostructured nanocomposites for enhanced photocatalytic hydrogen generation through water splitting. Inorganic Chemistry, 57(8), 4524–4533.

    Article  CAS  PubMed  Google Scholar 

  35. Goharshadi, E. K., Niyazi, Z., Shafaee, M., Moghaddam, M. B., Ludwig, R., & Namayandeh- Jorabchi, M. (2017). Transport properties of graphene quantum dots in glycerol and distilled water. Journal of Molecular Liquids, 241, 831–838.

    Article  CAS  Google Scholar 

  36. Dong, Y., Shao, J., Chen, C., Li, H., Wang, R., Chi, Y., et al. (2012). Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon, 50, 4738–4743.

    Article  CAS  Google Scholar 

  37. Roushani, M., Mavaei, M., & Rajabi, H. R. (2015). Graphene quantum dots as novel and green nano-materials for the visible-light-driven photocatalytic degradation of cationic dye. Journal of Molecular Catalysis A: Chemical, 409, 102–109.

    Article  CAS  Google Scholar 

  38. Ruiz, V., Fernández, I., Carrasco, P., Cabanero, G., Grande, H. J., & Herrán, J. (2015). Graphene quantum dots as a novel sensing material for low-cost resistive and fast-response humidity sensors. Sensors and Actuators, B: Chemical Sensors and Materials, 218, 73–77.

    Article  CAS  Google Scholar 

  39. Nosaka, Y., & Nosaka, A. Y. (2017). Generation and detection of reactive oxygen species in photocatalysis. Chemical Reviews, 117, 11302–11336.

    Article  CAS  PubMed  Google Scholar 

  40. Goutam, S. P., Saxena, G., Singh, V., Yadav, A. K., Bharagava, R. N., & Thapa, K. B. (2018). Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chemical Engineering Journal, 336, 386–396.

    Article  CAS  Google Scholar 

  41. Goharshadi, E. K., Mehrkhah, R., & Nancarrow, P. (2013). Synthesis, characterization, and measurement of structural, optical, and phtotoluminescent properties of zinc sulfide quantum dots. Materials Science in Semiconductor Processing, 16, 356–362.

    Article  CAS  Google Scholar 

  42. Wang, L., Nie, Z., Cao, C., Ji, M., Zhou, L., & Feng, X. (2015). Controllable synthesis of porous TiO2 with a hierarchical nanostructure for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A, 3, 3710–3718.

    Article  CAS  Google Scholar 

  43. https://www.digimizer.com.

  44. Popli, S., & Patel, U. D. (2017). Mechanistic aspects of electro-catalytic reduction of Reactive Black 5 dye in a divided cell in the presence of silver nano-particles. Separation and Purification Technology, 179, 494–503.

    Article  CAS  Google Scholar 

  45. Ham, S., Kim, Y., Park, M. J., Hong, B. H., & Jang, D. J. (2016). Graphene quantum dots-decorated ZnS nanobelts with highly efficient photocatalytic performances. RSC Advances, 6, 24115–24120.

    Article  CAS  Google Scholar 

  46. Wang, F., Su, Y., Min, S., Li, Y., Lei, Y., & Hou, J. (2018). Synergistically enhanced photocatalytic hydrogen evolution performance of ZnCdS by co-loading graphene quantum dots and PdS dual cocatalysts under visible light. Journal of Solid State Chemistry, 260, 23–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of Ferdowsi University of Mashhad for this project (Grant no. 3/41683).

Funding

This work was supported by Ferdowsi University of Mashhad (Grant no. 3/41683).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Zohreh Niazi. The first draft of the manuscript was written by Zohreh Niazi and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Elaheh K. Goharshadi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Availability of data and material

All data generated or analyzed during this study are included in this published article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niazi, Z., Goharshadi, E.K., Mashreghi, M. et al. Highly efficient solar photocatalytic degradation of a textile dye by TiO2/graphene quantum dots nanocomposite. Photochem Photobiol Sci 20, 87–99 (2021). https://doi.org/10.1007/s43630-020-00005-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-020-00005-7

Keywords

Navigation