Skip to main content

Advertisement

Log in

A Conceptual Framework for Achieving Sustainable Building Through Compressed Earth Block: a Case of Ouagadougou, Burkina Faso

  • Original Paper
  • Published:
Circular Economy and Sustainability Aims and scope Submit manuscript

Abstract

The concept and importance of sustainability and sustainable development are gaining critical recognition and attention around the world. As most developing countries are ailing with limited resources concerning the building industry, meeting sustainable construction needs in Burkina Faso is a long-standing task that has yet to be realized. Energy and infrastructure needs are still inadequate, yet, though costly, cement dominates the construction industry. Compressed earth block (CEB) construction is a sustainable option in the building industry with essential characteristics desirable for the hot tropical environment in many parts of Africa, including Burkina Faso. Through a comprehensive literature review and analysis of the evolving and current status, the research develops a conceptual framework that supports the implementation of sustainable construction through compressed earth block (CEB). The proposed framework is based on three key principles: conservation of natural resources, cost-effectiveness, and human adaptability and well-being design. By using CEB as the main building material, the proposed framework would help design teams understand sustainable strategies and find a good balance between them.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Anton DK (2012) The 2012 United Nations conference on sustainable development and the future of international environmental protection. Consilience 7:64–72

    Google Scholar 

  2. Falchetta G et al (2019) A high-resolution gridded dataset to assess electrification in sub-Saharan Africa. Scientific data 6(1):1–9

    Article  Google Scholar 

  3. Zoungrana O et al (2020) Sustainable habitat in Burkina Faso: social trajectories, logics and motivations for the use of compressed earth blocks for housing construction in Ouagadougou. WIT Trans Built Environ 195:165–172

    Article  Google Scholar 

  4. Boyer F, Delaunay D (2009) Peuplement de Ouagadougou et développement urbain: Rapport provisoire. Institut de Recherche pour le Développement (IRD)

  5. Delaunay D, Boyer F (2017) Habiter Ouagadougou. IEDES-Université Paris, Paris, p 1

    Google Scholar 

  6. Nikyema GA, Blouin V (2020) Barriers to the adoption of green building materials and technologies in developing countries: the case of Burkina Faso. in IOP Conference Series: Earth and Environmental Science. IOP Publishing

  7. Zoungrana O et al (2021) The paradox around the social Representations of Compressed Earth Block Building Material in Burkina Faso: the Material for the Poor or the luxury Material? Open J Soc Sci

  8. Riza FV, Rahman IA, Zaidi AMA (2010) A brief review of Compressed Stabilized Earth Brick (CSEB). 2010 International Conference on Science and Social Research (CSSR 2010), p. 999–1004

  9. Theokritoff E, Lise D’haen SA (2021) How is science making its way into national climate change adaptation policy? Insights from Burkina Faso. Climate and Development, p. 1–9

  10. Markus K, Jürgen G, Christoph B, Bruno R, Franz R (2006) World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 15(3):259–263

    Article  Google Scholar 

  11. Ki-Zerbo J (2011) Historia del África negra: de los orígenes a las independcias

  12. Wright G (1991) The politics of design in French colonial urbanism. University of Chicago Press

  13. Lidón de Miguel M et al (2021) Return to the native earth: historical analysis of foreign influences on traditional architecture in Burkina Faso. Sustainability 13(2):757

    Article  Google Scholar 

  14. Whyte W (2010) Modernism, modernization and Europeanization in West African architecture, 1944–94. Europeanization in the Twentieth Century. Springer, pp 210–228

    Chapter  Google Scholar 

  15. Adeboye O (2003) Elite lifestyle and consumption in colonial Ibadan: the foundations of Nigeria: essays in honor of Toyin Falola. Africa World Press, Trenton NJ

    Google Scholar 

  16. Hitchcock H-R (1987) Architecture: nineteenth and twentieth centuries. Yale University Press

  17. Schumacher EF (2011) Lo pequeño es hermoso. Ediciones Akal, p 7

  18. Wyss U (2005) La construction en ‘matériaux locaux’. Etat d’un secteur à potentiel multiple. Report for the Direction du Développement et de la Cooperation. ICI. Ouagadougou

  19. Jaglin S (1995) Gestion urbaine partagée à Ouagadougou: pouvoirs et périphéries (1983–1991). ORSTOM, Karthala

    Google Scholar 

  20. Biehler A (2006) Renouveau urbain et marginalisation. Le cas d’habitants du centre-ville de Ouagadougou-Burkina Faso. Revue Tiers Monde 1:57–78

    Google Scholar 

  21. Asche H (1994) Le Burkina Faso contemporain: l'expérience d'un auto-développement. Editions L'Harmattan

  22. Baiche B, Osmani M, Hadjri K, Chifunda C (2008, January) Attitude towards earth construction in the developing world: a case study from Zambia. In: CIB W107 Construction in Developing World Countries International Symposium. “Construction in Developing countries: Procurement, Ethics and Technology.” January (pp 16–18)

  23. Kulshreshtha Y et al (2019) A case study on technical and social aspects of earth houses in rural India. Earthen Dwellings and Structures. Springer, pp 105–115

    Chapter  Google Scholar 

  24. Adegun OB, Adedeji YMD (2017) Review of economic and environmental benefits of earthen materials for housing in Africa. Front Archit Res 6(4):519–528

    Article  Google Scholar 

  25. Hema C et al (2021) Improving the thermal comfort in hot region through the design of walls made of compressed earth blocks: an experimental investigation. J Build Eng 38:102148

    Article  Google Scholar 

  26. Moussa SH et al (2019) Comparative study of thermal comfort induced from masonry made of stabilized compressed earth block vs conventional cementitious material. J Min Mater Charact Eng 7(385–403):385–403

    CAS  Google Scholar 

  27. Hema CM et al (2017) Vernacular housing practices in Burkina Faso: representative models of construction in Ouagadougou and walls hygrothermal efficiency. Energy Procedia 122:535–540

    Article  Google Scholar 

  28. Toussakoe K, Ouedraogo E, Imbga KB, Messan A, Kieno FP (2021) Caractérisation mécanique et thermo-physique de l’adobe utilisé dans la voûte nubienne. Afrique SCIENCE 19(5):186–199

    Google Scholar 

  29. Ouattara A, Somé L (2006) La croissance urbaine au Burkina Faso. Rapport d’analyse des données du Recencement Général de la population et de l’habitat de

  30. Rincón L et al (2019) Improving thermal comfort of earthen dwellings in sub-Saharan Africa with passive design. J Build Eng 24:100732

    Article  Google Scholar 

  31. Traoré A (2003) La problématique des matériaux locaux de construction dans le développement du logement a Ouagadougou. Mémoire de Maitrise (Option Géographie Urbaine). Université de Ouagadougou, Ouagadougou

  32. Chan APC et al (2018) Critical barriers to green building technologies adoption in developing countries: the case of Ghana. J Clean Prod 172:1067–1079

    Article  Google Scholar 

  33. Aktas B, Ozorhon B (2015) Green building certification process of existing buildings in developing countries: cases from Turkey. J Manag Eng 31(6):05015002

    Article  Google Scholar 

  34. Kaboré M (2015) Enjeux de la simulation pour l'étude des performances énergétiques des bâtiments en Afrique sub-saharienne. Université Grenoble Alpes (ComUE)

  35. Roberts S (2008) Effects of climate change on the built environment. Energy Policy 36(12):4552–4557

    Article  Google Scholar 

  36. Cagnon H et al (2014) Hygrothermal properties of earth bricks. Energy Build 80:208–217

    Article  Google Scholar 

  37. Asadi I et al (2018) Thermal conductivity of concrete–a review. J Build Eng 20:81–93

    Article  Google Scholar 

  38. Bourdieu P (1979) La distinction-critique sociale due jugement (Editions de Minuit, Paris)

  39. Bauhain C (1989) Les familles bourgeoises françaises au XIXe siècle: pratiques sociales et transformations de l’espace de l’habitation. Familles, modes de vie et habitat, 156–177

  40. Paulus J (2015) Construction en t erre c rue: Dispositions qualitatives, constructives et architecturales–Application à un cas pratique: Ouagadougou

  41. Houben H, Rigassi V, Garnier P (1996) Blocs de terre comprimée: équipements de production. CDI

  42. Doat P et al (1991) Étude sur les savoirs constructifs au Burkina Faso. CRATerre-EAG

  43. Rigassi V (1995) Blocs en terre comprime, vol I. Manuel de production, CraTerre-EAG

    Google Scholar 

  44. Hema C et al (2020) Impact of the design of walls made of compressed earth blocks on the thermal comfort of housing in hot climate. Buildings 10(9):157

    Article  Google Scholar 

  45. Tatane M et al (2018) Thermal, mechanical and physical behavior of compressed earth blocks loads by natural wastes. Int J Civil Eng Technol 9:1353–1368

    Google Scholar 

  46. Lacasse MA (1999) Materials and technology for sustainable construction. Build Res Inf 27(6):405–408

    Article  Google Scholar 

  47. Olivier C, Colleu A, Colleu A (2016) 12 solutions bioclimatiques pour l’habitat

  48. Anger R (2011) Approche granulaire et colloïdale du matériau terre pour la construction. Lyon, INSA

    Google Scholar 

  49. Kéré B (1995) Architecture et cultures constructives du Burkina Faso

  50. Verma AK (2019) Sustainable development and environmental ethics. Int J Environ Sci 10(1):1–5

    CAS  Google Scholar 

  51. Halliday S (2008) Sustainable construction. Routledge

    Book  Google Scholar 

  52. Graham P (2009) Building ecology: first principles for a sustainable built environment. John Wiley & Sons

    Google Scholar 

  53. Khan MW, Ali Y (2020) Sustainable construction: Lessons learned from life cycle assessment (LCA) and life cycle cost analysis (LCCA). Constr Innov 20(2):191–207

    Article  Google Scholar 

  54. Marques G, Ferreira CR, Pitarma R (2019) Indoor air quality assessment using a CO 2 monitoring system based on internet of things. J Med Syst 43(3):1–10

    Article  Google Scholar 

  55. Babitharani H, Raj KV, Ahmed S, Dinakar RP, Khan O, RahulKesarkar M, VinodP N (2019) A study on low energy buildings

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: BOASS and ZL; data mining and collation: BOASS; formal analysis: BOASS and FDC; writing: BOASS, ZL, and FDC. The authors read and approved the final manuscript.

Corresponding author

Correspondence to Stahel Serano Bibang Bi Obam Assoumou.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bibang Bi Obam Assoumou, S.S., Zhu, L. & Francis Deng, C. A Conceptual Framework for Achieving Sustainable Building Through Compressed Earth Block: a Case of Ouagadougou, Burkina Faso. Circ.Econ.Sust. 3, 1029–1043 (2023). https://doi.org/10.1007/s43615-022-00213-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43615-022-00213-6

Keywords

Navigation