Skip to main content

Advertisement

Log in

Applying Circular Economy to Construction Industry through Use of Waste Materials: A Review of Supplementary Cementitious Materials, Plastics, and Ceramics

  • Review Paper
  • Published:
Circular Economy and Sustainability Aims and scope Submit manuscript

Abstract

Due to constant growth of waste production, recent strategies in waste management such as circular economy promote the maximum life cycle use of materials. In construction industry where structures tend to last for decades, the use of such recycled materials can have numerous benefits including overall reduction in cost, in use of virgin materials, and in CO2 production as well as providing an opportunity for a tailored concrete with specific properties. Yet, because of the stereotypical and negative image of mechanical properties reduction, as a result of using waste materials, often their vast contribution in sustainability and durability properties are not taken into consideration. In this regard, we propose viewing waste materials as secondary raw materials that in certain regards, can provide a favorably tailored property. In this regard, the following review article first provides a short description of the most commonly used waste materials such as supplementary cementitious materials (fly ash, ground granulated blast furnace slag, silica fume, metakaolin, rice husk ash, municipal solid waste ash, steel slag, copper slag), ceramics from construction and demolition (glass powder, brick and tile ceramic and porcelain), and the vastly available plastic materials (polypropylene, polyethylene terephthalate, polyvinyl chloride, and rubber). Then, by reviewing a selected environmental impact (life cycle assessment), physicochemical, durability, and finally mechanical properties discuss the limitations, future projections of newer waste materials (e.g., agricultural waste) to be used and suggest potential future study in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data gathered are available as the supplementary material.

Code availability

The authors declare that no code is used for the purpose of this article.

References

  1. Zhao X, Hwang BG, Lim J (2020) Job Satisfaction of Project Managers in Green Construction Projects: Constituents, Barriers, and Improvement Strategies. J Clean Prod 246:118968. https://doi.org/10.1016/j.jclepro.2019.118968

    Article  Google Scholar 

  2. M. Osmani, Construction Waste. Elsevier Inc., 2011

  3. J. Lehne and F. Preston, “Chatham House Report Making Concrete Change Innovation in Low-carbon Cement and Concrete The Royal Institute of International Affairs, Chatham House Report Series, www.chathamhouse.org/sites/default/files/publications/research/2018‐06‐13‐makingconcrete‐ c,” 2018. Accessed 16.11.2020

  4. Arrigoni A et al (2020) Life cycle greenhouse gas emissions of concrete containing supplementary cementitious materials: cut-off vs. substitution. J Clean Prod 263:121465. https://doi.org/10.1016/j.jclepro.2020.121465

    Article  CAS  Google Scholar 

  5. R. Snellings, “Assessing, Understanding and Unlocking Supplementary Cementitious Materials,” RILEM Tech. Lett., vol. 1, p. 50, 2016, https://doi.org/10.21809/rilemtechlett.2016.12.

  6. World Health Organization, “Environmental impacts on health,” 2020

  7. G. Sauve and K. Van Acker, “The environmental impacts of municipal solid waste landfills in Europe: A life cycle assessment of proper reference cases to support decision making,” J. Environ. Manage., vol. 261, no. August 2019, p. 110216, 2020, https://doi.org/10.1016/j.jenvman.2020.110216.

  8. Ghisellini P, Ripa M, Ulgiati S (2018) Exploring environmental and economic costs and benefits of a circular economy approach to the construction and demolition sector. A literature review. J Clean Prod 178:618–643. https://doi.org/10.1016/j.jclepro.2017.11.207

    Article  Google Scholar 

  9. L. A. López Ruiz, X. Roca Ramón, and S. Gassó Domingo, “The circular economy in the construction and demolition waste sector – A review and an integrative model approach,” J. Clean. Prod., vol. 248, 2020, https://doi.org/10.1016/j.jclepro.2019.119238.

  10. S. Debbarma, G. D. Ransinchung, S. Singh, and S. K. Sahdeo, “Utilization of industrial and agricultural wastes for productions of sustainable roller compacted concrete pavement mixes containing reclaimed asphalt pavement aggregates,” Resour. Conserv. Recycl., vol. 152, no. August 2019, p. 104504, 2020, https://doi.org/10.1016/j.resconrec.2019.104504.

  11. US EPA, “Wastes | EPA’s Report on the Environment (ROE) | US EPA.”

  12. M. Nodehi, A. A. Arani, and V. M. Taghvaee, “Sustainability spillover effects and partnership between East Asia & Pacific versus North America: interactions of social, environment and economy,” Lett. Spat. Resour. Sci., no. 0123456789, 2021, https://doi.org/10.1007/s12076-021-00282-5.

  13. Adams KT, Osmani M, Thorpe T, Thornback J (2017) Circular economy in construction: Current awareness, challenges and enablers. Proc Inst Civ Eng Waste Resour Manag 170(1):15–24. https://doi.org/10.1680/jwarm.16.00011

    Article  Google Scholar 

  14. V. Mohamad Taghvaee et al., “Sustainable development goals: transportation, health and public policy,” Rev. Econ. Polit. Sci., vol. ahead-of-p, no. ahead-of-print, Jan. 2021, https://doi.org/10.1108/REPS-12-2019-0168.

  15. M. Nodehi, A. A. Arani, and V. M. Taghvaee, “Sustainability spillover effects and partnership between East Asia & Pacific versus North America: interactions of social, environment and economy,” Lett. Spat. Resour. Sci., no. 0123456789, 2021, https://doi.org/10.1007/s12076-021-00282-5.

  16. United Nations, “#Envision2030 Goal 11: Sustainable Cities and Communities | United Nations Enable.”

  17. V. Mohamad Taghvaee, L. Agheli, A. Assari Arani, M. Nodehi, and J. Khodaparast Shirazi, “Environmental pollution and economic growth elasticities of maritime and air transportations in Iran,” Mar. Econ. Manag., vol. 2, no. 2, pp. 114–123, Jul. 2019, https://doi.org/10.1108/MAEM-09-2019-0008.

  18. Ding Z, Wang Y, Zou PXW (2016) An agent based environmental impact assessment of building demolition waste management: Conventional versus green management. J Clean Prod 133:1136–1153. https://doi.org/10.1016/j.jclepro.2016.06.054

    Article  Google Scholar 

  19. World economic forum, “Shaping the Future of Construction: A Breakthrough in Mindset and Technology,” 2016

  20. M. Nodehi and V. Mohamad Taghvaee, “Sustainable concrete for circular economy: a review on use of waste glass,” Glas. Struct. Eng., May 2021, https://doi.org/10.1007/s40940-021-00155-9.

  21. G. Stahel, W.R. and Reday, “The potential for substituting manpower for energy.,” Rep. to Comm. Eur. Communities., no. April, 1976

  22. Geissdoerfer M, Savaget P, Bocken NMP, Hultink EJ (2017) The Circular Economy – A new sustainability paradigm? J Clean Prod 143:757–768. https://doi.org/10.1016/j.jclepro.2016.12.048

    Article  Google Scholar 

  23. Brown P, Bocken N, Balkenende R (2019) Why do companies pursue collaborative circular oriented innovation? Sustain 11(3):1–23. https://doi.org/10.3390/su11030635

    Article  CAS  Google Scholar 

  24. S. Venkata Mohan, K. Amulya, and J. Annie Modestra, “Urban biocycles – Closing metabolic loops for resilient and regenerative ecosystem: A perspective,” Bioresour. Technol., vol. 306, no. February, p. 123098, 2020, https://doi.org/10.1016/j.biortech.2020.123098.

  25. Nikolaou IE, Jones N, Stefanakis A (2021) Correction to: Circular Economy and Sustainability: the Past, the Present and the Future Directions. Circ Econ Sustain 1(2):783–783. https://doi.org/10.1007/s43615-021-00054-9

    Article  Google Scholar 

  26. I. E. Nikolaou and A. I. Stefanakis, “A review of circular economy literature through a threefold level framework and engineering-management approach,” in Circular Economy and Sustainability, Elsevier, 2022, pp. 1–19

  27. Nikolaou IE, Tsagarakis KP (Oct. 2021) An introduction to circular economy and sustainability: Some existing lessons and future directions. Sustain Prod Consum 28:600–609. https://doi.org/10.1016/j.spc.2021.06.017

    Article  Google Scholar 

  28. Baldassarre B, Schepers M, Bocken N, Cuppen E, Korevaar G, Calabretta G (2019) Industrial Symbiosis: towards a design process for eco-industrial clusters by integrating Circular Economy and Industrial Ecology perspectives. J Clean Prod 216:446–460. https://doi.org/10.1016/j.jclepro.2019.01.091

    Article  Google Scholar 

  29. Han Y, Yang Z, Ding T, Xiao J (2021) Environmental and economic assessment on 3D printed buildings with recycled concrete. J Clean Prod 278:123884. https://doi.org/10.1016/j.jclepro.2020.123884

    Article  Google Scholar 

  30. Juenger MCG, Siddique R (2015) Recent advances in understanding the role of supplementary cementitious materials in concrete. Cem Concr Res 78:71–80. https://doi.org/10.1016/j.cemconres.2015.03.018

    Article  CAS  Google Scholar 

  31. Weng Y, Lu B, Li M, Liu Z, Tan MJ, Qian S (2018) Empirical models to predict rheological properties of fiber reinforced cementitious composites for 3D printing. Constr Build Mater 189:676–685. https://doi.org/10.1016/j.conbuildmat.2018.09.039

    Article  CAS  Google Scholar 

  32. Lim JH, Panda B, Pham QC (2018) Improving flexural characteristics of 3D printed geopolymer composites with in-process steel cable reinforcement. Constr Build Mater 178:32–41. https://doi.org/10.1016/j.conbuildmat.2018.05.010

    Article  CAS  Google Scholar 

  33. S. Debbarma, M. Selvam, and S. Singh, “Can flexible pavements’ waste (RAP) be utilized in cement concrete pavements? – A critical review,” Constr. Build. Mater., vol. 259, p. 120417, 2020, https://doi.org/10.1016/j.conbuildmat.2020.120417.

  34. D. W. Zhang, D. min Wang, X. Q. Lin, and T. Zhang, “The study of the structure rebuilding and yield stress of 3D printing geopolymer pastes,” Constr. Build. Mater., vol. 184, pp. 575–580, 2018, https://doi.org/10.1016/j.conbuildmat.2018.06.233.

  35. Xia M, Sanjayan JG (2018) Methods of enhancing strength of geopolymer produced from powder-based 3D printing process. Mater Lett 227:281–283. https://doi.org/10.1016/j.matlet.2018.05.100

    Article  CAS  Google Scholar 

  36. Li J, Zhang W, Li C, Monteiro PJM (2019) Green concrete containing diatomaceous earth and limestone: Workability, mechanical properties, and life-cycle assessment. J Clean Prod 223:662–679. https://doi.org/10.1016/j.jclepro.2019.03.077

    Article  CAS  Google Scholar 

  37. Flower DJM, Sanjayan JG (2007) Green house gas emissions due to concrete manufacture. Int J Life Cycle Assess 12(5):282–288. https://doi.org/10.1007/s11367-007-0327-3

    Article  CAS  Google Scholar 

  38. Huntzinger DN, Eatmon TD (2009) A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. J Clean Prod 17(7):668–675. https://doi.org/10.1016/j.jclepro.2008.04.007

    Article  CAS  Google Scholar 

  39. McLellan BC, Williams RP, Lay J, Van Riessen A, Corder GD (2011) Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. J Clean Prod 19(9–10):1080–1090. https://doi.org/10.1016/j.jclepro.2011.02.010

    Article  CAS  Google Scholar 

  40. Kaasik M, Alliksaar T, Ivask J, Loosaar J (2006) Spherical fly ash particles from oil shale fired power plants in atmospheric precipitations. Possibilities of quantitative tracing. Oil Shale 22(4):547–561

    Google Scholar 

  41. Ramezanianpour AA, Moeini MA (2018) Mechanical and durability properties of alkali activated slag coating mortars containing nanosilica and silica fume. Constr Build Mater 163:611–621. https://doi.org/10.1016/j.conbuildmat.2017.12.062

    Article  CAS  Google Scholar 

  42. K. Vegere, L. Vitola, P. P. Argalis, D. Bajare, and A. E. Krauklis, “Alkali-activated metakaolin as a zeolite-like binder for the production of adsorbents,” Inorganics, vol. 7, no. 12, 2019, https://doi.org/10.3390/inorganics7120141.

  43. M. M. Saravanan and M. Sivaraja, “Mechanical behavior of concrete modified by replacement of cement by rice husk ash,” Brazilian Arch. Biol. Technol., vol. 59, no. Specialissue2, pp. 1–11, 2016, https://doi.org/10.1590/1678-4324-2016161072.

  44. Z. Giergiczny, “Fly ash and slag,” Cem. Concr. Res., vol. 124, no. February, 2019, https://doi.org/10.1016/j.cemconres.2019.105826.

  45. Environment UN, Scrivener KL, John VM, Gartner EM, Polytechnique É, De Lausanne F (2018) Cement and Concrete Research Eco-efficient cements : Potential economically viable solutions for a low-CO 2 cement-based materials industry ☆. Cem Concr Res 114(June):2–26. https://doi.org/10.1016/j.cemconres.2018.03.015

    Article  CAS  Google Scholar 

  46. Gollakota ARK, Volli V, Shu CM (2019) Progressive utilisation prospects of coal fly ash: A review. Sci Total Environ 672:951–989. https://doi.org/10.1016/j.scitotenv.2019.03.337

    Article  CAS  Google Scholar 

  47. EIA, “Electricity generation from natural gas and renewables increases as a result of lower natural gas prices and declining costs of solar and wind renewable capacity, making these fuels increasingly competitive,” 2020

  48. U.S. Energy Information Administration, “Coal and the environment - U.S. Energy Information Administration (EIA),” 2018, 2018

  49. Lothenbach B, Scrivener K, Hooton RD (2011) Supplementary cementitious materials. Cem Concr Res 41(12):1244–1256. https://doi.org/10.1016/j.cemconres.2010.12.001

    Article  CAS  Google Scholar 

  50. Nodehi M, Taghvaee VM (2021) Alkali-activated materials and geopolymer: a review of common precursors and activators addressing circular economy. Circ Econ Sustain. https://doi.org/10.1007/s43615-021-00029-w

    Article  Google Scholar 

  51. N. De Belie, M. Soutsos, and E. Gruyaert, Properties of Fresh and Hardened Concrete Containing Supplementary Cementitious Materials: State-of-the-Art Report of the RILEM Technical Committee 238-SCM, Working Group 4. 2018

  52. Hanif A, Parthasarathy P, Ma H, Fan T, Li Z (2017) Properties improvement of fly ash cenosphere modified cement pastes using nano silica. Cem Concr Compos 81:35–48. https://doi.org/10.1016/j.cemconcomp.2017.04.008

    Article  CAS  Google Scholar 

  53. Supit SWM, Shaikh FUA (2015) Durability properties of high volume fly ash concrete containing nano-silica. Mater Struct Constr 48(8):2431–2445. https://doi.org/10.1617/s11527-014-0329-0

    Article  CAS  Google Scholar 

  54. Maltais Y, Marchand J (1997) Influence of curing temperature on cement hydration and mechanical strength development of fly ash mortars. Cem Concr Res 27(7):1009–1020. https://doi.org/10.1016/S0008-8846(97)00098-7

    Article  CAS  Google Scholar 

  55. Payá J, Monzó J, Borrachero MV, Peris-Mora E (1995) Mechanical treatment of fly ashes. Part I: Physico-chemical characterization of ground fly ashes. Cem Concr Res 25(7):1469–1479. https://doi.org/10.1016/0008-8846(95)00141-X

    Article  Google Scholar 

  56. Bentz DP, Hansen AS, Guynn JM (2011) Optimization of cement and fly ash particle sizes to produce sustainable concretes. Cem Concr Compos 33(8):824–831. https://doi.org/10.1016/j.cemconcomp.2011.04.008

    Article  CAS  Google Scholar 

  57. Lee CY, Lee HK, Lee KM (2003) Strength and microstructural characteristics of chemically activated fly ash-cement systems. Cem Concr Res 33(3):425–431. https://doi.org/10.1016/S0008-8846(02)00973-0

    Article  CAS  Google Scholar 

  58. Moghaddam F, Sirivivatnanon V, Vessalas K (2019) The effect of fly ash fineness on heat of hydration, microstructure, flow and compressive strength of blended cement pastes. Case Stud Constr Mater 10:e00218. https://doi.org/10.1016/j.cscm.2019.e00218

    Article  Google Scholar 

  59. Castellanos AG, Mawson H, Burke V, Prabhakar P (2017) Fly-ash cenosphere/clay blended composites for impact resistant tiles. Constr Build Mater 156:307–313. https://doi.org/10.1016/j.conbuildmat.2017.08.151

    Article  Google Scholar 

  60. Gao Y, He B, Li Y, Tang J, Qu L (2017) Effects of nano-particles on improvement in wear resistance and drying shrinkage of road fly ash concrete. Constr Build Mater 151:228–235. https://doi.org/10.1016/j.conbuildmat.2017.06.080

    Article  CAS  Google Scholar 

  61. Lu B et al (2019) Designing spray-based 3D printable cementitious materials with fly ash cenosphere and air entraining agent. Constr Build Mater 211:1073–1084. https://doi.org/10.1016/j.conbuildmat.2019.03.186

    Article  Google Scholar 

  62. B. Panda, S. Ruan, C. Unluer, and M. J. Tan, “Improving the 3D printability of high volume fly ash mixtures via the use of nano attapulgite clay,” Compos. Part B Eng., vol. 165, no. June 2018, pp. 75–83, 2019, https://doi.org/10.1016/j.compositesb.2018.11.109.

  63. M. Nodehi and S. E. Nodehi, “ultra high performance concrete (UHPC): Reactive powder concrete, slurry infiltrated fiber concrete and superabsorbent polymer concrete,” Innov. Infrastruct. Solut., https://doi.org/10.1007/s41062-021-00641-7.

  64. Adil G, Kevern JT, Mann D (2020) Influence of silica fume on mechanical and durability of pervious concrete. Constr Build Mater 247:118453. https://doi.org/10.1016/j.conbuildmat.2020.118453

    Article  CAS  Google Scholar 

  65. I. Netinger Grubeša, I. Barišic, A. Fucic, and S. S. Bansode, Characteristics and uses of steel slag in building construction. 2016

  66. Oner A, Akyuz S (2007) An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cem Concr Compos 29(6):505–514. https://doi.org/10.1016/j.cemconcomp.2007.01.001

    Article  CAS  Google Scholar 

  67. G. C. Wang, The utilization of slag in civil infrastructure construction. 2018

  68. M. A. Megat Johari, J. J. Brooks, S. Kabir, and P. Rivard, “Influence of supplementary cementitious materials on engineering properties of high strength concrete,” Constr. Build. Mater., vol. 25, no. 5, pp. 2639–2648, 2011, https://doi.org/10.1016/j.conbuildmat.2010.12.013.

  69. O’Connell M, McNally C, Richardson MG (2012) Performance of concrete incorporating GGBS in aggressive wastewater environments. Constr Build Mater 27(1):368–374. https://doi.org/10.1016/j.conbuildmat.2011.07.036

    Article  Google Scholar 

  70. Nodehi M (Dec. 2021) A comparative review on foam-based versus lightweight aggregate-based alkali-activated materials and geopolymer. Innov Infrastruct Solut 6(4):231. https://doi.org/10.1007/s41062-021-00595-w

    Article  Google Scholar 

  71. Nodehi M, Aguayo F (Dec. 2021) Ultra high performance and high strength geopolymer concrete. J Build Pathol Rehabil 6(1):34. https://doi.org/10.1007/s41024-021-00130-5

    Article  Google Scholar 

  72. Saboo N, Shivhare S, Kori KK, Chandrappa AK (2019) Effect of fly ash and metakaolin on pervious concrete properties. Constr Build Mater 223:322–328. https://doi.org/10.1016/j.conbuildmat.2019.06.185

    Article  CAS  Google Scholar 

  73. N. Tebbal and Z. El Abidine Rahmouni, “Rheological and Mechanical Behavior of Mortars with Metakaolin Formulation,” Procedia Comput. Sci., vol. 158, pp. 45–50, 2019, https://doi.org/10.1016/j.procs.2019.09.026.

  74. Nežerka V, Bílý P, Hrbek V, Fládr J (2019) Impact of silica fume, fly ash, and metakaolin on the thickness and strength of the ITZ in concrete. Cem Concr Compos 103(January):252–262. https://doi.org/10.1016/j.cemconcomp.2019.05.012

    Article  CAS  Google Scholar 

  75. P. min Zhan et al., “Utilization of nano-metakaolin in concrete: A review,” J. Build. Eng., vol. 30, no. October 2019, p. 101259, 2020, https://doi.org/10.1016/j.jobe.2020.101259.

  76. J. Xie et al., “Effect of nano metakaolin on compressive strength of recycled concrete,” Constr. Build. Mater., vol. 256, 2020, https://doi.org/10.1016/j.conbuildmat.2020.119393.

  77. Muduli R, Mukharjee BB (2020) Performance assessment of concrete incorporating recycled coarse aggregates and metakaolin: A systematic approach. Constr Build Mater 233:117223. https://doi.org/10.1016/j.conbuildmat.2019.117223

    Article  CAS  Google Scholar 

  78. Siddique R, Klaus J (2009) Applied Clay Science In fl uence of metakaolin on the properties of mortar and concrete : A review. Appl Clay Sci 43(3–4):392–400. https://doi.org/10.1016/j.clay.2008.11.007

    Article  CAS  Google Scholar 

  79. Aprianti E, Shafigh P, Bahri S, Farahani JN (2015) Supplementary cementitious materials origin from agricultural wastes - A review. Constr Build Mater 74:176–187. https://doi.org/10.1016/j.conbuildmat.2014.10.010

    Article  Google Scholar 

  80. Vigneshwari M, Arunachalam K, Angayarkanni A (2018) Replacement of silica fume with thermally treated rice husk ash in Reactive Powder Concrete. J Clean Prod 188:264–277. https://doi.org/10.1016/j.jclepro.2018.04.008

    Article  CAS  Google Scholar 

  81. Pode R (2016) Potential applications of rice husk ash waste from rice husk biomass power plant. Renew Sustain Energy Rev 53:1468–1485. https://doi.org/10.1016/j.rser.2015.09.051

    Article  Google Scholar 

  82. Prasara-A J, Gheewala SH (2017) Sustainable utilization of rice husk ash from power plants: A review. J Clean Prod 167:1020–1028. https://doi.org/10.1016/j.jclepro.2016.11.042

    Article  Google Scholar 

  83. A. Kumar Yadav, K. Gaurav, R. Kishor, and S. K. Suman, “Stabilization of alluvial soil for subgrade using rice husk ash, sugarcane bagasse ash and cow dung ash for rural roads,” Int. J. Pavement Res. Technol., vol. 10, no. 3, pp. 254–261, 2017, https://doi.org/10.1016/j.ijprt.2017.02.001.

  84. Liu Y et al (2019) Stabilization of expansive soil using cementing material from rice husk ash and calcium carbide residue. Constr Build Mater 221:1–11. https://doi.org/10.1016/j.conbuildmat.2019.05.157

    Article  CAS  Google Scholar 

  85. Bernal SA, Mejía De Gutiérrez R, Provis JL (2012) Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends. Constr Build Mater 33:99–108. https://doi.org/10.1016/j.conbuildmat.2012.01.017

    Article  Google Scholar 

  86. Detphan S, Chindaprasirt P (2009) Preparation of fly ash and rice husk ash geopolymer. Int J Miner Metall Mater 16(6):720–726. https://doi.org/10.1016/S1674-4799(10)60019-2

    Article  CAS  Google Scholar 

  87. Moraes CAM et al (2014) Review of the rice production cycle: By-products and the main applications focusing on rice husk combustion and ash recycling. Waste Manag Res 32(11):1034–1048. https://doi.org/10.1177/0734242X14557379

    Article  CAS  Google Scholar 

  88. Soltani N, Bahrami A, Pech-Canul MI, González LA (2015) Review on the physicochemical treatments of rice husk for production of advanced materials. Chem Eng J 264:899–935. https://doi.org/10.1016/j.cej.2014.11.056

    Article  CAS  Google Scholar 

  89. F. Massazza, Pozzolana and Pozzolanic Cements, Fourth Edi. Elsevier Ltd., 2003

  90. P. Rattanachu, P. Toolkasikorn, W. Tangchirapat, P. Chindaprasirt, and C. Jaturapitakkul, “Performance of recycled aggregate concrete with rice husk ash as cement binder,” Cem. Concr. Compos., vol. 108, no. January 2019, p. 103533, 2020, https://doi.org/10.1016/j.cemconcomp.2020.103533.

  91. M. Tyrer, Municipal solid waste incinerator (MSWI) concrete. 2013

  92. Saikia N, Kato S, Kojima T (2007) Production of cement clinkers from municipal solid waste incineration (MSWI) fly ash. Waste Manag 27(9):1178–1189. https://doi.org/10.1016/j.wasman.2006.06.004

    Article  CAS  Google Scholar 

  93. F. Agrela, M. Cabrera, M. M. Morales, M. Zamorano, and M. Alshaaer, Biomass fly ash and biomass bottom ash, vol. 3. 2018

  94. Wang S, Baxter L (2007) Comprehensive study of biomass fly ash in concrete: Strength, microscopy, kinetics and durability. Fuel Process Technol 88(11–12):1165–1170. https://doi.org/10.1016/j.fuproc.2007.06.016

    Article  CAS  Google Scholar 

  95. Shi C (2004) Steel Slag—Its Production, Processing, Characteristics, and Cementitious Properties. J Mater Civ Eng 16(3):230–236. https://doi.org/10.1061/(asce)0899-1561(2004)16:3(230)

    Article  CAS  Google Scholar 

  96. Qasrawi H, Shalabi F, Asi I (2009) Use of low CaO unprocessed steel slag in concrete as fine aggregate. Constr Build Mater 23(2):1118–1125. https://doi.org/10.1016/j.conbuildmat.2008.06.003

    Article  Google Scholar 

  97. V. Subathra Devi and B. K. Gnanavel, “Properties of concrete manufactured using steel slag,” Procedia Eng., vol. 97, pp. 95–104, 2014, https://doi.org/10.1016/j.proeng.2014.12.229.

  98. Shi C, Meyer C, Behnood A (2008) Utilization of copper slag in cement and concrete. Resour Conserv Recycl 52(10):1115–1120. https://doi.org/10.1016/j.resconrec.2008.06.008

    Article  Google Scholar 

  99. Moura WA, Gonçalves JP, Lima MBL (2007) Copper slag waste as a supplementary cementing material to concrete. J Mater Sci 42(7):2226–2230. https://doi.org/10.1007/s10853-006-0997-4

    Article  CAS  Google Scholar 

  100. Wu W, Zhang W, Ma G (2010) Optimum content of copper slag as a fine aggregate in high strength concrete. Mater Des 31(6):2878–2883. https://doi.org/10.1016/j.matdes.2009.12.037

    Article  CAS  Google Scholar 

  101. Topçu IB, Canbaz M (2004) Properties of concrete containing waste glass. Cem Concr Res 34(2):267–274. https://doi.org/10.1016/j.cemconres.2003.07.003

    Article  CAS  Google Scholar 

  102. Omran A, Tagnit-Hamou A (2016) Performance of glass-powder concrete in field applications. Constr Build Mater 109:84–95. https://doi.org/10.1016/j.conbuildmat.2016.02.006

    Article  Google Scholar 

  103. Ye N et al (2014) Synthesis and characterization of geopolymer from bayer red mud with thermal pretreatment. J Am Ceram Soc 97(5):1652–1660. https://doi.org/10.1111/jace.12840

    Article  CAS  Google Scholar 

  104. Kumar A, Kumar S (2013) Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization. Constr Build Mater 38:865–871. https://doi.org/10.1016/j.conbuildmat.2012.09.013

    Article  CAS  Google Scholar 

  105. Sun S et al (2018) Geopolymer synthetized from sludge residue pretreated by the wet alkalinizing method: Compressive strength and immobilization efficiency of heavy metal. Constr Build Mater 170:619–626. https://doi.org/10.1016/j.conbuildmat.2018.03.068

    Article  CAS  Google Scholar 

  106. Yan S, Sagoe-Crentsil K (2012) Properties of wastepaper sludge in geopolymer mortars for masonry applications. J Environ Manage 112:27–32. https://doi.org/10.1016/j.jenvman.2012.07.008

    Article  CAS  Google Scholar 

  107. Obenaus-Emler R, Falah M, Illikainen M (2020) Assessment of mine tailings as precursors for alkali-activated materials for on-site applications. Constr Build Mater 246:118470. https://doi.org/10.1016/j.conbuildmat.2020.118470

    Article  CAS  Google Scholar 

  108. Z. Xiaolong, Z. Shiyu, L. Hui, and Z. Yingliang, “Disposal of mine tailings via geopolymerization,” J. Clean. Prod., no. xxxx, p. 124756, 2020, https://doi.org/10.1016/j.jclepro.2020.124756.

  109. Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3(7):25–29. https://doi.org/10.1126/sciadv.1700782

    Article  CAS  Google Scholar 

  110. Lebreton L et al (2018) Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci Rep 8(1):1–15. https://doi.org/10.1038/s41598-018-22939-w

    Article  CAS  Google Scholar 

  111. Lebreton L, Andrady A (2019) Future scenarios of global plastic waste generation and disposal. Palgrave Commun 5(1):1–11. https://doi.org/10.1057/s41599-018-0212-7

    Article  Google Scholar 

  112. Eriksen M et al (2014) Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLoS ONE 9(12):1–15. https://doi.org/10.1371/journal.pone.0111913

    Article  CAS  Google Scholar 

  113. “Going Plastic Free: 3 Myths About Ending Plastic Pollution.” .

  114. Heinrich Böll Foundation and Break Free From Plastic (2019) Plastic Atlas. Comp Polit Stud. https://doi.org/10.1177/0010414016666833

    Article  Google Scholar 

  115. Belmokaddem M, Mahi A, Senhadji Y, Pekmezci BY (2020) Mechanical and physical properties and morphology of concrete containing plastic waste as aggregate. Constr Build Mater 257:119559. https://doi.org/10.1016/j.conbuildmat.2020.119559

    Article  CAS  Google Scholar 

  116. L. Gu and T. Ozbakkaloglu, “Use of recycled plastics in concrete: A critical review,” Waste Manag., vol. 51, no. July 2019, pp. 19–42, 2016, https://doi.org/10.1016/j.wasman.2016.03.005.

  117. Silva ER, Coelho JFJ, Bordado JC (2013) Strength improvement of mortar composites reinforced with newly hybrid-blended fibres: Influence of fibres geometry and morphology. Constr Build Mater 40:473–480. https://doi.org/10.1016/j.conbuildmat.2012.11.017

    Article  Google Scholar 

  118. A. I. Al-Hadithi, A. T. Noaman, and W. K. Mosleh, “Mechanical properties and impact behavior of PET fiber reinforced self-compacting concrete (SCC),” Compos. Struct., vol. 224, no. July 2018, p. 111021, 2019, https://doi.org/10.1016/j.compstruct.2019.111021.

  119. Nodehi M (2021) Epoxy, Polyester and Vinyl ester-based polymer concrete: a review. Innov Infrastruct Solut. https://doi.org/10.1007/s41062-021-00661-3

    Article  Google Scholar 

  120. Liu X, Ye G, De Schutter G, Yuan Y, Taerwe L (2008) On the mechanism of polypropylene fibres in preventing fire spalling in self-compacting and high-performance cement paste. Cem Concr Res 38(4):487–499. https://doi.org/10.1016/j.cemconres.2007.11.010

    Article  CAS  Google Scholar 

  121. P. Lura and G. Pietro Terrasi, “Reduction of fire spalling in high-performance concrete by means of superabsorbent polymers and polypropylene fibers: Small scale fire tests of carbon fiber reinforced plastic-prestressed self-compacting concrete,” Cem. Concr. Compos., vol. 49, pp. 36–42, 2014, https://doi.org/10.1016/j.cemconcomp.2014.02.001.

  122. Aslani F, Liu Y, Wang Y (2019) The effect of NiTi shape memory alloy, polypropylene and steel fibres on the fresh and mechanical properties of self-compacting concrete. Constr Build Mater 215:644–659. https://doi.org/10.1016/j.conbuildmat.2019.04.207

    Article  CAS  Google Scholar 

  123. Al-Hadithi AI, Abbas MA (2019) Innovative technique of using carbon fibre reinforced polymer strips for shear reinforcement of reinforced concrete beams with waste plastic fibres. Eur J Environ Civ Eng 1:22. https://doi.org/10.1080/19648189.2018.1532820

    Article  Google Scholar 

  124. Mohammed AA (2017) Flexural behavior and analysis of reinforced concrete beams made of recycled PET waste concrete. Constr Build Mater 155:593–604. https://doi.org/10.1016/j.conbuildmat.2017.08.096

    Article  CAS  Google Scholar 

  125. Saikia N, De Brito J (2014) Mechanical properties and abrasion behaviour of concrete containing shredded PET bottle waste as a partial substitution of natural aggregate. Constr Build Mater 52:236–244. https://doi.org/10.1016/j.conbuildmat.2013.11.049

    Article  Google Scholar 

  126. Albano C, Camacho N, Hernández M, Matheus A, Gutiérrez A (2009) Influence of content and particle size of waste pet bottles on concrete behavior at different w/c ratios. Waste Manag 29(10):2707–2716. https://doi.org/10.1016/j.wasman.2009.05.007

    Article  CAS  Google Scholar 

  127. Akçaözoǧlu S, Atiş CD, Akçaözoǧlu K (2010) An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete. Waste Manag 30(2):285–290. https://doi.org/10.1016/j.wasman.2009.09.033

    Article  CAS  Google Scholar 

  128. Haghighatnejad N, Mousavi SY, Khaleghi SJ, Tabarsa A, Yousefi S (2016) Properties of recycled PVC aggregate concrete under different curing conditions. Constr Build Mater 126:943–950. https://doi.org/10.1016/j.conbuildmat.2016.09.047

    Article  CAS  Google Scholar 

  129. A. A. Mohammed, Mechanical strength of concrete with PVC aggregates. Elsevier Ltd, 2019

  130. H. Zhang and M. N. S. Hadi, “Geogrid-confined pervious geopolymer concrete piles with FRP-PVC-confined concrete core: Analytical models,” Structures, vol. 23, no. November 2019, pp. 731–738, 2020, https://doi.org/10.1016/j.istruc.2019.11.005.

  131. Havez AA, Wahab N, Al-Mayah A, Soudki KA (2016) Behaviour of PVC encased reinforced concrete walls under eccentric axial loading. Structures 5:67–75. https://doi.org/10.1016/j.istruc.2015.09.003

    Article  Google Scholar 

  132. F. Yu et al., “Strain analysis of PVC-CFRP confined concrete column with ring beam joint under axial compression,” Compos. Struct., vol. 224, no. April, p. 111012, 2019, https://doi.org/10.1016/j.compstruct.2019.111012.

  133. Mohammed AA, Mohammed II, Mohammed SA (2019) Some properties of concrete with plastic aggregate derived from shredded PVC sheets. Constr Build Mater 201:232–245. https://doi.org/10.1016/j.conbuildmat.2018.12.145

    Article  CAS  Google Scholar 

  134. Kou SC, Lee G, Poon CS, Lai WL (2009) Properties of lightweight aggregate concrete prepared with PVC granules derived from scraped PVC pipes. Waste Manag 29(2):621–628. https://doi.org/10.1016/j.wasman.2008.06.014

    Article  CAS  Google Scholar 

  135. L. C. Bank, Composites for Construction: Structural Design with FRP Materials. 2007

  136. Xie J, Fang C, Lu Z, Li Z, Li L (2018) Effects of the addition of silica fume and rubber particles on the compressive behaviour of recycled aggregate concrete with steel fibres. J Clean Prod 197:656–667. https://doi.org/10.1016/j.jclepro.2018.06.237

    Article  CAS  Google Scholar 

  137. Gregori A, Castoro C, Marano GC, Greco R (2019) Strength reduction factor of concrete with recycled rubber aggregates from tires. J Mater Civ Eng 31(8):1–13. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002783

    Article  Google Scholar 

  138. Corredor-Bedoya AC, Zoppi RA, Serpa AL (2017) Composites of scrap tire rubber particles and adhesive mortar – Noise insulation potential. Cem Concr Compos 82:45–66. https://doi.org/10.1016/j.cemconcomp.2017.05.007

    Article  CAS  Google Scholar 

  139. J. Diani and K. Gall, “Finite Strain 3D Thermoviscoelastic Constitutive Model,” Society, 2006, https://doi.org/10.1002/pen.

  140. Li D, Liu S (2020) Macro polypropylene fiber influences on crack geometry and water permeability of concrete. Constr Build Mater 231:117128. https://doi.org/10.1016/j.conbuildmat.2019.117128

    Article  CAS  Google Scholar 

  141. Mo J et al (2020) Mechanical properties and damping capacity of polypropylene fiber reinforced concrete modified by rubber powder. Constr Build Mater 242:118111. https://doi.org/10.1016/j.conbuildmat.2020.118111

    Article  CAS  Google Scholar 

  142. Xin CL, Wang ZZ, Zhou JM, Gao B (2019) Shaking table tests on seismic behavior of polypropylene fiber reinforced concrete tunnel lining. Tunn Undergr Sp Technol 88(February):1–15. https://doi.org/10.1016/j.tust.2019.02.019

    Article  Google Scholar 

  143. M. W. Barsoum, “Fundamentals of ceramics,” Fundam. Ceram., pp. 1–612, 2002, https://doi.org/10.1887/0750309024.

  144. De Brito J, Pereira AS, Correia JR (2005) Mechanical behaviour of non-structural concrete made with recycled ceramic aggregates. Cem Concr Compos 27(4):429–433. https://doi.org/10.1016/j.cemconcomp.2004.07.005

    Article  CAS  Google Scholar 

  145. González JS, Gayarre FL, Pérez CLC, Ros PS, López MAS (2017) Influence of recycled brick aggregates on properties of structural concrete for manufacturing precast prestressed beams. Constr Build Mater 149(2017):507–514. https://doi.org/10.1016/j.conbuildmat.2017.05.147

    Article  Google Scholar 

  146. Jankovic K, Nikolic D, Bojovic D (2012) Concrete paving blocks and flags made with crushed brick as aggregate. Constr Build Mater 28(1):659–663. https://doi.org/10.1016/j.conbuildmat.2011.10.036

    Article  Google Scholar 

  147. Mohammed TU, Das HK, Mahmood AH, Rahman MN, Awal MA (2017) Flexural performance of RC beams made with recycled brick aggregate. Constr Build Mater 134:67–74. https://doi.org/10.1016/j.conbuildmat.2016.12.135

    Article  Google Scholar 

  148. Mohammed TU, Hasnat A, Awal MA, Bosunia SZ (2015) Recycling of Brick Aggregate Concrete as Coarse Aggregate. J Mater Civ Eng 27(7):1–9. https://doi.org/10.1061/(asce)mt.1943-5533.0001043

    Article  CAS  Google Scholar 

  149. Keshavarz Z, Mostofinejad D (2019) Porcelain and red ceramic wastes used as replacements for coarse aggregate in concrete. Constr Build Mater 195:218–230. https://doi.org/10.1016/j.conbuildmat.2018.11.033

    Article  Google Scholar 

  150. Jasim MJ, Noh MZ, Zaidan SA, Wan Ibrahim MH, Takai ZI (2019) Effect of superplasticizer on thermal properties of concrete containing porcelain waste as sand replacement. J Adv Res Fluid Mech Therm Sci 63(1):82–91

    Google Scholar 

  151. M. Jamal, M. Z. Noh, S. A.- Juboor, M. H. Bin Wan, and Z. I. Takai, “Mechanical Properties of the Concrete Containing Porcelain Waste as Sand,” Int. J. Eng. Technol., vol. 7, no. 4.30, p. 180, 2018, https://doi.org/10.14419/ijet.v7i4.30.22107.

  152. Environmental protection agency, “EPA - Glass,” 2017

  153. Sangha CM, Alani AM, Walden PJ (2004) Relative strength of green glass cullet concrete. Mag Concr Res 56(5):293–297. https://doi.org/10.1680/macr.2004.56.5.293

    Article  CAS  Google Scholar 

  154. Park SB, Lee BC, Kim JH (2004) Studies on mechanical properties of concrete containing waste glass aggregate. Cem Concr Res 34(12):2181–2189. https://doi.org/10.1016/j.cemconres.2004.02.006

    Article  CAS  Google Scholar 

  155. Khmiri A, Chaabouni M, Samet B (2013) Chemical behaviour of ground waste glass when used as partial cement replacement in mortars. Constr Build Mater 44:74–80. https://doi.org/10.1016/j.conbuildmat.2013.02.040

    Article  Google Scholar 

  156. Du H, Tan KH (2017) Properties of high volume glass powder concrete. Cem Concr Compos 75:22–29. https://doi.org/10.1016/j.cemconcomp.2016.10.010

    Article  CAS  Google Scholar 

  157. C. B. Carter and M. G. Norton, Ceramic Materials, Science and Engineering. New York, NY: Springer New York, 2013

  158. P. K. Mallick, “Thermoplastics and thermoplastic-matrix composites for lightweight automotive structures,” Mater. Des. Manuf. Light. Veh., pp. 174–207, 2010, https://doi.org/10.1533/9781845697822.1.174.

  159. N. Bhatnagar and N. Asija, “Durability of high-performance ballistic composites,” in Lightweight Ballistic Composites, Elsevier, 2016, pp. 231–283

  160. MatWeb, “Tensile Property Testing of Plastics.”

  161. K. Balani, V. Verma, A. Agarwal, and R. Narayan, “Physical, Thermal, and Mechanical Properties of Polymers,” Biosurfaces, pp. 329–344, 2015, https://doi.org/10.1002/9781118950623.app1.

  162. I. S. Zope, Fire Retardancy Behavior of Polymer/Clay Nanocomposites. 2018

  163. E. S. Han and A. goleman, daniel; boyatzis, Richard; Mckee, Fire Properties of Polymer Composite Materials, vol. 53, no. 9. 2019

  164. P. Boch and J.-C. Nièpce, Ceramics Materials. Process, Properties and Applications. 2007

  165. K. U. Kainer, High Temperature Ceramic Matrix Composites, vol. 5, no. 12. 2002

  166. Bansal N (2005) Handbook of Ceramic Composites. Springer, US

    Book  Google Scholar 

  167. Cyr M, Lawrence P, Ringot E (2005) Mineral admixtures in mortars: Quantification of the physical effects of inert materials on short-term hydration. Cem Concr Res 35(4):719–730. https://doi.org/10.1016/j.cemconres.2004.05.030

    Article  CAS  Google Scholar 

  168. Bickmore BR, Nagy KL, Gray AK, Brinkerhoff AR (2006) The effect of Al(OH)4- on the dissolution rate of quartz. Geochim Cosmochim Acta 70(2):290–305. https://doi.org/10.1016/j.gca.2005.09.017

    Article  CAS  Google Scholar 

  169. J. Beaudoin and I. Odler, Hydration, Setting and Hardening of Portland Cement, 5th ed. Elsevier Ltd., 2019

  170. Choi YW, Moon DJ, Chung JS, Cho SK (2005) Effects of waste PET bottles aggregate on the properties of concrete. Cem Concr Res 35(4):776–781. https://doi.org/10.1016/j.cemconres.2004.05.014

    Article  CAS  Google Scholar 

  171. Zare Y (2013) Recent progress on preparation and properties of nanocomposites from recycled polymers: A review. Waste Manag 33(3):598–604. https://doi.org/10.1016/j.wasman.2012.07.031

    Article  CAS  Google Scholar 

  172. Islam MJ, Meherier MS, Islam AKMR (2016) Effects of waste PET as coarse aggregate on the fresh and harden properties of concrete. Constr Build Mater 125:946–951. https://doi.org/10.1016/j.conbuildmat.2016.08.128

    Article  CAS  Google Scholar 

  173. Soutsos M, Domone P (2008) Construction Materials. In: Soutsos M, Domone P (eds) Beyond Failure. American Society of Civil Engineers, Reston, VA, pp 301–332

    Google Scholar 

  174. Sukontasukkul P, Pomchiengpin W, Songpiriyakij S (2010) Post-crack (or post-peak) flexural response and toughness of fiber reinforced concrete after exposure to high temperature. Constr Build Mater 24(10):1967–1974. https://doi.org/10.1016/j.conbuildmat.2010.04.003

    Article  Google Scholar 

  175. Hama SM (2020) Behavior of concrete incorporating waste plastic as fine aggregate subjected to compression, impact load and bond resistance. Eur J Environ Civ Eng 1:15. https://doi.org/10.1080/19648189.2020.1798287

    Article  Google Scholar 

  176. Foti D (2011) Preliminary analysis of concrete reinforced with waste bottles PET fibers. Constr Build Mater 25(4):1906–1915. https://doi.org/10.1016/j.conbuildmat.2010.11.066

    Article  Google Scholar 

  177. Saxena R, Siddique S, Gupta T, Sharma RK, Chaudhary S (2018) Impact resistance and energy absorption capacity of concrete containing plastic waste. Constr Build Mater 176:415–421. https://doi.org/10.1016/j.conbuildmat.2018.05.019

    Article  CAS  Google Scholar 

  178. Mustafa MAT, Hanafi I, Mahmoud R, Tayeh BA (2019) Effect of partial replacement of sand by plastic waste on impact resistance of concrete: experiment and simulation. Structures 20(April):519–526. https://doi.org/10.1016/j.istruc.2019.06.008

    Article  Google Scholar 

  179. Boddy AM, Hooton RD, Thomas MDA (2003) The effect of the silica content of silica fume on its ability to control alkali-silica reaction. Cem Concr Res 33(8):1263–1268. https://doi.org/10.1016/S0008-8846(03)00058-9

    Article  CAS  Google Scholar 

  180. Peng P (2020) Effect of matching relation of multi-scale, randomly distributed pores on geometric distribution of induced cracks in hydraulic fracturing. Energy Explor Exploit 38(6):2436–2465. https://doi.org/10.1177/0144598720928150

    Article  CAS  Google Scholar 

  181. Zdravkov BD, Čermák JJ, Šefara M, Janků J (2007) Pore classification in the characterization of porous materials: A perspective. Cent Eur J Chem 5(2):385–395. https://doi.org/10.2478/s11532-007-0017-9

    Article  CAS  Google Scholar 

  182. Li J, Liu D, Yao Y, Cai Y, Guo X (2013) Physical characterization of the pore-fracture system in coals, Northeastern China. Energy Explor Exploit 31(2):267–285. https://doi.org/10.1260/0144-5987.31.2.267

    Article  CAS  Google Scholar 

  183. Ren Y et al (2013) A solid with a hierarchical tetramodal micro-meso-macro pore size distribution. Nat Commun 4(May):1–7. https://doi.org/10.1038/ncomms3015

    Article  CAS  Google Scholar 

  184. Ma W et al (2019) Performance of chemical chelating agent stabilization and cement solidification on heavy metals in MSWI fly ash: A comparative study. J Environ Manage 247(January):169–177. https://doi.org/10.1016/j.jenvman.2019.06.089

    Article  CAS  Google Scholar 

  185. Yaman IO, Aktan HM, Hearn N (2002) Active and non-active porosity in concrete. Part II: Evaluation of existing models. Mater Struct Constr 34(246):110–116. https://doi.org/10.1007/bf02482110

    Article  Google Scholar 

  186. D. Ballekere Kumarappa, S. Peethamparan, and M. Ngami, “Autogenous shrinkage of alkali activated slag mortars: Basic mechanisms and mitigation methods,” Cem. Concr. Res., vol. 109, no. July 2017, pp. 1–9, 2018, https://doi.org/10.1016/j.cemconres.2018.04.004.

  187. Rakngan W, Williamson T, Ferron RD, Sant G, Juenger MCG (2018) Controlling workability in alkali-activated Class C fly ash. Constr Build Mater 183:226–233. https://doi.org/10.1016/j.conbuildmat.2018.06.174

    Article  CAS  Google Scholar 

  188. Coppola L et al (2020) The combined use of admixtures for shrinkage reduction in one-part alkali activated slag-based mortars and pastes. Constr Build Mater 248:118682. https://doi.org/10.1016/j.conbuildmat.2020.118682

    Article  CAS  Google Scholar 

  189. Abdollahnejad Z, Mastali M, Woof B, Illikainen M (2020) High strength fiber reinforced one-part alkali activated slag/fly ash binders with ceramic aggregates: Microscopic analysis, mechanical properties, drying shrinkage, and freeze-thaw resistance. Constr Build Mater 241:118129. https://doi.org/10.1016/j.conbuildmat.2020.118129

    Article  CAS  Google Scholar 

  190. Van Den Heede P, De Belie N (2012) Environmental impact and life cycle assessment (LCA) of traditional and ‘green’ concretes: Literature review and theoretical calculations. Cem Concr Compos 34(4):431–442. https://doi.org/10.1016/j.cemconcomp.2012.01.004

    Article  CAS  Google Scholar 

  191. Chen C, Habert G, Bouzidi Y, Jullien A, Ventura A (2010) LCA allocation procedure used as an incitative method for waste recycling: An application to mineral additions in concrete. Resour Conserv Recycl 54(12):1231–1240. https://doi.org/10.1016/j.resconrec.2010.04.001

    Article  Google Scholar 

  192. D. K. Panesar, “Supplementary cementing materials,” in Developments in the Formulation and Reinforcement of Concrete, Elsevier, 2019, pp. 55–85

  193. Ersan YC, Gulcimen S, Imis TN, Saygin O, Uzal N (2020) Life cycle assessment of lightweight concrete containing recycled plastics and fly ash. Eur J Environ Civ Eng 1:14. https://doi.org/10.1080/19648189.2020.1767216

    Article  Google Scholar 

  194. Maia de Souza D et al (2016) Comparative life cycle assessment of ceramic brick, concrete brick and cast-in-place reinforced concrete exterior walls. J Clean Prod 137:70–82. https://doi.org/10.1016/j.jclepro.2016.07.069

    Article  Google Scholar 

  195. De Souza DM et al (2015) Comparative Life Cycle Assessment of ceramic versus concrete roof tiles in the Brazilian context. J Clean Prod 89:165–173. https://doi.org/10.1016/j.jclepro.2014.11.029

    Article  Google Scholar 

  196. M. U. Hossain, C. S. Poon, Y. H. Dong, and D. Xuan, “Evaluation of environmental impact distribution methods for supplementary cementitious materials,” Renew. Sustain. Energy Rev., vol. 82, no. September 2017, pp. 597–608, 2018, https://doi.org/10.1016/j.rser.2017.09.048.

  197. H. M. Analysis, “Production and Use of Coal Combustion Products in the U . S .,” no. may, pp. 1–74, 2015

  198. V. Kodur, M. Yahyai, A. Rezaeian, M. Eslami, and A. Poormohamadi, “Residual mechanical properties of high strength steel bolts subjected to heating-cooling cycle,” J. Constr. Steel Res., vol. 131, pp. 122–131, Apr. 2017, https://doi.org/10.1016/j.jcsr.2017.01.007.

  199. M. Eslami, A. Rezaeian, and V. Kodur, “Behavior of Steel Column-Trees under Fire Conditions,” J. Struct. Eng., vol. 144, no. 9, p. 04018135, Sep. 2018, https://doi.org/10.1061/(ASCE)ST.1943-541X.0002135.

  200. M. Eslami and H. Namba, “Elasto-plastic behavior of composite beam connected to RHS column, experimental test results,” Int. J. Steel Struct., vol. 16, no. 3, pp. 901–912, Sep. 2016, https://doi.org/10.1007/s13296-015-0067-3.

Download references

Funding

This research did not receive any specific grant or funding from agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrab Nodehi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The corresponding author declares consent for publication in the journal of Circular economy and sustainability.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nodehi, M., Taghvaee, V.M. Applying Circular Economy to Construction Industry through Use of Waste Materials: A Review of Supplementary Cementitious Materials, Plastics, and Ceramics. Circ.Econ.Sust. 2, 987–1020 (2022). https://doi.org/10.1007/s43615-022-00149-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43615-022-00149-x

Keywords

Navigation