Skip to main content
Log in

Quantitative assessment of morphometry and GIS integrated RUSLE model-based soil loss estimation from Pahuj river basin, central India

  • Research Paper
  • Published:
Proceedings of the Indian National Science Academy Aims and scope Submit manuscript

Abstract

In this study the morphometric indices of the Pahuj river basin (PRB) were evaluated by applying remote sensing and GIS. The Shuttle Radar Topographic Mission (SRTM) based 30 m digital elevation (DEM) data was used in order to extract morphometric parameters using standard methods. The PRB covering an area (3648 km2) and is controlled by homogenous lithology and geological structures. The drainage density indicates that the permeable soil with coarse texture is dominantly occurring in large low-lying flat areas of the basin. Contrary to this the high gradient consist of impermeable hard granitic rocks of Neoarchean to Precambrian age with a low quantity of permeable soil. The low value of elongation ratio and form factor reveal that PRB is elongated and show low peak flows.

To assess the soil erosion susceptibility, the morphometric attributes and a Revised Universal Soil Loss Equation (RUSLE) model integrated with the GIS was used in order to estimate soil loss from the basin. The results of rainfall erosivity (R-factor) along with rainfall pattern indicate that the upper Pahuj catchment relatively exhibits a high intensity of erosion and rainfall than the middle and lower region. The findings of of rainfall erosivity (R), soil erodibility (K), topographic (LS), and crop management (C) factors infer that the soil loss is quite low in the study area. The low value of the ruggedness number and Melton ruggedness (4.16) imply that the basin is moderately rugged and less prone to erosion, particularly in the high relief catchment area. The effective practices of water and soil conservation will enhance water storage capacity and prevent soil and sediment loss in the PRB. The research findings may be helpful to resolve the water crisis and can enhance the effective management of soil conservation in such a drought-prone area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data will be made available as per the request.

References

  • Ahmed, I.A., Talukdar, S., Baig, M.R.I., Ramana, G.V., Rahman, A.: Quantifying soil erosion and influential factors in Guwahati’s urban watershed using statistical analysis, machine and deep learning. Remote Sensing Applications: Society and Environment 33, 101088 (2024)

    Article  Google Scholar 

  • Ahmed, I.A., Talukdar, S., Islam, A.R.M.T., Rihan, M., Malafaia, G., Bera, S., Rahman, A.: Contribution and behavioral assessment of physical and anthropogenic factors for soil erosion using integrated deep learning and game theory. J. Clean. Prod. 416, 137689 (2023)

    Article  Google Scholar 

  • Barman, B.K., Rao, C.U.B., Rao, K.S., Patel, A., Kushwaha, K., Singh, S.K.: Geomorphic analysis, morphometric-based prioritization and tectonic implications in Chite Lui river, Northeast India. J. Geol. Soc. India 97, 385–395 (2021)

    Article  Google Scholar 

  • Basu, A.K.: Geology of parts of the Bundelkhand granite massif Central India. Rec. Geol. Survey India 117, 61–124 (1986)

    Google Scholar 

  • Bewket, W., Teferi, E.: Assessment of soil erosion hazard and prioritization for treatment at the watershed level: case study in the Chemoga Watershed, Blue Nile Basin, Ethiopia. Land Degrad. Dev. 20, 609–622 (2009)

    Article  Google Scholar 

  • Bhatt, S.C., Husain, A.: Structural history and fold analysis of basement rocks around Kuraicha and adjoining areas, Bundelkhand Massif Central India. Jour. Geol. Soc. India 72, 331–347 (2008)

    Google Scholar 

  • Bhatt, S.C., Hussain, A., Suresh, M., Balasooriya, N.W.B.: Geological structural control on Sukhnai basin and land use/land cover pattern in Mauranipur and adjoining areas, Bundelkhand Craton, Central India. Jour. Geol. Soc. of Sri Lanka 18(2), 53–61 (2017)

    Google Scholar 

  • Bhatt, S.C., Gupta, M.K.: Tectonic Significance of Shear indicator in the evolution of Dinara-Garhmau shear zone. In: Central India, M.T.M. (ed.) Bundelkhand Massif, pp. 122–132. Macmillan Publishers India Ltd, New Delhi, India (2009)

    Google Scholar 

  • Bhatt, S.C., Singh, R., Ansari, M.A., Bhatt, S.: Quantitative morphometric and morphometric analysis of Pahuj Catchment Basin, Central India. J. Geol. Soc. India 96(5), 513–520 (2020)

    Article  Google Scholar 

  • Bhatt, S.C., Patel, A., Pradhan, S.R., Singh, S.K., Singh, V.K., Tripathi, G.P., Kishor, K.: Morphometric and morphotectonic attributes of Ken basin, Central India: Depicting status of soil erosion, and Tectonic activities. Total Environment Advances 9, 1–14 (2024). https://doi.org/10.1016/j.teadva.2023.200088

    Article  Google Scholar 

  • Bhatt, S.C., Hussain, A.: Shear Indicators and Strain Pattern in Quartz Mylonites of Chituad-Deori Shear Zone Bundelkhand Massif Central India. Earth Sci. India 5(II), 60–78 (2012)

    Google Scholar 

  • Bhatt, S.C., Singh, V.K.: Tectonic Evolution of Babina-Prithvipur Crustal Shear Zones, Bundelkhand Craton, India: Implications of Shear Indicators. In: Geological and Geo-Environmental Processes on Earth, pp. 165–174. Springer, Singapore (2021)

    Chapter  Google Scholar 

  • Bhatt, S.C., Mishra, S., Singh, R., Bhatt, S.: Morphometric Analysis of Rohni Watershed, Upper Betwa Basin, Bundelkhand Region, Central India. In: Geological and Geo-Environmental Processes on Earth, pp. 277–291. Springer, Singapore (2021)

    Chapter  Google Scholar 

  • Bhatt, S.C., Singh, R., Singh, R., Saif, M., Singh, M.M.: A GIS-based Approach for Morphometric Analysis of Jamini Basin and Its Subwatersheds: Implication for Conservation of Soil and Water Resources. In: Geological and Geo-Environmental Processes on Earth, pp. 243–257. Springer, Singapore (2021)

    Chapter  Google Scholar 

  • Bhatt, S.C., Singh, R., Singh, R., Singh, V.K., Patel, A.: Morphometric and Morphotectonic Studies of Sindh Basin, Central India, Using Advance Techniques of Remote Sensing and GIS. In: Geological and Geo-Environmental Processes on Earth, pp. 259–275. Springer, Singapore (2021)

    Chapter  Google Scholar 

  • Bhatt, S.C., Singh, R., Taiyab, M., Bhatt, S.: Quantitative Morphometric Analysis of Watershed of Upper Pahuj Basin, Bundelkhand Region, Central India. In: Geological and Geo-Environmental Processes on Earth, pp. 293–304. Springer, Singapore (2021)

    Chapter  Google Scholar 

  • Bhatt, S.C.: Geological and Tectonic Aspects of Bundelkhand Craton, Central India, Angel Publication, Bhagwati publishers and Distributors C-8/77-B, Keshav Puram, New Delhi: 190 (2014).

  • Bhatt, S.C., Gupta, M.K.: Microstructural analysis and strain pattern in Mylonites and implications of shear sense indicators in evolution of Dinara-Garhmau shear zone, Bundelkhand Massif, Central India, the Indian mineralogist. J. Mineral. Soc. India 48(2), 186–206 (2014)

    Google Scholar 

  • Bhatt, S.C., Mahmood, K.: Deformation pattern and microstructural analysis of sheared gneissic complex and mylonitic metavolcanics of Babina-Prithvipursector Bundelkhand Massif, Central India. Indian J. Geosc. 66, 79–90 (2012)

    Google Scholar 

  • Bhatt, S.C.: Natural Resources, Water Harvesting and Drought in Central India, p. 130. Shree Publishers & Distributers, New Delhi, India (2020)

    Google Scholar 

  • Bhattacharya, R.K., Chatterjee, N.D., Das, K.: Estimation of Erosion susceptibility and sediment yield in the ephemeral channel using RUSLE and SDR model, tropical plateau Fringe Region, India. In: Shit, P.K., et al. (eds.) Gulley erosion studies from India and surrounding regions, pp. 163–185. Advances in Science, Technology & Innovation, London (2020)

    Chapter  Google Scholar 

  • Broscoe, A.J.: Quantitative analysis of longitudinal stream profiles of small watersheds, Project N. 389–042, Tech. Bep. 18, Geology Department, Columbian University, ONR, Geography Branch, New York (1959).

  • Clark, J.I.: Morphometry from maps. Essays in geomorphology. Elsevier Publ, Co, New york (1966)

    Google Scholar 

  • Dzwairo, R., Singh, S. K., & Patel, A. (2024). Soil erosion susceptibility assessment through morphometric analysis and morphotectonic implications in Rietspruit sub-basin, South Africa. Environment, Development and Sustainability, 1–22. https://doi.org/10.1007/s10668-024-04650-1

  • Dhyani, S.K., Palsaniya, D.R., Tewari, R.K., Chaturvedi, O.P.: Sustainable agroforestry production through contingency planning for aberrant weather in Bundelkhand region of Central India. Indian J. Agrofor. 12(2), 1–5 (2010)

    Google Scholar 

  • Duarte, A.C., Ferreira, C., Vitali, G.: Use of simulation models to aid soil and water conservation actions for sustainable agro-forested systems. In: Natural resources conservation and advances for sustainability, pp. 389–412. Elsevier (2022)

    Chapter  Google Scholar 

  • Efthimiou, N., Lykoudi, E., Karavitis, C.: Soil erosion assessment using the RUSLE model and GIS. European Water, 47(15–30), (2014).

  • Fyles, H., Madramootoo, C.: Key drivers of food insecurity. In: Emerging technologies for promoting food security, pp. 1–19. Woodhead Publishing (2016)

    Google Scholar 

  • Ganasri, B.P., Ramesh, H.: Assessment of soil erosion by RUSLE model using remote sensing and GIS - a case study of Nethravathi Basin. Geosci. Front. 7, 953–961 (2016)

    Article  Google Scholar 

  • Gaurav Singh, V., Singh, S. K.: Analysis of geo-morphometric and topo-hydrological indices using COP-DEM: a case study of Betwa River Basin, Central India. Geology, Ecology, and Landscapes, 1–28 (2022).

  • Ghosal, K., Bhattacharya, S.D.: A Review of RUSLE Model. Journal of the Indian Society of Remote Sensing 48(4), 689–707 (2020)

    Article  Google Scholar 

  • Gitas, I.Z., Douros, K., Minakou, C., Silleos, G.N., Karydas, C.G.: Multi-temporal soil erosion risk assessment in N. Chalkidiki using a modified USLE raster model. Earsel Eproceedings 8(1), 40–52 (2009)

    Google Scholar 

  • Haan, C.T., Barfield, B.J., Hayes, J.C.: Design Hydrology and Sedimentology for Small Catchments. Elsevier. Academic Press, United State of Aemerica (1994)

    Google Scholar 

  • Hack, J.T.: Studies on longitudinal stream profiles in Virginia and Maryland, US Geological Survey Professional paper 294-B, Horton, R. E: (1932) (1957).

  • Hadley, R., Schumm, S.: Sediment sources and drainage basin characteristics in upper Cheyenne River basin, USGS water supply paper, 1531- B, W, 198.Washington DC (1961).

  • Halder, J.C.: The integration of RUSLE-SDR lumped model with remote sensing and GIS for soil loss and sediment yield estimation. Adv. Space Res. 71(11), 4636–4658 (2023)

    Article  Google Scholar 

  • Horton, R.E.: Drainage basin characteristics. Eos. Trans. AGU 13, 350–361 (1932)

    Article  Google Scholar 

  • Horton, R.E.: Erosional development of streams and their drainage basins: a hydrophysical approach to quantitative morphology. Geol. Soc. America. Bull. 56(3), 275–370 (1945)

    Article  Google Scholar 

  • Huang, B., Yuan, Z., Zheng, M., Liao, Y., Nguyen, K.L., Nguyen, T.H., Li, D.: Soil and water conservation techniques in tropical and subtropical Asia: a review. Sustainability 14(9), 5035 (2022)

    Article  Google Scholar 

  • Hurni, H.: Soil Conservation Manual for Ethiopia, First Draft, Ministry of Agriculture, Natural Resources Conservation and Development Department, Community Forests, and Soil Conservation Development Department. Addis Ababa, Ethiopia (1985)

    Google Scholar 

  • Jodhani, K.H., Patel, D.P., Madhavan, N., Singh, S.K.: Soil erosion assessment by rusle, google earth engine, and geospatial techniques over rel river watershed, Gujarat, India. Water Conserv. Sci. Eng. 8(49), 2023 (2023). https://doi.org/10.1007/s41101-023-00223-x

    Article  Google Scholar 

  • Joshi, K.B., Bhattacharjee, J., Rai, G., Halla, J., Ahmad, T., Kurhila, M.I., Heilimo, E., Choudhary, A.K.: The diversificationof granitoids and plate tectonic implications at the Archaean-Proterozoic boundary in the Bundelkhand craton, Central India. In: Halla, J., Whitehouse, M.J., Ahmad, T., Bagai, Z. (eds.) Crust-Mantle Interactions and Granitoid Diversification: Insights from Archaean Cratons, pp. 123–157. Geological Society of London, Special Publications (2017)

    Google Scholar 

  • Karunaratne, A.S., Wimalasiri, E.M., Piyathilake, U., Gunatilake, S.K., Muttil, N., Rathnayake, U.: Modelling potential soil erosion and sediment delivery risk in plantations of Sri Lanka. Soil Systems 6(4), 97 (2022)

    Article  Google Scholar 

  • Kaur, M., Singh, S., Verma, V.K., Pateriy, B.: Quantitative geomorphological analysis and land use/land cover change detection of two subwatershed in northeast region of Punjab, The International archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, V: XI-8 (2014).

  • Kebede, Y.S., Endalamaw, N.T., Sinshaw, B.G., Atinkut, H.B.: Modeling soil erosion using RUSLE and GIS at watershed level in the upper Beles, Ethiopia. Environ. Chall. 2, 100009 (2021)

    Article  Google Scholar 

  • Kothyari, U.C.: Erosion and sediment problems in India. In: Proc. of the Exeter Symposium on Erosion and Sediment Yield: Global and Regional Perspectives July 1996 (1996).

  • Kulimushi, L.C., Maniragaba, A., Choudhari, P., Elbeltagi, A., Uwemeye, J., Rushema, E., Singh, S.K.: Evaluation of soil erosion and sediment yield spatio-temporal pattern during 1990–2019. Geomat. Nat. Haz. Risk 12(1), 2676–2707 (2021)

    Article  Google Scholar 

  • Kumar, D., Ranjan, R., Meena, M. P., Yadav, R.S., Gupta, G., Jinger, D., Yadav, D., Pramanik, M.: Exploring Conservation Agricultural Practices in Bundelkhand Region, Central India, In book: Conservation Agriculture: A Sustainable Approach for Soil Health and Food Security (2021).

  • Kumar Pradhan, R., Srivastava, P.K., Maurya, S., Kumar Singh, S., Patel, D.P.: Integrated framework for soil and water conservation in Kosi river basin. Geocarto Int. 35(4), 391–410 (2020)

    Article  Google Scholar 

  • Kumar, B., Venkatesh, M., Tripati, A., Anshumali: A GIS-based approach in drainage morphometric analysis of Rihand River Basin. Water Resource Management, Central India Sust (2017). https://doi.org/10.1007/s40899-017-0118-3

    Book  Google Scholar 

  • Kumar, N., Singh, S.K.: Soil erosion assessment using earth observation data in a trans-boundary river basin. Nat. Hazards 107, 1–34 (2021)

    Article  Google Scholar 

  • Lal, R.: Soil Erosion in the Tropics: Principles and Management. McGraw Hill, New York, NY 10020, USA (1990)

    Google Scholar 

  • Maliqi, E., Singh, S.K.: Quantitative estimation of soil erosion using open-access earth observation data sets and erosion potential model. Water Conserv. Sci. Eng. 4, 187–200 (2019)

    Article  Google Scholar 

  • McCool, D., Brown, L., Foster, G., Mutchler, C., Meyer, L.: Revised Slope Steepness Factor for the Universal Soil Loss Equation. Transactions of the ASAE-American Society of Agricultural Engineers, USA (1987)

    Google Scholar 

  • Melton, M.A.: An analysis of the relations among elements of climate, surface properties, and geomorphology, vol. 11. Department of Geology, Columbia University, New York (1957)

    Google Scholar 

  • Memon, N., Patel, D.P., Bhatt, N., Patel, S.: Integrated framework for Flood Relief Package (FRP) allocation in Semi-arid region-a case of Rel river flood, Gujarat, India. Nat. Hazard. 100, 279–311 (2019). https://doi.org/10.1007/s11069-019-03812-z

    Article  Google Scholar 

  • Memon, N., Patel, D.P., Bhatt, N., Patel, S.B.: Integrated framework for flood relief package (FRP) allocation in semiarid region: a case of Rel river flood, Gujarat, India. Nat. Hazards 100, 279–311 (2020)

    Article  Google Scholar 

  • Mengistu, D., Bewket, W., Lal, R.: Soil erosion hazard under the current and potential climate change induced loss of soil organic matter in the Upper Blue Nile (Abay) River Basin, Ethiopia. In: Sustainable intensification to advance food security and enhance climate resilience in Africa, pp. 137–163. Springer (2015)

    Chapter  Google Scholar 

  • Meshesha, D., Tsunekawa, A., Tsubo, M.: Analysis of the dynamics and hotspots of soil erosion and its management scenarios: the case of the Central Rift Valley of Ethiopia. Int. J. Sediment Res. 27, 84–99 (2012)

    Article  Google Scholar 

  • Miller, V.C.: A Quantitative Geomorphic Study of Drainage Basin Characteristics on the Clinch Mountain Area, Virginia, and Tennessee, Proj., NR 389–402, Tech Rep Columbia University, Department of Geology, ONR, New York (1953).

  • Moore, I.D., Burch, G.J.: Physical basis of the length-slope factor in the universal soil loss equation. Soil Sci. Soc. Am. J. 50(5), 1294–1298 (1986)

    Article  Google Scholar 

  • Obi Reddy, G.E., Magi, A.K., Gajbhiye, K.S.: GIS for morphometric analysis of drainage basins. GIS India 4, 9–14 (2002)

    Google Scholar 

  • Pandey, H.K., Singh, V.K., Singh, R.P., Singh, S.K.: Soil loss Estimation using RUSLE in hard rock terrain: a case study of Bundelkhand, India. Water Conserv. Sci. Eng. 8(1), 55 (2023). https://doi.org/10.1007/s41101-023-00229-5

    Article  Google Scholar 

  • Pareta, K., Pareta, U.: Quantitative morphometric analysis of watershed of Yamuna basin, India using ASTER (DEM) data and GIS. Indian J. Geomat. Geosci. 2, 248–269 (2011)

    Google Scholar 

  • Pareta, K., Pareta, U.: Quantitative geomorphological analysis of watershed of Ravi river basin, HP, India. Int. J. Remote Sensing GIS 1, 47–62 (2012)

    Google Scholar 

  • Patel, A., Singh, M.M., Singh, S.K., Kushwaha, K., Singh, R.: AHP and TOPSIS based sub-watershed prioritization and tectonic analysis of Ami River Basin, Uttar Pradesh. J. Geol. Soc. India 98(3), 423–430 (2022)

    Article  Google Scholar 

  • Pati, J.K.: Evolution of Bundelkhand Craton. Episodes 43(1), 69–87 (2020)

    Article  Google Scholar 

  • Pati, J.K., Lal, J., Prakash, K., Bhusan, R.: Spatio-temporal shift of western bank of the Ganga river, Allahabad city and its implications. J. Indian Soc. Rem. Sens. 36, 289–297 (2008)

    Article  Google Scholar 

  • Pati, J.K., Raju, S., Mamgain, V.D., Shankar, R.: Record of gold mineralization in parts of Bundelkhand granitoid complex (BGC). J. Geol. Soc. India 50, 601–606 (1997)

    CAS  Google Scholar 

  • Pimental, D., Burgess, M., Pimental, D., Burgess, M.: Soil erosion threatens flood production. Agriculture 3(3), 443–463 (2013). https://doi.org/10.3390/agriculture3030443

    Article  Google Scholar 

  • Pradhan, R.K., Srivastava, P.K., Maurya, S., Singh, S.K., Patel, D.P.: Integrated framework for soil and water conservation in Kosi river basin. Geocarto Int. 35(4), 391–410 (2018). https://doi.org/10.1080/10106049.2018.1520921

    Article  Google Scholar 

  • Prakash, K., Rawat, D., Singh, S., Chaubey, K., Kanhaiya, S., Mohanty, T.: Morphometric analysis using SRTM and GIS in synergy with depiction: a case study of Karmanasa river basin, North Central India. App. Water Sci. 9(13), 1–10 (2019)

    CAS  Google Scholar 

  • Rathore, V.K.S., Verma, P.K., Singh, A.K., Patel, A., Singh, M.M., Bhatt, S.C., Singh, S.K.: Channel dynamics of a middle reach of Rapti river, eastern Indo-Gangetic plain, India. J. Geol. Soc. India 99(7), 995–1005 (2023)

    Article  Google Scholar 

  • Rawat, K.S., Singh, S.K.: Appraisal of soil conservation capacity using NDVI model-based C factor of RUSLE model for a semi arid ungauged watershed: a case study. Water Conserv. Sci. Eng. 3, 47–58 (2018)

    Article  Google Scholar 

  • Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K., Yoder, D.C.: Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). USDA Agriculture Research Service Handbook 703, USA (1997).

  • Ritter, D.F.: Process geomorphology, 2nd edn., p. 579. Wm. C. Brown Publishers, Dubuque (1986)

    Google Scholar 

  • Sathiyamurthi, S., Ramya, M., Saravanan, S., Subramani, T.: Estimation of soil erosion for a semi-urban watershed in Tamil Nadu, India using RUSLE and geospatial techniques. Urban Clim. 48, 101424 (2023)

    Article  Google Scholar 

  • Schumm, S.A.: Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geol. Soc. Am. Bull. 67, 597–646 (1956)

    Article  Google Scholar 

  • Schumm, S.A.: The relation of drainage basin relief to sediment loss. International Association of Scientific Hydrology 36, 216–219 (1954)

    Google Scholar 

  • Shandilya, A.K., Singh, V.K., Bhatt, S.C., Dubey, C.S.: Geological and Geo-Environmental Processes on Earth, p. 324. Springer Natural Hazards (2021). https://doi.org/10.1007/978-981-16-4122-0_1

    Book  Google Scholar 

  • Shukla, U.K., Srivastava, P., Singh, I.B.: Migration of Ganga River and development of cliffs in Varanasi region during late Quaternary: role of active tectonics. Geomorphology 171–172, 101–113 (2012)

    Article  Google Scholar 

  • Singh, V.K., Slabunov, A.: The central Bundelkhand archaean greenstone complex, Bundelkhand craton, central India: geology, composition, and geochronology of supracrustal rocks. Int. Geol. Rev. 57(11–12), 1349–1364 (2015)

    Article  Google Scholar 

  • Singh, V.K., Slabunov, A.I., Nesterova, N.S., Singh, M.M., Bhatt, S.C.: Tectonostratigraphic terranes of the Bundelkhand Craton (Indian shield). In: Geological and Geo-environmental processes on earth, pp. 155–164. Springer, Singapore (2021)

    Chapter  Google Scholar 

  • Somasiri, I.S., Hewawasam, T., Rambukkange, M.P.: Adaptation of the revised universal soil loss equation to map spatial distribution of soil erosion in tropical watersheds: a GIS/RS-based study of the upper Mahaweli river Catchment of Sri Lanka. Model. Earth Syst. Environ. 8(2), 2627–2645 (2022)

    Article  Google Scholar 

  • Soni, S.: Assessment of morphometric characteristics of Chakrar watershed in Madhya Pradesh India using geospatial technique. Appl Water Sci 7, 2089–2102 (2017)

    Article  Google Scholar 

  • Sreedevi, P.D., Subrahmanyam, K., Ahmad, S.: The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain. Environ. Geol. 47, 412–420 (2004)

    Article  Google Scholar 

  • Strahler, A.N.: Hypsometric analysis of erosional topography. Geol. Soc. Am. Bull. 63, 1117–1142 (1952)

    Article  Google Scholar 

  • Strahler, A.N.: Quantitative slope analysis. Geol. Soc. Am. Bull. 67, 571–596 (1956)

    Article  Google Scholar 

  • Strahler, A.N.: Quantitative Geomorphology of Drainage Basin and Channel Network. In: Chow, V. (ed.) Handbook of applied hydrology, pp. 439–476. McGraw Hill, New York (1964)

    Google Scholar 

  • Strahler, A.N.: Dimensional analysis applied to fluvially eroded landforms. Geol. Soc. Am. Bull. 69(3), 279–300 (1958)

    Article  Google Scholar 

  • Strahler, A.N.: Quantitative Geomorphology of Drainage Basins and Channel Networks. In: Chow, V.T. (ed.) Handbook of applied hydrology, pp. 439–476. McGraw Hill, New York (1954)

    Google Scholar 

  • Van Remortel, R.D., Hamilton, M.E., Hickey, R.J.: Estimating the LS factor for RUSLE through iterative slope length processing of digital elevation data within Arclnfo grid. Cartography 30(1), 27–35 (2001)

    Article  Google Scholar 

  • Wentworth, C.K.: A simplified method of determining the average slope of land surface. Am. J. Sci. 21, 184–194 (1930)

    Article  Google Scholar 

  • Wischmeier, W.H.: Predicting rainfall erosion losses from cropland east of the Rocky Mountain. Agriculture Handbook 282, 47 (1965)

    Google Scholar 

  • Wischmeier, W.H., Smith, D.D.: Predicting Rainfall Erosion Losses: A Guide to Conservation Planning, 537, pp. 1–58. USDA Agriculture Research Service Handbook, USA (1978)

    Google Scholar 

  • Yadav, S.K., Singh, S.K., Gupta, M., Srivastava, P.K.: Morphometric analysis of upper tons basin from northern Foreland of Peninsular India using CARTOSAT satellite and GIS. Geocarto Int. 29(8), 895–914 (2014)

    Article  Google Scholar 

Download references

Funding

No external funding was received for this work.

Author information

Authors and Affiliations

Authors

Contributions

SCB: Suresh Chandra Bhatt; NKR: Narendra Kumar Rana; SKS (1): Sudhir Kumar Singh; SKS (2): Suraj Kumar Sahu; RS: Rubal Singh; AP: Adesh Patel. “Conceptualization, SCB, NKR, AP, RS and S.K.S(1); methodology, RS, AP., SCB, SKS(1); software, AP., RS, SKS(1), S.K.S(2); validation SCB, NKR, formal analysis, SCB, NKR, SKS(1), and AP.; investigation, AP., SCB, MMS, SKS(1), and SKS(2); resources, SCB, AP., RS, SKS(2); data curation, AP., SKS(1), SKS(2) and RS; writing—original draft preparation, SCB, AP.,SKS(1), SKS(2); writing—review and editing, SCB, AP., NKR, SKS(1), SKS(2); visualization, AP., SCB, SKS(1), SKS(2); supervision, SCB, NKR and S.K.S.(1); project administration, SCB, NKR and S.K.S.(1).

Corresponding author

Correspondence to Adesh Patel.

Ethics declarations

Conflicts of interest

The authors declared that there is no conflict of interest.

Informed consent

All the authors agreed to submit the manuscript. All authors have read and agreed to the submitted version of the manuscript.

Ethical responsibilities of authors

The manuscript is not submitted to more than one journal for simultaneous consideration.

Additional information

This manuscript has not been initially published. All the authors are agreeing with the content of manuscript and there is no conflict of interest. Author Sudhir Kumar Singh, express his gratitude to the Coordinator of K. Banerjee Centre of Atmospheric and Ocean Studies, IIDS, Nehru Science Centre, University of Allahabad, Prayagaraj and DST-FIST for providing the necessary support to carry out this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatt, S.C., Rana, N.K., Patel, A. et al. Quantitative assessment of morphometry and GIS integrated RUSLE model-based soil loss estimation from Pahuj river basin, central India. Proc.Indian Natl. Sci. Acad. (2024). https://doi.org/10.1007/s43538-024-00293-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43538-024-00293-y

Keywords

Navigation