Abstract
Nano-biofertilizers are the biologically synthesized nano-fertilizers from the microbes and plants employed in the agricultural fields to promote crop production and protection. For instance, specifically, the plant growth-promoting microbes (PGPM) having significant growth promotion and antagonistic traits, have led to their wide range of applications as nano-biofertilizers. In the agricultural scenario, the soil, crops, microbiome and nano-biofertilizers often influence one another and their ecological systems. The application of these PGPM nano-biofertilizers often promised enhanced soil quality and crop protection during both abiotic and biotic stress conditions through their bioactive compounds. This made the PGPM nano-biofertilizers as key players of yield enhancers and an advantage to the ever-increasing global food demand. However, day by day, nanotechnology being more beneficial and economical, many researchers and agriculturalists are shifting towards their wide range of applications in modern agricultural practices. This challenges the nanoparticles (NPs) dosage, toxicity, and their environmental footprint in the agricultural soils over a long time. This chapter highlights the key features of the PGPM nano-biofertlizers, their type and time of application, their dynamics on plant soil health, and the necessity for better and safer marketing applications of these NPs in the agricultural fields.
This is a preview of subscription content, access via your institution.


References
Abdel Latef, A.A.H., Ashish, K.S., Mahmmoud, S.A.E., Mojtaba, K., Lam-Son, P.T.: Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degrad. Dev. 29, 1065–1073 (2018). https://doi.org/10.1002/ldr.2780
Abd-Elnaby, H.M., Abo-Elala, G.M., Abdel-Raouf, U.M., Hamed, M.M.: Antibacterial and anticancer activity of extracellular synthesized silver nanoparticles from marine Streptomyces rochei MHM13. Egypt. J. Aquat. Res. 42, 301–312 (2016). https://doi.org/10.1016/j.ejar.2016.05.004
Abioye, O.F., Uttam, K.S.: Nanoparticles in biosolids: effect on soil health and crop growth. Ann. Environ. Sci. Toxicol. 2, 59–67 (2018). https://doi.org/10.17352/aest.000013
Adu, M.O., Asare, P.A., Yawson, D.O., Nyarko, M.A., Osei-Agyeman, K.: Agronomic biofortification of selected underutilised solanaceae vegetables for improved dietary intake of potassium (K) in Ghana. Heliyon 4, 750 (2018). https://doi.org/10.1016/j.heliyon.2018.e00750
Akhtar, M.S., Panwar, J., Yun, Y.S.: Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain. Chem. Eng. 1, 591–602 (2013). https://doi.org/10.1021/sc300118u
Alekhya, G., Gopalakrishnan, S.: Biological control and plant growth-promotion traits of Streptomyces species under greenhouse and field conditions in chickpea. Agric. Res. 6, 410–420 (2017). https://doi.org/10.1007/s40003-017-0278-2
Ameri, A., Shakibaie, M., Ameri, A., Faramarzi, M.A., Amir-Heidari, B., Forootanfar, H.: Photocatalytic decolorization of bromothymol blue using biogenic selenium nanoparticles synthesized by terrestrial actinomycete Streptomyces griseobrunneus strain FSHH12. Desalin. Water Treat. 57, 21552–21563 (2016). https://doi.org/10.1080/19443994.2015.1124349
Anil, S.A., Singh, S.Y.: Soil health and its improvement through novel agronomic and innovative approaches. Front. Agron. 3, 680456 (2021). https://doi.org/10.3389/fagro.2021.680456
Ankati, S., Srinivas, V., Pratyusha, S., Gopalakrishnan, S.: Streptomyces consortia-mediated plant defense against Fusarium wilt and plant growth-promotion in chickpea. Microb. Pathog. 157, 1–8 (2021). https://doi.org/10.1016/j.micpath.2021.104961
Anusha, B., Gopalakrishnan, S., Naik, M.K., Sharma, M.: Evaluation of Streptomyces spp. and Bacillus spp. for biocontrol of Fusarium wilt in chickpea (Cicer arietinum L.). Arch. Phytopathol. Plant Prot. 52, 1–26 (2019). https://doi.org/10.1080/03235408.2019.1635302
Balagurunathan, R., Radhakrishnan, M., Rajendran, R.B., Velmurugan, D.: Biosynthesis of gold nanoparticles by actinomycete Streptomyces viridogens strain HM10. Indian J. Biochem. Biophys. 48, 331–335 (2011)
Bayat, H., Kolahchi, Z., Valaey, S., Rastgou, M., Mahdavi, S.: Novel impacts of nanoparticles on soil properties: tensile strength of aggregates and compression characteristics of soil. Arch. Agro Soil Sci. 64, 776–789 (2018). https://doi.org/10.1080/03650340.2017.1393527
Beddow, J., Stolpe, B., Cole, P., Lead, J.R., Sapp, M., Lyons, B.P., Colbeck, I., Whitby, C.: Effects of engineered silver nanoparticles on the growth and activity of ecologically important microbes. Environ. Microbiol. Rep. 6, 448–458 (2014). https://doi.org/10.1111/1758-2229.12147
Ben-Moshe, T., Frenk, S., Dror, I., Minz, D., Berkowitz, B.: Effects of metal oxide nanoparticles on soil properties. Chemosphere 90, 640–646 (2013). https://doi.org/10.1016/j.chemosphere.2012.09.018
Bhardwaj, D., Ansari, M., Sahoo, R., Tuteja, N.: Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb. Cell Fact. 13, 66 (2014). https://doi.org/10.1186/1475-2859-13-66
Bhattacharyya, A., Bhaumik, A., Rani, P.U., Mandal, S., Epidi, T.T.: Nano-particles—a recent approach to insect pest control. Afr. J. Biotechnol. 9, 3489–3493 (2010)
Bhatti, A.A., Haq, S., Bhat, R.A.: Actinomycetes benefaction role in soil and plant health. Microb. Pathog. 111, 458–467 (2017). https://doi.org/10.1016/j.micpath.2017.09.036
Bhawana, P., Fulekar, M.: Nanotechnology: remediation technologies to clean up the environmental pollutants. Res. J. Chem. Sci. 2, 90 (2012)
Bilski, J., Jacob, D., Soumaila, F., Kraft, C., Farnsworth, A.: Agronomic biofortification of cereal crop plants with Fe, Zn, and Se, by the utilization of coal fly ash as plant growth media. Adv. Biores. 3, 130–136 (2012)
Bondarenko, O., Juganson, K., Ivask, A., Kasemets, K., Mortimer, M., Kahru, A.: Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch. Toxicol. 87, 1181–1200 (2013). https://doi.org/10.1007/s00204-013-1079-4
Bouis, H.E., Hotz, C., McClafferty, B., Meenakshi, J.V., Pfeiffer, W.H.: Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr. Bull. (2011). https://doi.org/10.1177/15648265110321s105
Bucur, B., Munteanu, F.D., Marty, J.L., Vasilescu, A.: Advances in enzyme-based biosensors for pesticide detection. Biosensors 8, 128 (2018). https://doi.org/10.3390/bios8020027
Bulovic, V., Mandell, A., Perlman, A.: Molecular memory device. US 20050116256A1 (2004)
Buszewski, B., Railean-Plugaru, V., Pomastowski, P., Rafi, K., Szultka-Mlynska, M., Golinska, P., Wypij, M., Laskowski, D., Dahm, H.: Antimicrobial activity of biosilver nanoparticles produced by a novel Streptacidiphilus durhamensis strain. J. Microbiol. Immunol. 51, 45–54 (2016). https://doi.org/10.1016/j.jmii.2016.03.002
Buzea, C., Pacheco, I.: Nanomaterial and nanoparticle: origin and activity. In: Ghorbanpour, M., Manika, K., Varma, A. (eds.) Nanoscience and Plant-Soil Systems. Soil Biology, vol. 48. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-46835-8_3
Chai, H., Yao, J., Sun, J., Zhang, C., Liu, W., Zhu, M., Ceccanti, B.: The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil. Bull. Environ. Contam. Toxicol. 94, 490–495 (2015). https://doi.org/10.1007/s00128-015-1485-9
Chanratana, M., Joe, M.M., Roy, C.A., et al.: Physiological response of tomato plant to chitosan-immobilized aggregated Methylobacterium oryzae CBMB20 inoculation under salinity stress. 3 Biotech 9, 397 (2019). https://doi.org/10.1007/s13205-019-1923-1
Colman, B.P., Arnaout, C.L., Anciaux, S., Gunsch, C.K., Hochella, M.F., Jr., Kim, B., Lowry, G.V., McGill, B.M., Reinsch, B.C., Richardson, C.J., Unrine, J.M.: Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario. PLoS ONE 8, 57189 (2013). https://doi.org/10.1371/journal.pone.0057189
Damalas, C.A., Koutroubas, S.D.: Current status and recent developments in biopesticide use. Agriculture 8(1), 13 (2018). https://doi.org/10.3390/agriculture8010013
Das, K.R., Kerkar, S.: Biosynthesis of iron nanoparticles by sulphate reducing bacteria and its application in remediating chromium from water. J. Pharm. Biol. Sci. 8, 538–546 (2017). https://doi.org/10.22376/IJPBS.2017.8.4.B538-546
De Deyn, G.B., Kooistra, L.: The role of soils in habitat creation, maintenance, and restoration. Philos. Trans. R. Soc. Lond. B Biol. Sci. 376, 20200170 (2021). https://doi.org/10.1098/rstb.2020.0170
Deepa, S., Kanimozhi, K., Panneerselvam, A.: Antimicrobial activity of extracellularly synthesized silver nanoparticles from marine derived actinomycetes. Int. J. Curr. Microbiol. Appl. Sci. 2, 223–230 (2013)
Ditta, A., Arshad, M.: Applications and perspectives of using nanomaterials for sustainable plant nutrition. Nanotechnol. Rev. 5, 209–229 (2016). https://doi.org/10.1515/ntrev-2015-0060
Do, E.S.P.A., Caixeta, O.H., Fernandes, F.L., Santaella, C.: Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials 11, 267 (2021). https://doi.org/10.3390/nano11020267
Elmer, W., White, J.C.: The future of nanotechnology in plant pathology. Annu. Rev. Phytopathol. 56, 111–133 (2018). https://doi.org/10.1146/annurev-phyto-080417-050108
FAO, IFAD, UNICEF, WFP and WHO: The State of Food Security and Nutrition in the World 2021. Transforming food systems for food security, improved nutrition and affordable healthy diets for all. FAO, Rome (2021)
Fang, J., Shan, X., Wen, B., Lin, J., Owens, G.: Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns. Environ. Pol. 157, 1101–1109 (2009). https://doi.org/10.1016/j.envpol.2008
Fatemi, M., Mollania, N., Momeni-Moghaddam, M., Sadeghifar, F.: Extracellular biosynthesis of magnetic iron oxide nanoparticles by Bacillus cereus strain HMH1: characterization and in vitro cytotoxicity analysis on MCF-7 and 3T3 cell lines. J. Biotechnol. 270, 1–11 (2018). https://doi.org/10.1016/j.jbiotec.2018.01.021
Gahoi, P., Omar, R.A., Verma, N., Gupta, G.S.: Rhizobacteria and acylated homoserine lactone-based nanobiofertilizer to improve growth and pathogen defense in Cicer arietinum and Triticum aestivum Plants. ACS Agric. Sci. Technol. 3, 240–252 (2021). https://doi.org/10.1021/acsagscitech.1c00039
Gan, L., Zhang, S., Zhang, Y., He, S., Tian, Y.: Biosynthesis, characterization and antimicrobial activity of silver nanoparticles by a halotolerant Bacillus endophyticus SCUL. Prep. Biochem. Biotechnol. 5, 1–7 (2018). https://doi.org/10.1080/10826068.2018.1476880
Ganesh Babu, M.M., Gunasekaran, P.: Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate. Colloids Surf. B Biointerfaces 74, 191–195 (2009). https://doi.org/10.1016/j.colsurfb.2009.07.016
Ge, Y., Schimel, J.P., Holden, P.A.: Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ. Sci. Technol. 45, 1659–1664 (2011). https://doi.org/10.1021/es103040t
Ge, Y., Schimel, J.P., Holden, P.A.: Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles. Appl. Environ. Microbiol. 78, 6749–6758 (2012). https://doi.org/10.1128/AEM.00941-12
Ghiuță, I., Cristea, D., Croitoru, C., Kost, J., Wenkert, R., Vyrides, I., Anayiotos, A., Munteanu, D.: Characterization and antimicrobial activity of silver nanoparticles, biosynthesized using Bacillus species. Appl. Surf. Sci. 438, 66–73 (2018)
Gogos, A., Moll, J., Klingenfuss, F., van der Heijden, M., Irin, F., Green, M.J., Zenobi, R., Bucheli, T.D.J.J.N.: Vertical transport and plant uptake of nanoparticles in va soil mesocosm experiment. J. Nanobiotechnol. 14, 40 (2016). https://doi.org/10.1186/s12951-016-0191-z
Gopalakrishnan, S., Sathya, A., Vijayabharathi, R., Srinivas, V.: Formulations of plant growth-promoting microbes for field applications. In: Singh, D.P., et al. (eds.) Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi (2016). https://doi.org/10.1007/978-81-322-2644-4_15
Gopalakrishnan, S., Vadlamudi, S.: Management of soil-borne diseases of grain legumes through broad-spectrum actinomycetes having plant growth-promoting and biocontrol traits. In: Varma, A., Tripathi, S. (eds.) Plant Microbe Interface. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19831-2_5
Gopalakrishnan, S., Thakur, V., Saxena, R., Vadlamudi, S., Purohit, S., Kumar, V., Rathore, A., Chitikineni, A., Varshney, R.: Complete genome sequence of sixteen plant growth promoting Streptomyces strains. Sci. Rep. 10, 10294 (2020a). https://doi.org/10.1038/s41598-020-67153-9
Gopalakrishnan, S., Sharma, R., Srinivas, V., Naresh, N., Mishra, S.P., Ankati, S., Pratyusha, S., Govindaraj, M., Gonzalez, S.V., Nervik, S., Simic, N.: Identification and characterization of a streptomyces albus strain and its secondary metabolite organophosphate against charcoal rot of sorghum. Plants 9(12), 1727 (2020b). https://doi.org/10.3390/plants9121727
Gouda, S., Kerry, R.G., Das, G., Paramithiotis, S., Shin, H.S., Patra, J.K.: Revitalization of plantgrowth promoting rhizobacteria for sustainable development in agriculture. Microbiol. Res. 206, 131–140 (2018). https://doi.org/10.1016/j.micres.2017.08.016
Graham, R.D.: Micronutrient deficiencies in crops and their global significance. In: Alloway, B.J. (ed.) Micronutrient Deficiencies in Global Crop Production, pp. 41–61. Springer, Amsterdam (2008). https://doi.org/10.1007/978-1-4020-6860-7_2
Grun, A.L., Straskraba, S., Schulz, S., Schloter, M., Emmerling, C.: Long-term effects of environmentally relevant concentrations of silver nanoparticles on microbial biomass, enzyme activity, and functional genes involved in the nitrogen cycle of loamy soil. J. Environ. Sci. (china) 69, 12–22 (2018). https://doi.org/10.1186/s12302-018-0160-2
Gui, Q., Lawson, T., Shan, S., Yan, L., Liu, Y.: The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics. Sensors 17, 1623 (2017). https://doi.org/10.3390/s17071623
Hao, Y., Ma, C., Zhang, Z., Song, Y., Cao, W., Guo, J., Zhou, G., Rui, Y., Liu, L., Xing, B.: Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem. Environ. Pollut. 232, 123–136 (2018). https://doi.org/10.1016/j.envpol.2017.09.024
Hassan, S.E.D., Salem, S.S., Fouda, A., Awad, M.A., El-Gamal, M.S., Abdo, A.M.: New approach for antimicrobial activity and bio-control of various pathogens by biosynthesized copper nanoparticles using endophytic actinomycetes. J. Radiat. Res. Appl. Sci. 11, 262–270 (2018)
Hessler, C.M., Wu, M.Y., Xue, Z., Choi, H., Seo, Y.: The influence of capsular extracellular polymeric substances on the interaction between TiO2 nanoparticles and planktonic bacteria. Water Res. 46, 4687–4696 (2012). https://doi.org/10.1016/j.watres.2012.06.009
Honary, S., Gharaei-Fathabad, E., Paji, Z.K., Eslamifar, M.: A novel biological synthesis of goldnanoparticle by Enterobacteriaceae family. Trop. J. Pharm. Res. 11(6), 887–891 (2012). https://doi.org/10.4314/tjpr.v11i6.3
Jiang, W., Mashayekhi, H., Xing, B.: Bacterial toxicity comparison between nano-and micro-scaled oxide particles. Environ. Pollut. 157, 1619–1625 (2009). https://doi.org/10.1016/j.envpol.2008.12.025
Kalimuthu, K., Suresh Babu, R., Venkataraman, D., Bilal, M., Gurunathan, S.: Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf. B Biointerfaces 65, 150–153 (2008). https://doi.org/10.1016/j.colsurfb.2008.02.018
Kamel, Z., Saleh, M., El Namoury, N.: Biosynthesis, characterization, and antimicrobial activity of silver nanoparticles from actinomycetes. Res. J. Pharm. Bio Chem. Sci. 7, 119–127 (2016)
Kanchi, S., Kumar, G., Lo, A.Y., Tseng, C.M., Chen, S.K., Lin, C.Y., Chin, T.S.: Exploitation of de-oiled jatropha waste for gold nanoparticles synthesis: a green approach. Arab J. Chem. 11, 247–255 (2014). https://doi.org/10.1016/j.arabjc.2014.08.006
Kannan, N., Mukunthan, K.S., Balaji, S.: A comparative study of morphology, reactivity and stability of synthesized silver nanoparticles using Bacillus subtilis and Catharanthus roseus (L.) G. Don. Colloids Surf. B Biointerfaces 86, 378–383 (2011). https://doi.org/10.1016/j.colsurfb.2011.04.024
Karthik, N., Ponnusamy, P., Balasubramanian, M.G., Mani, S., Shivasji, K.: Biosynthesis of silver nanoparticles from Streptomyces Spp., characterization and evaluating of its efficacy against Phomopsis theae and Poria hypolateria in tea plants (Camellia sinensis). Nano Biomed. Eng. 12, 272–280 (2020). https://doi.org/10.5101/nbe.v12i3.p272-280
Karunakaran, G., Suriyaprabha, R., Manivasakan, P., Yuvakkumar, R., Rajendran, V., Prabu, P., Kannan, N.: Effect of nanosilica and silicon sources on plant growth promoting rhizobacteria, soil nutrients and maize seed germination. IET Nanobiotechnol. 7, 70–77 (2013). https://doi.org/10.1049/iet-nbt.2012.0048
Khan, S.T., Ahmad, J., Ahamed, M., Jousset, A.: Sub-lethal doses of widespread nanoparticles promote antifungal activity in Pseudomonas protegens CHA0. Sci. Total Environ. 627, 658–662 (2018). https://doi.org/10.1016/j.scitotenv.2018.01.257
Khati, P., Parul, B.P., Nisha, K.R., Sharma, A.: Effect of nanozeolite and plant growth promoting rhizobacteria on maize. 3 Biotech 8, 141 (2018). https://doi.org/10.1007/s13205-018-1142-1
Khoramdel, R.S.S.S.: Effects of Nano-zinc oxide and seed inoculation by plant growth promoting Rhizobacteria (PGPR ) on yield, yield components and grain filling period of soybean (Glycine max L.). Iran J. Field Crop Res. 13, 738–753 (2016)
Khot, L.R., Sankaran, S., Maja, J.M., Ehsani, R., Schuster, E.W.: Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot. 35, 64–70 (2012). https://doi.org/10.1016/j.cropro.2012.01.007
Kim, Y.J., Kim, J.H., Rho, J.Y.: Antifungal activities of Streptomyces blastmyceticus Strain 12–6 against plant pathogenic fungi. Mycobiology 49, 329–334 (2019). https://doi.org/10.1080/12298093.2019.1635425
Kumar, N., Shah, V., Walker, V.K.: Perturbation of an arctic soil microbial community by metal nanoparticles. J. Hazard Mater. 190, 816–822 (2011). https://doi.org/10.1016/j.jhazmat.2011.04.005
Laslo, E., Mara, G.: Is PGPR an alternative for NPK fertilizers in sustainable agriculture? In: Singh, D., Gupta, V., Prabha, R. (eds.) Microbial Interventions in Agriculture and Environment. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-8391-5_3
Laware, S.L., Raskar, S.: Influence of zinc oxide nanoparticles on growth, flowering and seed productivity in onion. Int J Appl Microbiol 3, 874–881 (2014)
Lewis, R.W., Bertsch, P.M., David, H.M.: Nanotoxicity of engineered nanomaterials (ENMs) to environmentally relevant beneficial soil bacteria—a critical review. Nanotoxicology 13, 392–428 (2019). https://doi.org/10.1080/17435390.2018.1530391
Li, X., Xu, H., Chen, Z.S., Chen, G.: Biosynthesis of nanoparticles by microorganisms and their applications. J. Nanomater. (2011). https://doi.org/10.1155/2011/270974
Liu, R., Lal, R.: Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 514, 131–139 (2015). https://doi.org/10.1016/j.scitotenv.2015.01.104
Liu, Y., He, L., Mustapha, A., Li, H., Hu, Z.Q., Lin, M.: Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7. J. Appl. Microbiol. 107, 1193–1201 (2009). https://doi.org/10.1111/j.1365-2672.2009.04303.x
Liu, J., Williams, P.C., Geisler-Lee, J., Goodson, B.M., Fakharifar, M., Peiravi, M., Chen, D., Lightfoot, D.A., Gemeinhardt, M.E.: Impact of wastewater effluent containing aged nanoparticles and other components on biological activities of the soil microbiome, Arabidopsis plants, and earthworms. Environ Res. 164, 197–203 (2018). https://doi.org/10.1016/j.envres.2018.02.006
Mageswari, A., Subramanian, P., Ravindran, V., Yesodharan, S., Bagavan, A., Rahuman, A.A., Karthikeyan, S., Gothandam, K.M.: Synthesis and larvicidal activity of low-temperature stable silver nanoparticles from psychrotolerant Pseudomonas mandelii. Environ. Sci. Pollut. Res. 22, 5383–5394 (2015). https://doi.org/10.1080/21691401.2016.1241793
Maghsoodi, M.R., Asgari Lajayer, B., Hatami, M.: Challenges and opportunities of nanotechnology in plants-soil mediated systems: beneficial role, phytotoxicity and phytoextraction. In: Ghorbanpour, M., Wani, S.H. (eds.) Advances in Phytonanotechnology: From Synthesis to Application. Elsevier Inc, London (2019)
McGee, C.F., Storey, S., Clipson, N., Doyle, E.: Soil microbial community responses to contamination with silver, aluminium oxide and silicon dioxide nanoparticles. Ecotoxicology 26, 449–458 (2017). https://doi.org/10.1007/s10646-017-1776-5
Manivasagan, P., Venkatesan, J., Senthilkumar, K., Sivakumar, K., Kim, S.: Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1. Biomed. Res. 2013, 287638 (2013). https://doi.org/10.1155/2013/287638
Manivasagan, P., Alam, M.S., Kang, K., Kwak, M., Kim, S.: Extracellular synthesis of gold bionanoparticles by Nocardiopsis sp. and evaluation of its antimicrobial, antioxidant and cytotoxic activities. Bioprocess Biosyst. Eng. 38, 1167–1177 (2015). https://doi.org/10.1007/s00449-015-1358-y
Manivannan, N., Aswathy, S., Malaikozhundan, B., et al.: Nano-zinc oxide synthesized using diazotrophic Azospirillum improves the growth of mung bean, Vigna radiata. Int. Nano Lett. 11, 405–415 (2021). https://doi.org/10.1007/s40089-021-00351-z
Moradipour, M., Saberi-Riseh, R., Mohammadinejad, R., Hosseini, A.: Nano-encapsulation of plant growth-promoting Rhizobacteria and their metabolites using alginate-silica nanoparticles and carbon nanotube improves UCB1 pistachio micropropagation. J. Microbiol. Biotechnol. 29, 1096–1103 (2019). https://doi.org/10.4014/jmb.1903.03022
Matsushita, S., Komizo, D., Cao, L.T.T., Aoi, Y., Kindaichi, T., Ozaki, N., Imachi, H., Ohashi, A.: Production of biogenic manganese oxides coupled with methane oxidation in a bioreactor for removing metals from wastewater. Water Res. 130, 224–233 (2018). https://doi.org/10.1016/j.watres.2017.11.063
Mesbahi-Nowrouzi, M., Mollania, N.: Purification of selenate reductase from Alcaligenes sp. CKCr-6A with the ability to biosynthesis of selenium nanoparticle: enzymatic behavior study in imidazolium based ionic liquids and organic solvent. J. Mol. Liq. 249, 1254–1262 (2018). https://doi.org/10.1016/j.molliq.2017.10.117
Mishra, V.K., Kumar, A.: Impact of metal nanoparticles on the plant growth promoting Rhizobacteria. Dig. J. Nanomater. Biostruct. 4, 587–592 (2009)
Mittal, D., Kumar, A., Balasubramaniam, B., Thakur, R., Singh Siwal, S., Saini, V.R., Gupta, K.R., Saini, K.A.: Synthesis of Biogenic silver nanoparticles using plant growth-promoting bacteria: potential use as biocontrol agent against phytopathogens. Biomater. Polym. Horiz. 1, 22–31 (2021). https://doi.org/10.37819/bph.001.01.0130
Mohamed, M.A., Hashim, A.F., Alghuthaymi, M.A., Abd-Elsalam, K.A.: Nano-carbon: plant growth promotion and protection. In: Abd-Elsalam, K.A., Prasad, R. (eds.) Nanobiotechnology Applications in Plant Protection, pp. 155–188. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91161-8_7
Nabila, M.I., Kannabiran, K.: Biosynthesis, characterization and antibacterial activity of copper oxide nanoparticles (CuO NPs) from actinomycetes. Biocatal. Agric. Biotechnol. 15, 56–62 (2018)
Nuruzzaman, M., Mohammad, M.R., Yanju, L., Ravi, N.: Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J. Agric. Food Chem. 64(7), 1447–1483 (2016). https://doi.org/10.1021/acs.jafc.5b05214
Otari, S.V., Patil, R.M., Nadaf, N.H., Ghosh, S.J., Pawar, S.H.: Green biosynthesis of silver nanoparticles from an actinobacteria Rhodococcus sp. Mater. Lett. 72, 92–94 (2012). https://doi.org/10.1016/j.matlet.2011.12.109
Oza, G., Pandey, S., Shah, R., Sharon, M.: Extracellular fabrication of silver nanoparticles using Pseudomonas aeruginosa and its antimicrobial assay. Adv. Appl. Sci. Res. 3, 1776–1783 (2012)
Pachapur, V.L., Larios, A.D., Cledon, M., Brar, S.K., Verma, M., Surampalli, R.Y.: Behavior and characterization of titanium dioxide and silver nanoparticles insoils. Sci. Total Environ. 563, 933–943 (2016). https://doi.org/10.1016/j.scitotenv.2015.11.090
Palmqvist, N.G.M., Bejai, S., Meijer, J., Seisenbaeva, G.A., Kessler, V.A.: Nano titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management. Sci. Rep. 5, 10146 (2015). https://doi.org/10.1038/srep10146
Panichikkal, J., Thomas, R., John, J.C.: Biogenic gold nanoparticle supplementation to plant beneficial pseudomonas monteilii was found to enhance its plant probiotic effect. Curr. Microbiol. Springer, US 76, 503–509 (2019)
Parikh, S.J., James, B.R.: Soil: The foundation of agriculture. Nat. Educ. Knowl. 3, 2 (2012)
Parul, C., Anuj, C., Pankaj, B., Govind, K., Hina, K., Alka, R., Saurabh, K., Anita, S.: Assessment of soil health indicators under the influence of nanocompounds and Bacillus spp. in field condition. Front Environ Sci 9, 769871 (2020). https://doi.org/10.3389/fenvs.2021.769871
Patra, J.K., Loganathan, K., Tripathi, D.K., Prasad, R., Bhattacharyya, A., Nguyen, Q.D.: Nanotechnology in sustainable agriculture: recent developments challenges, and perspectives. Front. Microbiol. (2017). https://doi.org/10.3389/fmicb.2017.01014
Pattekari, P., Zheng, Z., Zhang, X., Levchenko, T., Torchilinb, V., Lvov, Y.: Top-down and bottom-up approaches in production of aqueous nanocolloids of low solubility drug paclitaxel. Phys. Chem. Chem. Phys. 13, 9014–9019 (2011). https://doi.org/10.1039/C0CP02549F
Pemmaraju, D., Appidi, T., Minhas, G., Singh, S.P., Khan, N., Pal, M., Srivastava, R., Rengan, A.K.: Chlorophyll rich biomolecular fraction of A. cadamba loaded into polymeric nanosystem coupled with photothermal therapy: a synergistic approach for cancer theranostics. Int. J. Biol. Macromol. 110, 383–391 (2018). https://doi.org/10.1016/j.ijbiomac.2017.09.084
Pérez-de-Luque, A.: Interaction of nanomaterials with plants: what do we need for real applications in agriculture? Front. Environ. Sci. 5, 12 (2017). https://doi.org/10.3389/fenvs.2017.00012
Peyrot, C., Wilkinson, K.J., Desrosiers, M., Sauvé, S.: Effects of silver nanoparticles on soil enzyme activities with and without added organic matter. Environ. Toxicol. Chem. 33, 115–125 (2014). https://doi.org/10.1002/etc.2398
Pimentel, D.: Pesticide and pest control. In: Peshin, P., Dhawan, A.K. (eds.) Integrated Pest Management: Innovation-Development Process, pp. 83–87. Springer, Dordrecht (2009). https://doi.org/10.1007/978-1-4020-8992-3
Pour, M.M., Saberi-Riseh, R., Esmaeilzadeh-Salestani, K., Mohammadinejad, R., Loit, E.: Evaluation of Bacillus velezensis for biological control of Rhizoctonia solani in bean by alginate/gelatin encapsulation supplemented with nanoparticles. J. Microbiol. Biotechnol. 31, 1373–1382 (2021). https://doi.org/10.4014/jmb.2105.05001
Prakasham, R.S., Kumar, B.S., Kumar, Y.S., Kumar, K.P.: Production and characterization of protein encapsulated silver nanoparticles by marine isolate Streptomyces parvulus SSNP11. Indian J. Microbiol. 54, 329–336 (2014). https://doi.org/10.1007/s12088-014-0452-1
Qu, Y., You, S., Zhang, X., Pei, X., Shen, W., Li, Z., Li, S., Zhang, Z.: Biosynthesis of gold nanoparticles using cell-free extracts of Magnusiomyces ingens LH-F1 for nitrophenols reduction. Bioprocess Biosyst. Eng. 41, 359–367 (2018). https://doi.org/10.1007/s00449-017-1869-9
Rajkishore, S.K., Subramanian, K.S., Natarajan, N., Gunasekaran, K.: Nanotoxicity at various trophic levels: a review. Bioscan 8, 975–982 (2013)
Rajput, V.D., Minkina, T., Sushkova, S., Tsitsuashvili, V., Mandzhieva, S., Gorovtsov, A., Nevidomskyaya, D., Gromakova, N.: Effect of nanoparticles on crops and soil microbial communities. J. Soils Sediments 18, 2179–2187 (2018). https://doi.org/10.1016/j.aoas.2020.08.001
Raliya, R., Saharan, V., Dimkpa, C., Biswas, P.: Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. J. Agric. Food Chem. 66, 6487–6503 (2018). https://doi.org/10.1021/acs.jafc.7b02178
Rastogi, A., Tripathi, D.K., Yadav, S., Chauhan, D.K., Zivcak, M., Ghorbanpour, M., El-Sheery, N.I., Brestic, M.: Application of silicon nanoparticles in agriculture. 3 Biotech 9, 90 (2019). https://doi.org/10.1007/s13205-019-1626-7
Reith, F., Cornelis, G.: Effect of soil properties on gold- and platinum nanoparticle mobility. Chem. Geol. 466, 446–453 (2017)
Rousk, J., Ackermann, K., Curling, S.F., Jones, D.L.: Comparative toxicity of nanoparticulate CuO and ZnO to soil bacterial communities. PLoS ONE 7, e34197 (2012). https://doi.org/10.1371/journal.pone.0034197
Sambangi, P., Vadlamudi, S., Gopalakrishnan, S.: Understanding the Evolution of Plant Growth-Promoting Rhizobacteria. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-51916-2_12
Saminathan, K.: Biosynthesis of silver nanoparticles using soil actinomycetes Streptomyces sp. Int. J. Curr. Microbiol. Appl. Sci. 4, 1073–1083 (2015). https://doi.org/10.9790/3008-1206021116
Sanjenbam, P., Gopal, J.V., Kannabiran, K.: Anticandidal activity of silver nanoparticles synthesized using Streptomyces sp. VITPK1. J. Mycol. Med. 24, 211–219 (2014). https://doi.org/10.1016/j.mycmed.2014.03.004
Saratale, R.G., Saratale, G.D., Shin, H.S., Jacob, J.M., Pugazhendhi, A., Bhaisare, M., Kumar, G.: New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: current knowledge, their agricultural and environmental applications. Environ. Sci. Pollut. Res. 25, 10164–10183 (2018). https://doi.org/10.1007/s11356-017-9912-6
Saravanan, M., Vemu, A.K., Barik, S.K.: Rapid biosynthesis of silver nanoparticles from Bacillus megaterium (NCIM 2326) and their antibacterial activity on multi drug resistant clinical pathogens. Colloids Surf. B Biointerfaces 88, 325–331 (2011). https://doi.org/10.1016/j.colsurfb.2011.07.009
Satish, K., Diksha, S.S.S., Rakesh, K.: Biofertilizers: an ecofriendly technology for nutrient recycling and environmental sustainability. Curr. Res. Microb. Sci. 3, 100094 (2022). https://doi.org/10.1016/j.crmicr.2021.100094
Servin, A., Elmer, W., Mukherjee, A., De La Torre, R.R., Hamdi, H., White, J.C., Bindraban, P., Dimkpa, C.: A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J. Nanopart. Res. 17, 92 (2015). https://doi.org/10.1007/s11051-015-2907-7
Shah, V., Jones, J., Dickman, J., Greenman, S.: Response of soil bacterial community to metal nanoparticles in biosolids. J. Hazard Mater. 274, 399–403 (2014). https://doi.org/10.1016/j.jhazmat.2014.04.003
Sharma, K.D.: Antibacterial activity of biogenic platinum nanoparticles: an invitro study. Int. J. Curr. Microbiol. Appl. Sci. 6, 801–808 (2017). https://doi.org/10.20546/ijcmas.2017.602.089
Shukla, S.K., Kumar, R., Mishra, R.K., Pandey, A., Pathak, A., Zaidi, M.G.H., Srivastava, S.K.R., Dikshit, A.: Prediction and validation of gold nanoparticles (GNPs) on plant growth promoting rhizobacteria (PGPR): a step toward development of nano-biofertilizers. Nanotechnol. Rev. 4, 439–448 (2015). https://doi.org/10.1515/ntrev-2015-0036
Singh, V.K., Singh, A.L., Singh, R., Kumar, A.: Iron oxidizing bacteria: insights on diversity, mechanism of iron oxidation and role in management of metal pollution. Environ. Sustain. 1, 221–231 (2018). https://doi.org/10.1007/s42398-018-0024-0
Srinivas, V., Naresh, N., Pratyusha, S., Ankati, S., Govindaraj, M., Gopalakrishnan, S.: Exploring plant growth-promoting Streptomyces spp. for yield and nutrition traits in pearl millet hybrids. Crop Pasture Sci 73, 484–493 (2022). https://doi.org/10.1071/CP21438
Subbaiah, L.V., Prasad, T.N.V.K.V., Krishna, T.G., Sudhakar, P., Reddy, B.R., Pradeep, T.: Novel effects of nanoparticulate delivery of zinc on growth, productivity, and zinc biofortification in maize (Zea mays L.). J. Agric. Food Chem. 64, 3778–3788 (2016). https://doi.org/10.1021/acs.jafc.6b00838
Sunitha, A., Isaac, R.S.R., Geo, S., Sornalekshmi, S., Rose, A., Praseetha, P.K.: Evaluation of antimicrobial activity of biosynthesized iron and silver nanoparticles using the fungi Fusarium oxysporum and Actinomycetes sp. on human pathogens. Nano Biomed. Eng. 5, 39–45 (2013)
Sunkar, S., Nachiyar, C.V.: Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pac. J. Trop. Biomed. 2, 953–959 (2012). https://doi.org/10.1016/S2221-1691(13)60006-4
Tan, Y., Yao, R., Wang, R., Wang, D., Wang, G., Zheng, S.: Reduction of selenite to Se (0) nanoparticles by filamentous bacterium Streptomyces sp. ES2–5 isolated from a selenium mining soil. Microb. Cell Fact. 15, 157 (2016). https://doi.org/10.1186/s12934-016-0554-z
Taran, M., Rad, M., Alavi, M.: Antibacterial activity of copper oxide (cuo) nanoparticles biosynthesized by Bacillus sp. fu4: optimization of experiment design. Pharm. Sci. 23, 198–206 (2017). https://doi.org/10.15171/PS.2017.30
Timmusk, S., Seisenbaeva, G., Behers, L.: Titania (TiO2) nanoparticles enhance the performance of growth-promoting rhizobacteria. Sci. Rep. 8, 1–13 (2018). https://doi.org/10.1038/s41598-017-18939-x
Topuz, E., van Gestel, C.A.: The effect of soil properties on the toxicity and bioaccumulation of Ag nanoparticles and Ag ions in Enchytraeus crypticus. Ecotoxicol. Environ. Saf. 144, 330–337 (2017). https://doi.org/10.1016/j.ecoenv.2017.06.037
Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., Nasrulhaq Boyce, A.: Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules 21, 573 (2016). https://doi.org/10.3390/molecules21050573
Vijayabharathi, R., Gopalakrishnan, S., Arumugam, S., Vadlamudi, S., Sharma, M.: Deciphering the tri-dimensional effect of endophytic Streptomyces sp. on chickpea for plant growth promotion, helper effect with Mesorhizobium ciceri and host-plant resistance induction against Botrytis cinerea. Microb. Pathog. 122, 98–107 (2018a). https://doi.org/10.1016/j.micpath.2018.06.019
Vijayabharathi, R., Arumugam, S., Gopalakrishnan, S.: Extracellular biosynthesis of silver nanoparticles using Streptomyces griseoplanus SAI-25 and its antifungal activity against Macrophomina phaseolina, the charcoal rot pathogen of sorghum. Biocatal. Agric. Biotechnol. 14, 166–171 (2018b). https://doi.org/10.1016/j.bcab.2018.03.006
Volpiano, C.G., Lisboa, B.B., São José, J.F.B., Beneduzi, A., Granada, C.E., Vargas, L.K.: Soil-plant-microbiota interactions to enhance plant growth. Rev Bras Cienc Solo. 46, e0210098 (2022). https://doi.org/10.36783/18069657rbcs20210098
Wadhwani, S.A., Shedbalkar, U.U., Singh, R., Chopade, B.A.: Biosynthesis of gold and selenium nanoparticles by purified protein from Acinetobacter sp. SW 30. Enzyme Microb. Technol. 111, 81–86 (2018). https://doi.org/10.1016/j.enzmictec.2017.10.007
Wang, R., Du, H., Wang, Y., Wang, D., Sun, Q., Zhou, D.: Retention of silver nanoparticles and silver ion to natural soils: effects of soil physicochemical properties. J. Soils Sediments 18, 2491–2499 (2018a). https://doi.org/10.1007/s11368-018-1918-2
Wang, W., Zhang, B., Liu, Q., Du, P., Liu, W., He, Z.: Biosynthesis of palladium nanoparticles using Shewanella loihica PV-4 for excellent catalytic reduction of chromium (vi). Environ. Sci. Nano 5, 730–739 (2018b). https://doi.org/10.1039/C7EN01167A
Wang, X., Wang, S., Pan, X., Gadd, G.M.: Heteroaggregation of soil particulate organic matter and biogenic selenium nanoparticles for remediation of elemental mercury contamination. Chemosphere 221, 486–492 (2019). https://doi.org/10.1016/j.chemosphere.2019.01.073
Wani, K.A., Kothari, R.: Agricultural nanotechnology: applications and challenges. Ann. Plant Sci. 3, 2146–2148 (2018). https://doi.org/10.21746/aps.2018.7.3.9
Xu, C., Peng, C., Sun, L., Zhang, S., Huang, H., Chen, Y., Shi, J.: Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil. Soil Biol. Biochem. 86, 24–33 (2015). https://doi.org/10.1016/j.soilbio.2015.03.011
Yadav, A., Theivasanthi, T., Paul, P.K., Upadhyay, K.C.: Extracellular biosynthesis of silver nanoparticles from plant growth promoting rhizobacteria Pseudomonas sp. Int. J. Curr. Microbiol. Appl. Sci. 4, 1057–1068 (2013)
Yang, P., Lipowsky, R., Dimova, R.: Nanoparticle formation in giant vesicles: synthesis in biomimetic compartments. Small 5, 2033 (2009). https://doi.org/10.1002/smll.200900560
Yin, L., Colman, B.P., McGill, B.M., Wright, J.P., Bernhardt, E.S.: Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS ONE 7, e47674 (2012). https://doi.org/10.1371/journal.pone.0047674
You, T., Liu, D., Chen, J., Yang, Z., Dou, R., Gao, X., Wang, L.: Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types. J Soils Sediments 18, 211–221 (2018)
Yuan, Z., Zhang, Z., Wang, X., Li, L., Cai, K., Han, H.: Novel impacts of functionalized multi-walled carbon nanotubes in plants: promotion of nodulation and nitrogenase activity in the rhizobium-legume system. Nanoscale 9, 9921–9937 (2017). https://doi.org/10.1039/C7NR01948C
Zhang, H., Hu, X.: Biosynthesis of Pd and Au as nanoparticles by a marine bacterium Bacillus sp. GP and their enhanced catalytic performance using metal oxides for 4- nitrophenol reduction. Enzyme Microb. Technol. 113, 59–66 (2018). https://doi.org/10.1016/j.enzmictec.2018.03.002
Zhao, X., Liu, W., Cai, Z., Han, B., Qian, T., Zhao, D.: An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Res. 100, 245–266 (2016). https://doi.org/10.1016/j.watres.2016.05.019
Zhu, X., Chen, H., Li, W., He, Y., Brookes, P.C., Whit, R., Xua, J.M.: Evaluation of the stability of soil nanoparticles: the effect of natural organic matter in electrolyte solutions. Eur. J. Soil Sci. 68, 105–114 (2017). https://doi.org/10.1111/ejss.12402
Acknowledgements
We thank Mr. PVS Prasad for his significant contribution in collecting the literatures. We would like to thank the Department of Science & Technology, India for their support.
Funding
The funding was provided by Ministry of Education, Department of Biotechnology, Department of Science and Technology and Ministry of Science and Technology, India (SR/WOS-A/LS-337/2018, IF180306).Â
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
All the authors state that there is no conflict of interest.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sambangi, P., Gopalakrishnan, S., Pebam, M. et al. Nano-biofertilizers on soil health, chemistry, and microbial community: benefits and risks. Proc.Indian Natl. Sci. Acad. 88, 357–368 (2022). https://doi.org/10.1007/s43538-022-00094-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s43538-022-00094-1
Keywords
- Soil
- PGPM
- Nano-biofertilizer
- Nanotechnology
- Agriculture