Skip to main content

Comparative multifractal analysis of methane gas concentration time series in India and regions within India

Abstract

In the present study GOSAT CH4 has been used to analyze the methane gas concentration in India over the eight years from 2010 to 2017. The data have been analyzed using the multifractal detrended fluctuation analysis technique. Two different geographical regions within India have been selected and CH4 data for those regions are also analyzed. The generalized Hurst exponents for India and the two regions are 1.27, 0.74 and 0.91, which are significantly high from their shuffled data counterparts i.e. 0.50, 0.51 and 0.51 respectively. This finding reveals that methane gas concentration over time show multifractal nature which in turn establishes the presence of long-range temporal correlations in the data. The width of the Multifractal spectrum for India and the two regions are found to be 0.76, 1.38 and 1.01 respectively. This result shows that strength of correlation is different for the two regions selected, which we suggest may be due to the different methane emission process of the considered regions. Comparison of the results with that of shuffled data signify that the correlation is purely due to the methane production dynamics and not a result of mere statistics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Ashkenazy, Y., Baker, D.R., Gildor, H., Havlin, S.: Nonlinearity and multifractality of climate change in the past 420,000 years. Geophys. Res. Lett. (2003). https://doi.org/10.1029/2003GL018099

    Article  Google Scholar 

  • Bachelet, D., Neue, H.U.: Methane emissions from wetland rice areas of Asia. Chemosphere 26(1–4), 219–237 (1993)

    CAS  Article  Google Scholar 

  • Bandyopadhyay, T.K., Goyal, P., Singh, M.P.: Generation of methane from paddy fields and cattle in India, and its reduction at source. Atmos. Environ. 30(14), 2569–2574 (1996)

    CAS  Article  Google Scholar 

  • Bhoumik, G., Deb, A., Bhattacharyya, S., Ghosh, D.: Comparative multifractal detrended fluctuation analysis of heavy ion interactions at a few GeV to a few hundred GeV. Adv. High Energy Phys. (2016)

  • Bouwman, A.F.: Agronomic aspects of wetland rice cultivation and associated methane emissions. Biogeochemistry 15(2), 65–88 (1991)

    CAS  Article  Google Scholar 

  • Chen, Z., Ivanov, P.C., Hu, K., Stanley, H.E.: Effect of nonstationarities on detrended fluctuation analysis. Phys. Rev. E 65(4), 041107 (2002)

    Article  Google Scholar 

  • Daubechies, I.: Ten lectures on wavelets. SIAM, Philadelphia (1992)

    Book  Google Scholar 

  • de Benicio, R.B., Stošić, T., de Figueirêdo, P.H., Stošić, B.D.: Multifractal behavior of wild-land and forest fire time series in Brazil. Physica A 392(24), 6367–6374 (2013)

    Article  Google Scholar 

  • de Lima, I.B.T., Stech, J.L., Ramos, F.M.: Satellite ecohydrology and multifractals: perspectives for understanding and dealing with greenhouse gas emissions from hydroreservoirs (2005)

  • Dimri, V.P. (ed.): Fractal solutions for understanding complex systems in Earth sciences. Springer, Berlin (2016)

    Google Scholar 

  • Dutta, S., Ghosh, D., Chatterjee, S.: Multifractal detrended fluctuation analysis of human gait diseases. Front. Physiol. 4, 274 (2013)

    Article  Google Scholar 

  • Dutta, S., Ghosh, D., Chatterjee, S.: A multifractal analysis of time series of atmospheric CO2 concentration. Int. J. Global Warm. 14(4), 403–416 (2018)

    Article  Google Scholar 

  • Falloon, P., Smith, P., Betts, R., Jones, C. D., Smith, J., Hemming, D., Challinor, A.: Carbon sequestration and greenhouse gas fluxes from cropland soils–climate opportunities and threats. In Climate change and crops (pp. 81–111). Springer, Berlin (2009)

  • Feder, J.: Fractals. Springer, Berlin (2013)

    Google Scholar 

  • Garg, A., Kankal, B., Shukla, P.R.: Methane emissions in India: sub-regional and sectoral trends. Atmos. Environ. 45(28), 4922–4929 (2011)

    CAS  Article  Google Scholar 

  • Halsey, T.C., Jensen, M.H., Kadanoff, L.P., Procaccia, I., Shraiman, B.I.: Fractal measures and their singularities: The characterization of strange sets. Phys. Rev. A 33(2), 1141 (1986)

    CAS  Article  Google Scholar 

  • Indian, I.N.C.C.A.: 2010. India Greenhouse Gas Emissions (2007)

    Google Scholar 

  • IPCC: 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change (2006)

  • Kantelhardt, J.W., Zschiegner, S.A., Koscielny-Bunde, E., Havlin, S., Bunde, A., Stanley, H.E.: Multifractal detrended fluctuation analysis of nonstationary time series. Physica A 316(1–4), 87–114 (2002)

    Article  Google Scholar 

  • Kantelhardt, J.W., Rybski, D., Zschiegner, S.A., Braun, P., Koscielny-Bunde, E., Livina, V., et al.: Multifractality of river runoff and precipitation: comparison of fluctuation analysis and wavelet methods. Physica A 330(1–2), 240–245 (2003)

    Article  Google Scholar 

  • Mali, P.: Multifractal characterization of global temperature anomalies. Theoret. Appl. Climatol. 121(3), 641–648 (2015)

    Article  Google Scholar 

  • Mali, P., Mukhopadhyay, A.: Multifractal characterization of gold market: a multifractal detrended fluctuation analysis. Physica A 413, 361–372 (2014)

    Article  Google Scholar 

  • Mallat, S.: A Wavelet Tour of Signal Processing. Elsevier (1999)

    Google Scholar 

  • Manimaran, P., Panigrahi, P.K., Parikh, J.C.: Wavelet analysis and scaling properties of time series. Phys. Rev. E 72(4), 046120 (2005)

    CAS  Article  Google Scholar 

  • Manimaran, P., Lakshmi, P.A., Panigrahi, P.K.: Spectral fluctuation characterization of random matrix ensembles through wavelets. J. Phys. A: Math. Gen. 39(42), L599 (2006)

    CAS  Article  Google Scholar 

  • Matthews, E., Fung, I., Lerner, J.: Methane emission from rice cultivation: geographic and seasonal distribution of cultivated areas and emissions. Global Biogeochem. Cycles 5(1), 3–24 (1991)

    CAS  Article  Google Scholar 

  • Norouzzadeh, P., Rahmani, B.: A multifractal detrended fluctuation description of Iranian rial–US dollar exchange rate. Physica A 367, 328–336 (2006)

    Article  Google Scholar 

  • Parker, R., Boesch, H.: University of Leicester GOSAT Proxy XCH4 v9. 0, Centre for Environmental Data Analysis (2020)

  • Parker, R.J., Webb, A., Boesch, H., Somkuti, P., Barrio Guillo, R., Di Noia, A., et al.: A decade of GOSAT Proxy satellite CH 4 observations. Earth Syst. Sci. Data 12(4), 3383–3412 (2020)

    Article  Google Scholar 

  • Patra, P.K., Santhanam, M.S., Manimaran, P., Takigawa, M., Nakazawa, T.: 1/f noise and multifractality in atmospheric-CO2 records. arXiv preprint nlin/0610038 (2006)

  • Pelletier, J.D., Turcotte, D.L.: Long-range persistence in climatological and hydrological time series: analysis, modeling and application to drought hazard assessment. J. Hydrol. 203(1–4), 198–208 (1997)

    Article  Google Scholar 

  • Peng, C.K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E., Goldberger, A.L.: Mosaic organization of DNA nucleotides. Phys. Rev. E 49(2), 1685 (1994)

    CAS  Article  Google Scholar 

  • Sass, R.L., Fisher, F.M.: Methane emissions from rice paddies: a process study summary. Nutr. Cycl. Agroecosyst. 49(1), 119–127 (1997)

    CAS  Article  Google Scholar 

  • Shimizu, Y.U., Thurner, S., Ehrenberger, K.: Multifractal spectra as a measure of complexity in human posture. Fractals 10(01), 103–116 (2002)

    Article  Google Scholar 

  • Telesca, L., Balasco, M., Colangelo, G., Lapenna, V., Macchiato, M.: Investigating the multifractal properties of geoelectrical signals measured in southern Italy. Phys. Chem. Earth, Parts A/B/C 29(4–9), 295–303 (2004)

    Article  Google Scholar 

  • Vetter, S.H., Sapkota, T.B., Hillier, J., Stirling, C.M., Macdiarmid, J.I., Aleksandrowicz, L., et al.: Greenhouse gas emissions from agricultural food production to supply Indian diets: Implications for climate change mitigation. Agr. Ecosyst. Environ. 237, 234–241 (2017)

    CAS  Article  Google Scholar 

  • Wang, Y., Liu, L., Gu, R.: Analysis of efficiency for Shenzhen stock market based on multifractal detrended fluctuation analysis. Int. Rev. Financ. Anal. 18(5), 271–276 (2009)

    Article  Google Scholar 

  • Yuan, Y., Zhuang, X.T., Jin, X.: Measuring multifractality of stock price fluctuation using multifractal detrended fluctuation analysis. Physica A 388(11), 2189–2197 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

Robert J. Parker and Hartmut Boesch are funded via the UK National Centre for Earth Observation (NE/R016518/1 and NE/N018079/1). We thank the Japanese Aerospace Exploration Agency, National Institute for Environmental Studies and the Ministry of Environment for the GOSAT data and their continuous support as part of the Joint Research Agreement. This research used the ALICE High Performance Computing Facility at the University of Leicester for the GOSAT retrievals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopa Bhoumik.

Ethics declarations

Conflict of interest

There is no conflict of interest in publishing the manuscript.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bhoumik, G., Parker, R. & Boesch, H. Comparative multifractal analysis of methane gas concentration time series in India and regions within India. Proc.Indian Natl. Sci. Acad. 88, 197–204 (2022). https://doi.org/10.1007/s43538-022-00076-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43538-022-00076-3

Keywords

  • GOSAT CH4 data
  • MFDFA analysis
  • Long-range correlation
  • Hurst exponent