Baboo, B., Sagar, R., Bargali, S.S., Verma, H.: Tree species composition, regeneration and diversity of an Indian dry tropical forest protected area. Trop. Ecol. 58(2), 409–423 (2017)
Google Scholar
Baccini, A., Laporte, N., Goetz, S., Sun, M., Dong, H.: A first map of tropical Africa’s above-ground biomass derived from satellite imagery. Environ. Res. Lett. 3, 045011 (2008)
Article
Google Scholar
Baccini, A., Goetz, S., Walker, W., Laporte, N., Sun, M., Sulla-Menashe, D., Hackler, J., Beck, P., Dubayah, R., Friedl, M.: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185 (2012)
CAS
Article
Google Scholar
Brown, S.: Estimating Biomass and Biomass Change in Tropical Forests, a Primer (FAO). Forestry paper-134. FAO. United Nations Rome (1997)
Brown, S.L., Schroeder, P.E.: Spatial patterns of aboveground production and mortality of woody biomass for eastern US forests. Ecol. Appl. 9(3), 968–980 (1999)
Google Scholar
Carreiras, J.M.B., Pereira, J.M.C., Pereira, J.S.: Estimation of tree canopy cover in evergreen oak woodlands using remote sensing. For. Ecol. Manage. 223, 45–53 (2006)
Article
Google Scholar
Champion, H.G., Seth, S.K.: A Revised Survey of the Forest Types of India, p. 200p. Government of India Publications, Delhi (1968)
Google Scholar
Chaturvedi, A.N., Khanna, L.S.: Forest Mensuration. International Book Distributors, Dehradun (1982)
Google Scholar
Chenge, I.B., Osho, J.S.A.: Mapping tree aboveground biomass and carbon in Omo Forest Reserve Nigeria using Landsat 8 OLI data. Southern For (2018). https://doi.org/10.2989/20702620.2018.1463150
Article
Google Scholar
Choudhary, R.S.: Taxa of family Fabaceae: a potential of Local Medicinal values in Vindhya Region, Uttar Pradesh, India. Int. J. Pharm. Biol Sci. 1, 4 (2010)
Google Scholar
Dube, T., Mutanga, O.: Evaluating the utility of the medium spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa. ISPRS J. Photogramm. Remote Sens. 101, 36–46 (2015)
Article
Google Scholar
Egglestan, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K.: IPCC Guidelines for National Greenhouse Gas Inventories, Volume IV Agriculture, Forestry and Other Land Use. Institute of Global Environment Strategies, Harayana (2006). https://doi.org/10.1088/1755-1315/144/1/012064
Book
Google Scholar
Foody, G.M., Boyd, D.S., Cutler, M.E.J.: Predictive relations of tropical forest biomass from Landset TM data and their transferability between regions. Remote Sens. Environ. 85, 463–474 (2003)
Article
Google Scholar
Galidaki, G., Zianis, D., Gitas, I., Radoglou, K., Karathanassi, M., Strati, T., Woodhouse, I., Mallinis, G.: Vegetation biomass estimation with remote sensing: focus on forest and other wooded land over the Mediterranean ecosystem. Int. J. Remote Sens. 38(7), 1940–1966 (2017). https://doi.org/10.1080/01431161.2016.1266113
Article
Google Scholar
Gibbs, H.K., Brown, S., Niles, J.O., Foley, J.A.: Monitoring and estimating tropical forest carbon stocks: Making REDD a reality. Environ. Res. Lett. 2, 045023 (2007). https://doi.org/10.1088/1748-9326/2/4/045023
CAS
Article
Google Scholar
Gizachew, B., Solberg, S., Naesset, E., Gobakken, T., Bollandsas, O.M., Breidenbach, J., Zahabu, E., Mauya, E.W.: Mapping and estimating the total living biomass and carbon in low-biomass woodlands using Landsat 8 CDR data. Carbon Balance Manage. 11, 1–14 (2016)
Article
Google Scholar
Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., Stehman, S.V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, L., Justice, C.O., Townshend, J.R.G.: High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013)
CAS
Article
Google Scholar
Huete, A.R.: A Soil Adjusted Vegetation Index (SAVI). Remote Sens Environ. 25, 295–309 (1988). https://doi.org/10.1016/0034-4257(88)90106-X
Article
Google Scholar
Huete, A.R., Didan, K., Miurat, T., Rodriguez, E.P., Gao, X., Ferreira, L.L.: Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ. 83, 195–213 (2002)
Article
Google Scholar
Imran, A.B., Ahmed, S.: Potential of Landsat 8 spectral indices to estimate forest biomass. Int. J. Hum Capital Urban Manage. 3(4), 303–314 (2018)
Google Scholar
IPCC: Climate Change Mitigation. In: Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A. (eds). Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York
Ismail, I., Sohail, M., Gilani, H., Ali, A., Hussain, K., Hussain Karky, B.S., Qamer, F.M., Qazi, W., Ning, W., Kotru, R.: Forest inventory and analysis in Gilgit-Baltistan: a contribution towards developing a forest inventory for all Pakistan. Int. J. Clim. Change Strategies Manage. 10(4), 616–631 (2018)
Article
Google Scholar
Karlson, M., Ostwald, M., Reese, H., Sanou, J., Tankoano, B., Mattsson, E.: Mapping tree canopy cover and aboveground biomass in Sudano-Sahelian woodlands using Landsat 8 and random forest. Remote Sens. 7, 10017–10041 (2015)
Article
Google Scholar
Karmacharya, S.B., Singh, K.P.: Biomass and net production of Teak plantations in a dry tropical region in India. For. Ecol. Manage. 55, 233–247 (1992)
Article
Google Scholar
Kotchenova, S.Y., Vermote, E.F., Matarrese, R., Klemm, F.J., Jr.: Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part i: Path radiance. Appl. Opt. 45(26), 6762–6774 (2006)
Article
Google Scholar
Kumar, N.R.: Forest cover, stand volume and biomass assessment in Dudhwa National Park using satellite remote sensing data (optical and EnviSat ASAR). Dissertation, Andhra University, India (2007)
Kumar, L., Matunga, O.: Remote sensing of above ground biomass. Remote Sens. 9(9), 935 (2017). https://doi.org/10.3390/rs9090935
Article
Google Scholar
Lazaridou, M.A., Karagianni, A.C.: Landsat 8 Multispectral And Pansharpened Imagery Processing on the Study of Civil Engineering Issues. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Volume XLI-B8, 2016 XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic (2016)
Lehtonen, A., Makipaa, R., Heikkinen, J., Sievanen, R., Liski, J.: Biomass expansion factors for scots Pine, Norway Spruce and Birch according to stand age for boreal forests. For. Ecol. Manage. 88, 211–214 (2004)
Article
Google Scholar
Lu, D.: Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. Int. J. Remote Sens. 26, 2509–2525 (2005)
Article
Google Scholar
Lu, D.: The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens. 27, 1297–1328 (2006). https://doi.org/10.1080/01431160500486732
Article
Google Scholar
Mancino, G., Nole, A., Ripullone, F., Ferrara, A.: Landsat TM imagery and NDVI differencing to detect vegetation change: assessing natural forest expansion in Basilicata, southern Italy. iForest Biogeosci. For. 7(2), 75–84 (2014). https://doi.org/10.3832/ifor0909-007
Article
Google Scholar
Mancino, G., Ferrara, A., Padula, A., Nole, A.: Cross-comparison between Landsat 8 (OLI) and Landsat 7 (ETM+) derived vegetation indices in a mediterranean environment. Remote Sens. 12, 291 (2020). https://doi.org/10.3390/rs12020291
Article
Google Scholar
Mbow, C., Verstraete, M.M., Sambou, B., Diaw, A.T., Neufeldt, H.: Allometric models for aboveground biomass in dry Savanna trees of the Sudan and Sudan Guinean ecosystems of Southern Senegal. J. For. Res. 19, 340–347 (2013). https://doi.org/10.1007/s10310-013-0414-1
CAS
Article
Google Scholar
Meena, A., Bidalia, A., Hanief, M., Dinakaran, J., Rao, K.S.: Assessment of above- and belowground carbon pools in a semi-arid forest ecosystem of Delhi. India. Ecol Process. 8, 8 (2019). https://doi.org/10.1186/s13717-019-0163-y
Article
Google Scholar
Mishra, N., Haqque, M.O., Leigh, L., Aaron, D., Markham, Helder D., B, : Radiometric Cross Calibration of Landsat 8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). Remote Sens. 6(12), 2619–2638 (2014). https://doi.org/10.3390/rs61212619
Article
Google Scholar
Navar, J.: Allometric equations for tree species and carbon stocks for forests of northwestern Mexico. For. Ecol. Manage. 257(2), 427–434 (2009)
Article
Google Scholar
Negi, S.S.: Handbook of National Parks, Wildlife sanctuaries and biosphere reserves of India. Indus Publishing, Brand (2002)
Google Scholar
Nelson, R.F., Kimes, D.S., Salas, W.A., Routhier, M.: Secondary forest age and tropical forest biomass estimation using Thematic Mapper imagery. Bioscience 50, 419–431 (2000)
Article
Google Scholar
NRSA: IRS‐1D User Handbook, Hyderabad, India. Department of Space, Government of India (1997)
Padmakumar, B., Sreekanth, N.P., Shanthiprabha, V., Paul, J., Sreedharan, K., Augustine, T., Jayasooryan, K.K., Rameshan, M., Mohan, M., Ramasamy, E.V., Thomas, A.P.: Tree biomass and carbon density estimation in the tropical dry forest of Southern Western Ghats. India. Iforest. 11, 534–541 (2018). https://doi.org/10.3832/ifor2190-011
Article
Google Scholar
Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Shividenko, A., Lewis, S.L., Canadell, J.G., Ciais, P., Jackson, R.B., Packala, S.W., McGuire, A.D., Piao, S., Rautianen, A., Sitch, S., Hayes, D.: A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011)
CAS
Article
Google Scholar
Pant, D.N., Das, K.K., Roy, P.S.: Mapping of Tropical Dry Deciduous Forest and landuse in part of Vindhyan Range using Satellite Remote Sensing. J. Ind. Soc. Rem. Sens. 20, 1 (1992)
Article
Google Scholar
Paolini, L., Grings, F., Sobrino, J.A., Muñoz, J.C.J., Karszenbaum, H.: Radiometric correction effects in Landsat multi-date/multi-sensor change detection studies. Int. J. Remote Sens. 27, 685–704 (2006). https://doi.org/10.1080/01431160500183057
Article
Google Scholar
Peterson, H., Holm, S., Stahl, G., Alger, D., Fridman, J., Lehtonen, A., Lundstrom, A., Makipaa, R.: Individual tree biomass equations or biomass expansion factors for assessment of carbon stock changes in living biomass—a comparative study. For. Ecol. Manage. 270, 78–84 (2012)
Article
Google Scholar
Powell, S., Cohenc, W., Healey, S., Kennedy, R., Moisen, G., Pierce, K.: Quantification of life above ground forest biomass dynamics with Landsat Time series and field inventory data: a comparison of empirical modelling approaches. Remote Sens. Environ. 114, 1053–1068 (2010)
Article
Google Scholar
Ranjitsinh, M.K., Jhala, Y.V.: Assessing the Potential for Reintroducing the Cheetah in India. Report: 1-180. NOIDA, Dehradun, India, Wildlife Institute of India, Wildlife Trust of India (2010)
Ravan, R.P.S.: Biomass estimation using satellite remote sensing data—an investigation on possible approaches for natural forest. J. Biosci. 21(4), 535–561 (1996)
Article
Google Scholar
Rodger, A.S.: The carbon cycle and global forest ecosystem. Water Air Soil Pollut. 70, 295–307 (1993)
Article
Google Scholar
Rodgers, W.A., Panwar, H.S., Mathur, V.B.: Biogeographic Classification of India in Wildlife Protected Area Network in India: A Review. Executive Summary Wildlife Institute of India, Dehradun (2000)
Google Scholar
Rouse, J.W., Haas, R.H., Scheel, J.A., Deering, D.W.: Monitoring Vegetation Systems in the Great Plains with ERTS. In: Proceedings, 3rd Earth Resource Technology Satellite (ERTS) Symposium, vol. 1, pp. 48–62 (1974)
Saatchi, S.S., Harris, N.L., Brown, S., Lefsky, M., Mitchard, E.T.A., Salas, W., Buermann, Z.B.R., Lewis, S.L., Hagen, S.: Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. 108, 9899–9904 (2011)
CAS
Article
Google Scholar
Shaoqing, Z., Xu, L. The comparative study of three methods of remote sensing image change detection. In: The International Archives of Photogrammetry Remote Sensing and Spatial Information Science. XXXVII, Part B7, Beijing (2008)
Singh, T.P., Singh, S., Roy, P.S., Rao, B.S.P.: Vegetation mapping and characterization in West Siang District of Arunachal Pradesh, India—a satellite remote sensing-based approach. Curr. Sci. 83, 1221–1230 (2002)
Google Scholar
Sinha, D., Chowdhary, R. xWildlife Inventory and Proposal for Sloth Bear Conservation Reserve in Marihan-Sukrit- Chunar Landscape of Mirzapur Division, U.P. (2008)
Suharidiman, A., Tampubolon, B.A., Sumaryono, M. Examining spectral properties of Landsat 8 OLI, for predicting above ground carbon of Labaman forest, Berau. In: IOP Conference Series: Earth and Environmental Science, Volume 144, 1st International Conference on Tropical Studies and Its Application (ICTROPS), Samarinda, East Kalimantan, Indonesia (2017)
Tahoor, A., Musavi, A., Khan, A.J.: Biomass extraction impact on vegetation community structure in Kaimoor Wildlife Sanctuary, Uttar Pradesh. India. Trop. Plant Res. 3(1), 142–152 (2016)
Google Scholar
Tajdar, A., Hashim, M., Nagpal, A., Gaur, S.: Assessment of forest biomass in Gorakhpur district of Uttar Pradesh. Haya Saudi J. Life Sci. (SJLS) 3(7), 524–528 (2018). https://doi.org/10.21276/haya.2018.3
Article
Google Scholar
Teillet, P.M., Staenz, K., William, D.J.: Effects of spectral, spatial, and radiometric characteristics on remote sensing vegetation indices of forested regions. Remote Sens. Environ. 61, 139–149 (1997)
Article
Google Scholar
The State of Forest Report: Government of India, Ministry of forests and Climate, Forest Survey of India. Dehradun (2013)
The state of forest report: Forest Survey of India and Ministry of Environment, Forests and climate change. Government of India. Dehradun (2019)
Verma, N.: The study of land use/land cover changes around Singrauli coal fields India using remote sensing. J. Indian Soc Remote Sens. 22, 1 (1994)
Article
Google Scholar
Vermote, E.F., El Saleous, N., Justice, C.O., Kaufman, Y.J., Privette, J.L., Remer, L., Roger, J.C., Tanre, D.: Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: background, operational algorithm and validation. NASA Publications (1997) https://digitalcommons.unl.edu/nasapub/31
Zhang, H., Song, T., Wang, K., Yang, H., Yue, Y., Zeng, Z., Peng, W., Zeng, F.: Influences of stand characteristics and environmental factors on forest biomass and root–shoot allocation in southwest China. Ecol. Eng. 91, 7–15 (2016). https://doi.org/10.1016/j.ecoleng.2016.01.040
Article
Google Scholar
Zhang, X., Chen, X., Tian, M., Fan, Y., Ma, J., Xing, D.: An evaluation model for aboveground biomass based on hyperspectral data from field and TM8 in Khorchin grassland, China. PLoS ONE (2020). https://doi.org/10.1371/journal.pone.0223934
Article
Google Scholar
Zhao, P., Lu, D., Wang, G., Liu, L., Li, D., Zhu, J., Yu, S.: Forest aboveground biomass estimation in Zhejiang Province using the integration of Landsat TM and ALOS PALSAR data. Int. J. Appl. Earth Obs. Geoinf. 53, 1–15 (2016). https://doi.org/10.1016/j.jag.2016.08.007
Article
Google Scholar
Zheng, D., Rademacher, J., Chen, J., Crow, T., Bresee, M., Moine, J.L., Ryu, S.R.: Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA. Remote Sens. Environ. 93, 402–411 (2004)
Article
Google Scholar
Zhu, X.L., Liu, D.S.: Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series. ISPRS J. Photogramm Remote Sens. 102, 222–231 (2015)
Article
Google Scholar