Skip to main content

Advertisement

Log in

Can Lateral Offset Be Used as a Predictive Marker for Proximal Femur Disorders?

  • Original Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

When the lateral offset (LO) changes, the forces acting on the head and neck of the femur change. Increase or decrease in LO can cause instability and possible dislocation of the implant. In addition, when the offset is reduced, more force is needed to balance the pelvis by the abductor muscles, and the force that occurs along the hip joint increases and causes wear and tear. In this study we aimed to investigate whether there is a correlation between LO and proximal femur morphology, and according to the results we aimed to investigate whether the LO can be used as a predictive marker for the risk of femoral neck fractures, osteoarthritis or femoroacetabular impingement.

Methods

Femur length, femur neck length, femoral neck–shaft angle (NSA), anteroposterior (a–p) and superoinferior (s–i) diameters of femoral head and neck, and LO were measured on 82 dry adult femora of unknown age and gender from Turkish population.

Results

There was no statistically significant correlation between the LO and a–p and s–i diameters of femoral head or neck. However, there was found statistically significant correlation between LO and femoral NSA (p < 0.01), femoral neck length (p < 0.05) and femur length (p < 0.01).

Conclusion

High LO values can be used as an indicator for neck fractures, a negative marker for OA, but LO does not appear to be used as an indicator for FAI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Graph 1
Graph 2

Similar content being viewed by others

References

  1. Piriou, P., Bugyan, H., Casalonga, D., Lizee, E., Trojani, C., & Versier, G. (2013). Can hip anatomy be reconstructed with femoral components having only one neck morphology? A study on 466 hips. The Journal of arthroplasty., 28, 1185–1191.

    Article  Google Scholar 

  2. Noble, P. C., Alexander, J. W., Lindahl, L. J., Yew, D. T., Granberry, W. M., & Tullos, H. S. (1988). The anatomic basis of femoral component design. Clinical Orthopaedics and Related Research, 235, 148.

    Article  Google Scholar 

  3. Davies, H., Foote, J., & Spencer, R. F. (2007). Accuracy of femoral templating in reproducing anatomical femoral offset in total hip replacement. Hip International, 17, 155.

    Article  CAS  Google Scholar 

  4. Lecerf, G., Fessy, M. H., Philippot, R., et al. (2009). Femoral offset: Anatomical concept, definition, assessment, implications for preoperative templating and hip arthroplasty. Orthopaedics & traumatology, surgery & Research: OTSR., 95, 210–219.

    Article  CAS  Google Scholar 

  5. Sariali, E., Mouttet, A., Pasquier, G., & Durante, E. (2009). Three-dimensional hip anatomy in osteoarthritis. Analysis of the femoral offset. The Journal of Arthroplasty., 24, 990–997.

    Article  Google Scholar 

  6. Sugano, N., Noble, P. C., & Kamaric, E. (1999). Predicting the position of the femoral head center. The Journal of arthroplasty., 14, 102.

    Article  CAS  Google Scholar 

  7. Dolhain, P., Tsigaras, H., Bourne, R. B., Rorabeck, C. H., Mac Donald, S., & Mc, C. R. (2002). The effectiveness of dual offset stems in restoring offset during total hip replacement. Acta Orthopaedica Belgica, 68, 490.

    CAS  PubMed  Google Scholar 

  8. Bourne, R. B., & Rorabeck, C. H. (2002). Soft tissue balancing: The hip. The Journal of arthroplasty., 17, 17–22.

    Article  Google Scholar 

  9. Padgett, D. E., & Warashina, H. (2004). The unstable total hip replacement. Clinical Orthopaedics, 420, 72–79.

    Article  Google Scholar 

  10. Önal, A. (2013). Kalça eklemi biyomekaniği ve artroplasti uygulamaları. TOTBID Dergisi., 12, 197–200.

    Article  Google Scholar 

  11. Burzynski, S., Sabik, A., Witkowski, W., & Łuczkiewicz, P. (2021). Influence of the femoral offset on the muscles passive resistance in total hip arthroplasty. PLoS ONE, 16(5), e0250397.

    Article  CAS  Google Scholar 

  12. Doherty, M., Courtney, P., Doherty, S., et al. (2008). Nonspherical femoral head shape (pistol grip deformity), neck shaft angle, and risk of hip osteoarthritis: A case-control study. Arthritis and rheumatism., 58, 3172–3182.

    Article  Google Scholar 

  13. Javaid, M. K., Lane, N. E., Mackey, D. C., et al. (2009). Changes in proximal femoral mineral geometry precede the onset of radiographic hip osteoarthritis: The study of osteoporotic fractures. Arthritis and rheumatism., 60, 2028–2036.

    Article  CAS  Google Scholar 

  14. Johnson, J. K., Renner, J. B., & Dahners, L. E. (2012). Anteroposterior thickening of the femoral neck with aging decreases the “offset” in men. The American journal of sports medicine., 40, 2213–2217.

    Article  Google Scholar 

  15. Duboeuf, F., Hans, D., Schott, A. M., et al. (1997). Different morphometric and densitometric parameters predict cervical and trochanteric hip fracture The EPIDOS Study. Journal of Bone and Mineral Research, 12, 1895–1902.

    Article  CAS  Google Scholar 

  16. Gluer, C. C., Cummings, S. R., Pressman, A., et al. (1994). Prediction of hip fractures from pelvic radiographs The study of osteoporotic fractures. Journal of Bone and Mineral Research, 9, 671–677.

    Article  CAS  Google Scholar 

  17. Gnudi, S., Ripamonti, C., Lisi, L., et al. (2002). Proximal femur geometry to detect and distinguish femoral neck fractures from trochanteric fractures in postmenopausal women. Osteoporosis International, 13, 69–73.

    Article  CAS  Google Scholar 

  18. Beall, D. P., Sweet, C. F., Martin, H. D., et al. (2005). Imaging findings of femoroacetabular impingement syndrome. Skeletal Radiology., 34, 691–701.

    Article  Google Scholar 

  19. Jacobsen, S., Sonne-Holm, S., Soballe, K., Gebuhr, P., & Lund, B. (2004). Radiographic case definitions and prevalence of osteoarthrosis of the hip: A survey of 4 151 subjects in the Osteoarthritis Substudy of the Copenhagen City Heart Study. Acta orthopaedica Scandinavica., 75, 713–720.

    Article  Google Scholar 

  20. Murray, R. O. (1965). The aetiology of primary osteoarthritis of the hip. British Journal of Radiology, 38, 810–824.

    Article  CAS  Google Scholar 

  21. Reikeras, O., & Hoiseth, A. (1982). Femoral neck angles in osteoarthritis of the hip. Acta orthopaedica Scandinavica., 53, 781–784.

    Article  CAS  Google Scholar 

  22. Partanen, J., Jamsa, T., & Jalovaara, P. (2001). Influence of the upper femur and pelvic geometry on the risk and type of hip fractures. Journal of Bone and Mineral Research, 16, 1540–1546.

    Article  CAS  Google Scholar 

  23. Karlsson, K. M., Sernbo, I., Obrant, K. J., Redlund-Johnell, I., & Johnell, O. (1996). Femoral neck geometry and radiographic signs of osteoporosis as predictors of hip fracture. Bone, 18, 327–330.

    Article  CAS  Google Scholar 

  24. Ferris, B. D., Kennedy, C., Bhamra, M., & Muirhead-Allwood, W. (1989). Morphology of the femur in proximal femoral fractures. The Journal of Bone and Joint Surgery British Volume., 71 A, 475–477.

    Article  Google Scholar 

  25. Blumel, S., Stadelmann, V. A., Brioschi, M., Küffer, A., Leunig, M., & Rüdiger, H. A. (2021). The trochanteric double contour is a valuable landmark for assessing femoral offset underestimation on standard radiographs: A retrospective study. BMC Musculoskeletal Disorders, 22(1), 310.

    Article  Google Scholar 

  26. Kawamura, H., Watanabe, Y., Nishino, T., & Mishima, H. (2021). Effects of lower limb and pelvic pin positions on leg length and offset measurement errors in experimental total hip arthroplasty. Journal of Orthopaedic Surgery and Research, 16(1), 193.

    Article  Google Scholar 

  27. Berend, K. R., Sporer, S. M., Sierra, R. J., Glassman, A. H., & Morris, M. J. (2010). Achieving stability and lower-limb length in total hip arthroplasty. The Journal Of Bone & Joınt Surgery., 92 A, 2737–2752.

    Google Scholar 

  28. Flecher, X., Ollivier, M., & Argenson, J. N. (2016). Lower limb length and offset in total hip arthroplasty. Orthopaedics & Traumatology: Surgery & Research., 102, 9–20.

    Google Scholar 

  29. Hsieh, C. M., Howell, S. M., & Hull, M. L. (2020). Errors in femoral anteversion, femoral offset, and vertical offset following robot-assisted total hip arthroplasty. The international journal of medical robotics + computer assisted surgery: MRCAS., 16, 2104.

    Google Scholar 

  30. Clark, J. M., Freeman, M. A. R., & Witham, D. (1987). The relationship of neck orientation to the shape of the proximal femur. The Journal of Arthroplasty, 2(2), 99–109.

    Article  CAS  Google Scholar 

  31. Alpert, B. (1998). Tall stature. Pediatrics in Review, 19(9), 303.

    Article  CAS  Google Scholar 

  32. Zargham, S., & Crotty, J. E. (2014). Tall stature. Pediatrics in Review, 35, 538.

    Article  Google Scholar 

  33. Barstow, C., & Rerucha, C. (2015). Evaluation of short and tall stature in children. American Family Physician, 92(1), 43–50.

    PubMed  Google Scholar 

  34. Yamauchi, K., Naofumi, M., Sumida, H., Fukuta, S., & Hori, H. (2016). Comparison of morphological features in the femur between femoral neck fractures and femoral intertrochanteric fractures. Surgical and Radiologic Anatomy: SRA., 38, 775–780.

    Article  Google Scholar 

  35. Michelotti, J., & Clark, J. (1999). Femoral neck length and hip fracture risk. Journal of Bone and Mineral Research, 14, 1714–1720.

    Article  CAS  Google Scholar 

  36. Pasquier, G., Ducharne, G., Ali, E. S., Giraud, F., Mouttet, A., & Durante, E. (2010). Total hip arthroplasty offset measurement: Is CT scan the most accurate option? Orthopaedics & Traumatology, Surgery & Research: OTSR., 96, 367–375.

    Article  CAS  Google Scholar 

  37. Than, P., Szuper, K., Somoskeoy, S., Warta, V., & Illes, T. (2012). Geometrical values of the normal and arthritic hip and knee detected with the EOS imaging system. International Orthopaedics, 36, 1291–1297.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank to Selcen Yüksel (M.Sc., Ph.D.) Assoc. Prof., Dept. of Biostatistics, for their valuable contributions running the statistical analysis of this study.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilge İpek Torun.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical standard statement

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Informed consent

For this type of study informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torun, B.İ., Kendir, S., Geneci, F. et al. Can Lateral Offset Be Used as a Predictive Marker for Proximal Femur Disorders?. JOIO 56, 614–620 (2022). https://doi.org/10.1007/s43465-021-00576-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43465-021-00576-2

Keywords

Navigation