Skip to main content

Collagen/Nano-hydroxyapatite Composite Scaffold Application with Exchange Reamed Nailing Accelerates Bone Union and Improves Quality of Life in Atrophic Femoral Shaft Nonunions: A Retrospective Comparative Study



Our aim in this study was to evaluate the effect of exchange intramedullary nailing in femoral shaft atrophic nonunions and the use of collagen/nano-hydroxyapatite composite scaffold applied in addition to the cancellous iliac crest autograft on the union, return to work, and quality of life.

Materials and Methods

Fifty-four patients with an atrophic nonunion in the isthmic region of the femoral shaft were included in the study. The patients were divided into two groups. Group A consisted of 24 patients who underwent collagen/nano-hydroxyapatite composite scaffold in addition to exchange intramedullary nailing and iliac autograft, while group B consisted of 30 patients without scaffold. Short Form-36 (SF-36) questionnaire scores, union rates, time to union, return to work were complications were compared.


Mean age of patients was 47.5 ± 14.1. The mean follow-up period was 3.56 ± 1.88 years. There was no statistically significant difference between Group A and B in terms of age, gender, smoking and alcohol use, and trauma mechanism. Time to union and return to work were statistically significantly shorter in Group A than in Group B (p = 0.004, p = 0.001). All of the SF-36 survey scores at month six were better in Group A. In the first year, mental health and general health perception were still statistically better in group A (p = 0.009, p = 0.008).


In the treatment of atrophic nonunions of the femoral shaft isthmic region, the use of collagen/nano-hydroxyapatite composite scaffolds together with exchange intramedullary nailing affects the union positively. This positive effect also brings about earlier return to work and better quality of life.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Winquist, R. A., Hansen, S. T., & Clawson, D. K. (1984). Closed intramedullary nailing of femoral fractures. A report of five hundred and twenty cases. Journal of Bone and Joint Surgery America, 66, 529–539.

    CAS  Article  Google Scholar 

  2. 2.

    Wolinsky, P. R., McCarty, E., Shyr, Y., & Johnson, K. (1999). Reamed intramedullary nailing of the femur: 551 cases. Journal of Trauma, 46, 392–399. PMID: 10088839.

    CAS  Article  Google Scholar 

  3. 3.

    Canadian Orthopaedic Trauma Society. (2003). Nonunion following intramedullary nailing of the femur with and without reaming. Results of a multicenter randomized clinical trial. Journal of Bone and Joint Surgery America, 85, 2093–2096.

    Article  Google Scholar 

  4. 4.

    Taitsman, L. A., Lynch, J. R., Agel, J., Barei, D. P., & Nork, S. E. (2009). Risk factors for femoral nonunion after femoral shaft fracture. Journal of Trauma, 67, 1389–1392.

    Article  Google Scholar 

  5. 5.

    Malik, M. H., Harwood, P., Diggle, P., & Khan, S. A. (2004). Factors affecting rates of infection and nonunion in intramedullary nailing. Journal of Bone and Joint Surgery. British Volume, 86, 556–560.

    CAS  Article  Google Scholar 

  6. 6.

    Lynch, J. R., Taitsman, L. A., Barei, D. P., & Nork, S. E. (2008). Femoral nonunion: Risk factors and treatment options. Journal of American Academy of Orthopaedic Surgeons, 16, 88–97.

    Article  Google Scholar 

  7. 7.

    Bellabarba, C., Ricci, W. M., & Bolhofner, B. R. (2001). Results of indirect reduction and plating of femoral shaft nonunions after intramedullary nailing. Journal of Orthopaedic Trauma, 15, 254–263.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Luo, H., Su, Y., Ding, L., Xiao, H., Wu, M., & Xue, F. (2019). Exchange nailing versus augmentative plating in the treatment of femoral shaft nonunion after intramedullary nailing: A meta-analysis. EFORT Open Rev, 6(4), 513–518.

    Article  Google Scholar 

  9. 9.

    Zhang, W., Zhang, Z., Li, J., Zhang, L., Chen, H., & Tang, P. (2018). Clinical outcomes of femoral shaft non-union: Dual plating versus exchange nailing with augmentation plating. Journal of Orthopaedic Surgery and Research, 20(13), 295.

    Article  Google Scholar 

  10. 10.

    Uliana, C. S., Bidolegui, F., Kojima, K., & Giordano, V. (2020). Augmentation plating leaving the nail in situ is an excellent option for treating femoral shaft nonunion after IM nailing: A multicentre study. European Journal of Trauma and Emergency Surgery.

    Article  PubMed  Google Scholar 

  11. 11.

    Park, J., Kim, S. G., Yoon, H. K., & Yang, K. H. (2010). The treatment of nonisthmal femoral shaft nonunions with im nail exchange versus augmentation plating. Journal of Orthopaedic Trauma, 24, 89–94.

    Article  PubMed  Google Scholar 

  12. 12.

    Pihlajamäki, H. K., Salminen, S. T., & Böstman, O. M. (2002). The treatment of nonunions following intramedullary nailing of femoral shaft fractures. Journal of Orthopaedic Trauma, 16, 394–402.

    Article  PubMed  Google Scholar 

  13. 13.

    Wu, C. C., & Chen, W. J. (2002). Exchange nailing for aseptic nonunion of the femoral shaft. International Orthopaedics, 26, 80–84.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Furlong, A. J., Giannoudis, P. V., DeBoer, P., Matthews, S. J., MacDonald, D. A., & Smith, R. M. (1999). Exchange nailing for femoral shaft aseptic non-union. Injury, 30, 245–249.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Hierholzer, C., Glowalla, C., Herrler, M., von Rüden, C., Hungerer, S., Bühren, V., & Friederichs, J. (2014). Reamed intramedullary exchange nailing: Treatment of choice of aseptic femoral shaft nonunion. Journal of Orthopaedic Surgery and Research, 10(9), 88.

    Article  Google Scholar 

  16. 16.

    Kang, S. W., Kim, J. S., Park, K. S., Cha, B. H., Shim, J. H., Kim, J. Y., Cho, D. W., Rhie, J. W., & Lee, S. H. (2011). Surface modification with fibrin/hyaluronic acid hydrogel on solid-free form-based scaffolds followed by BMP-2 loading to enhance bone regeneration. Bone, 48, 298–306.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Singh, B. N., Veeresh, V., Mallick, S. P., Sinha, S., Rastogi, A., & Srivastava, P. (2020). Generation of scaffold incorporated with nanobioglass encapsulated in chitosan/chondroitin sulfate complex for bone tissue engineering. International Journal of Biological Macromolecules, 15(153), 1–16.

    CAS  Article  Google Scholar 

  18. 18.

    Veeresh, V., Sinha, S., Manjhi, B., Singh, B. N., Rastogi, A., & Srivastava, P. (2021). How is biodegradable scaffold effective in gap non-union? Insights from an Experiment. Indian J Orthop, 3(55), 741–748.

    Article  Google Scholar 

  19. 19.

    Singh, V., Singh, M., Belbase, R. J., & Rastogi, A. (2021). Healing of artificially created gap non-union using autologous cultured osteoblasts impregnated over three-dimensional biodegradable scaffold: An experimental study (Rabbit). Indian Journal of Orthopaedics.

    Article  PubMed  Google Scholar 

  20. 20.

    Tang, Q., Hu, Z., Jin, H., Zheng, G., Yu, X., Wu, G., Liu, H., Zhu, Z., Xu, H., Zhang, C., & Shen, L. (2019). Microporous polysaccharide multilayer coated BCP composite scaffolds with immobilised calcitriol promote osteoporotic bone regeneration both in vitro and in vivo. Theranostics, 30(9), 1125–1143.;11:6524-6525

    Article  Google Scholar 

  21. 21.

    Song, Y., Wu, H., Gao, Y., Li, J., Lin, K., Liu, B., Lei, X., Cheng, P., Zhang, S., Wang, Y., Sun, J., Bi, L., & Pei, G. (2020). Zinc silicate/nano-hydroxyapatite/collagen scaffolds promote angiogenesis and bone regeneration via the p38 MAPK pathway in activated monocytes. ACS Applied Materials & Interfaces, 8(12), 16058–16075.

    CAS  Article  Google Scholar 

  22. 22.

    Lei, X., Gao, J., Xing, F., Zhang, Y., Ma, Y., & Zhang, G. (2019). Comparative evaluation of the physicochemical properties of nano-hydroxyapatite/collagen and natural bone ceramic/collagen scaffolds and their osteogenesis-promoting effect on MC3T3-E1 cells. Regenerative Biomaterials, 6, 361–371.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Tay, W. H., de Steiger, R., Richardson, M., Gruen, R., & Balogh, Z. J. (2014). Health outcomes of delayed union and nonunion of femoral and tibial shaft fractures. Injury, 45, 1653–1658.

    Article  PubMed  Google Scholar 

  24. 24.

    Lin, C. J., Chiang, C. C., Wu, P. K., Chen, C. F., Huang, C. K., Su, A. W., Chen, W. M., Liu, C. L., & Chen, T. H. (2012). Effectiveness of plate augmentation for femoral shaft nonunion after nailing. Journal of the Chinese Medical Association, 75, 396–401.

    Article  PubMed  Google Scholar 

  25. 25.

    Vaishya, R., Agarwal, A. K., Gupta, N., & Vijay, V. (2016). Plate augmentation with retention of intramedullary nail is effective for resistant femoral shaft non-union. Journal of Orthopaedics, 25(13), 242–245.

    Article  Google Scholar 

  26. 26.

    Banaszkiewicz, P. A., Sabboubeh, A., McLeod, I., & Maffulli, N. (2003). Femoral exchange nailing for aseptic non-union: Not the end to all problems. Injury, 34, 349–356.

    Article  PubMed  Google Scholar 

  27. 27.

    Weresh, M. J., Hakanson, R., Stover, M. D., Sims, S. H., Kellam, J. F., & Bosse, M. J. (2000). Failure of exchange reamed intramedullary nails for ununited femoral shaft fractures. Journal of Orthopaedic Trauma, 14, 335–338.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Nadkarni, B., Srivastav, S., Mittal, V., & Agarwal, S. (2008). Use of locking compression plates for long bone nonunions without removing existing intramedullary nail: Review of literature and our experience. Journal of Trauma, 65, 482–486.

    Article  Google Scholar 

  29. 29.

    Ru, J. Y., Niu, Y. F., Cong, Y., Kang, W. B., Cang, H. B., & Zhao, J. N. (2015). Exchanging reamed nailing versus augmentative compression plating with autogenous bone grafting for aseptic femoral shaft nonunion: A retrospective cohort study. Acta Orthopaedica et Traumatologica Turcica, 49, 668–675.

    Article  PubMed  Google Scholar 

  30. 30.

    Watanabe, Y., Takenaka, N., Kobayashi, M., & Matsushita, T. (2013). Infra-isthmal fracture is a risk factor for nonunion after femoral nailing: A case-control study. Journal of Orthopaedic Science, 18, 76–80.

    Article  PubMed  Google Scholar 

  31. 31.

    Ueng, S. W., Chao, E. K., Lee, S. S., & Shih, C. H. (1997). Augmentative plate fixation for the management of femoral nonunion after intramedullary nailing. Journal of Trauma, 43, 640–644.

    CAS  Article  Google Scholar 

  32. 32.

    Lai, P. J., Hsu, Y. H., Chou, Y. C., Yeh, W. L., Ueng, S. W. N., & Yu, Y. H. (2019). Augmentative antirotational plating provided a significantly higher union rate than exchanging reamed nailing in treatment for femoral shaft aseptic atrophic nonunion—retrospective cohort study. BMC Musculoskeletal Disorders, 25(20), 127.

    Article  Google Scholar 

  33. 33.

    Millar, M. J., Wilkinson, A., Navarre, P., Steiner, J., Vohora, A., Hardidge, A., & Edwards, E. (2018). Nail fit: Does nail diameter to canal ratio predict the need for exchange nailing in the setting of aseptic, hypertrophic femoral nonunions? Journal of Orthopaedic Trauma, 32, 245–250.

    Article  PubMed  Google Scholar 

  34. 34.

    Makvandi, P., Ali, G. W., Della Sala, F., Abdel-Fattah, W. I., & Borzacchiello, A. (2020). Hyaluronic acid/corn silk extract based injectable nanocomposite: A biomimetic antibacterial scaffold for bone tissue regeneration. Materials Science & Engineering, C: Materials for Biological Applications, 107, 110195.

    CAS  Article  Google Scholar 

  35. 35.

    Kir, M. Ç. (2019). Hyaluronic acid-based mesh add-on iliac autograft improves bone healing and functional outcomes in atrophic nonunion of clavicular midshaft: A 2-year followup. Indian Journal of Orthopaedics, 53, 459–464.

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Tekin, A. C., Esenyel, C. Z., Cakar, M., Esenyel, M., Ozcan, Y., & Saygili, M. S. (2013). Hyalonect in the treatment of pseudarthrosis. Acta Orthopaedica et Traumatologica Turcica, 47, 379–386.

    Article  PubMed  Google Scholar 

  37. 37.

    Sharma, A., Brand, D., Fairbank, J., Ye, H., Lavy, C., & Czernuszka, J. (2017). A self-organising biomimetic collagen/nano-hydroxyapatite-glycosaminoglycan scaffold for spinal fusion. Journal of Materials Science, 52, 12574–12592.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Sohn, H. S., & Oh, J. K. (2019). Review of bone graft and bone substitutes with an emphasis on fracture surgeries. Biomater Res, 14(23), 9.

    Article  Google Scholar 

  39. 39.

    Xie, J., Baumann, M. J., & McCabe, L. R. (2004). Osteoblasts respond to hydroxyapatite surfaces with immediate changes in gene expression. Journal of Biomedical Materials Research. Part A, 1(71), 108–117.

    CAS  Article  Google Scholar 

  40. 40.

    Scabbia, A., & Trombelli, L. (2004). A comparative study on the use of a HA/collagen/chondroitin sulphate biomaterial (Biostite) and a bovine-derived HA xenograft (Bio-Oss) in the treatment of deep intra-osseous defects. Journal of Clinical Periodontology, 31, 348–355.

    CAS  Article  PubMed  Google Scholar 

Download references


The authors received no financial support for the research, authorship, and/or publication of this article.

Author information



Corresponding author

Correspondence to Nevzat Gönder.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical approval

The study protocol was approved by the Local Scientific Research Ethics Committee.

Informed consent

For this type of study, informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gönder, N., Demir, İ.H., Öğümsöğütlü, E. et al. Collagen/Nano-hydroxyapatite Composite Scaffold Application with Exchange Reamed Nailing Accelerates Bone Union and Improves Quality of Life in Atrophic Femoral Shaft Nonunions: A Retrospective Comparative Study. JOIO (2021).

Download citation


  • Scaffold
  • Collagen
  • Hydroxyapatite
  • Nonunion
  • Femur
  • Exchange nailing