Skip to main content
Log in

Narrative Review on the Role of Imaging in DDH

  • Review Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Background

Developmental dysplasia of hip (DDH) represents a spectrum from acetabular dysplasia to fixed dislocation, giving disability through premature osteoarthritis. Most DDH cases continue to present without any known risk factors such as breech presentation, female sex, and family history. Incidence and population-based outcomes of DDH are difficult to reliably establish due to many DDH definitions and classifications using different types of examinations.

Purpose

This review takes a historical perspective on the role of imaging in DDH.

Methods

Pelvic radiographs (X-Ray) were amongst the first medical images identifying DDH, but these have a limited role in infancy due to absent ossification. In the 1980s, ultrasound led to a large expansion in infant DDH screening. Unfortunately, even for well-trained users, DDH indices on ultrasound generally lack reproducibility, and have led to overdiagnosis of mild DDH. CT and MRI more thoroughly evaluate the 3D hip deformity in DDH, but are costly, less available and involve radiation dose and/or anaesthesia.

Results

Recently 3D ultrasound has been used to characterize the 3D deformity of DDH more fully, with improved inter-observer reliability, particularly amongst novice users. 3D ultrasound is also well suited to automated image analysis, but high-resolution 3D probes are costly and not widely available.

Conclusion

Combining the latest handheld portable ultrasound probes and artificial intelligence analysis could lead to an inexpensive tool permitting practical mass population screening for DDH. Overall, our understanding of DDH is heavily influenced by the imaging tools used to visualize it and changing quickly with modern technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Beaulé, P. E. (2020). Hip Dysplasia. Springer Nature.

  2. Dupuytren, G. (1964). Original or congenital displacement of the heads OF THIGH-bones. Clinical Orthopaedics and Related Research, 33, 3–8.

    Article  Google Scholar 

  3. Klisic, P. J. (1989). Congenital dislocation of the hip–a misleading term: brief report. Journal of Bone and Joint Surgery. British Volume, 71(1), 136. https://doi.org/10.1302/0301-620X.71B1.2914985 PMID: 2914985.

    Article  CAS  Google Scholar 

  4. Seringe, R., Bonnet, J.-C., & Katti, E. (2014). Pathogeny and natu- ral history of congenital dislocation of the hip. Orthopaedics and Traumatology: Surgery and Research, 100(1), 59–67. https://doi.org/10.1016/j.otsr.2013.12.006

    Article  CAS  Google Scholar 

  5. Bialik, V., Bialik, G. M., Blazer, S., Sujov, P., Wiener, F., & Berant, M. (1999). Developmental dysplasia of the hip: a new approach to incidence. Pediatrics, 103(1), 93–99. https://doi.org/10.1542/peds.103.1.93 PMID: 9917445.

    Article  CAS  PubMed  Google Scholar 

  6. Barlow, T. G. (1963). Early diagnosis and treatment of congenital dislocation of the hip. Proceedings of the Royal Society of Medicine, 56(9), 804–806. PMID: 14080075; PMCID: PMC1897214.

    Article  CAS  Google Scholar 

  7. Barlow, T. G. (1964). Congenital dislocation of the hip. Early diagnosis and treatment. London Clinical Medicine Journal, 5, 47–58.

    CAS  Google Scholar 

  8. Ortolani, M. (1976). Congenital hip dysplasia in the light of early and very early diagnosis. Clinical Orthopaedics and Related Research, 119, 6–10.

    Google Scholar 

  9. Weinstein, S. L., Mubarak, S. J., & Wenger, D. R. (2014). Fundamental concepts of developmental dysplasia of the hip. Instructional Course Lectures, 63, 299–305.

    PubMed  Google Scholar 

  10. Tönnis, D. (1976). Normal values of the hip joint for the evaluation of X-rays in children and adults. Clinical Orthopaedics and Related Research, 119, 39–47. PMID: 954321.

    Google Scholar 

  11. Noordin, S., Umer, M., Hafeez, K., & Nawaz, H. (2010). Developmental dysplasia of the hip. Orthopedic Review (Pavia)., 2(2), e19. https://doi.org/10.4081/or.2010.e19.PMID:21808709;PMCID:PMC3143976

    Article  PubMed Central  Google Scholar 

  12. Unni, Narayanan, Kishore, Mulpuri, Sankar, Wudbhav N., Nicholas, Clarke, Harish, Hosalkar, & Price Charles, T. (2015). FAAP International Hip Dysplasia Institute Reliability of a new radiographic classification for developmental dysplasia of the hip. Journal of Pediatric Orthopaedics, 35(5), 478–484.

    Article  Google Scholar 

  13. Akiyama, M., Nakashima, Y., Fujii, M., Sato, T., Yamamoto, T., Mawatari, T., Motomura, G., Matsuda, S., & Iwamoto, Y. (2012). Femoral anteversion is correlated with acetabular version and coverage in Asian women with anterior and global deficient subgroups of hip dysplasia: a CT study. Skeletal Radiology, 41(11), 1411–1418. https://doi.org/10.1007/s00256-012-1368-7 Epub 2012 Feb 13 PMID: 22327395.

    Article  PubMed  Google Scholar 

  14. Nepple Jeffrey, J., Joel, Wells, Ross James, R., Asheesh, Bedi, Schoenecker Perry, L., & Clohisy John, C. (2017). Three patterns of acetabular deficiency are common in young adult patients with acetabular dysplasia. Clinical Orthopaedics and Related Research., 475(4), 1037–1044.

    Article  CAS  Google Scholar 

  15. Fujii, M., Nakashima, Y., Sato, T., Akiyama, M., & Iwamoto, Y. (2012). Acetabular tilt correlates with acetabular version and coverage in hip dysplasia. Clinical Orthopaedics and Related Research, 470(10), 2827–35. https://doi.org/10.1007/s11999-012-2370-z Epub 2012 Apr 28. PMID: 22544668; PMCID: PMC3441999.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hartofilakidis, G., Stamos, K., & Ioannidis, T. T. (1988). Low friction arthroplasty for old untreated congeni- tal dislocation of the hip. Journal of Bone and Joint Surgery. British Volume, 70(2), 182–186.

    Article  CAS  Google Scholar 

  17. Hartofilakidis, G., Yiannakopoulos, C. K., & Babis, G. C. (2008). The morphologic variations of low and high hip dislocation. Clinical Orthopaedics and Related Research, 466(4), 820–4. https://doi.org/10.1007/s11999-008-0131-9 Published online 2008 Feb 21.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hartofilakidis, G., Stamos, K., Karachalios, T., Ioannidis, T. T., & Zacharakis, N. (1996). Congenital hip disease in adults. Classification of acetabular deficiencies and operative treatment with acetabuloplasty combined with total hip arthroplasty. The Journal of Bone and Joint Surgery, 78(5), 683–92.

    Article  CAS  Google Scholar 

  19. Wilkin, G. P., Ibrahim, M. M., Smit, K. M., & Beaulé, P. E. (2017). A Contemporary definition of hip dysplasia and structural instability: toward a comprehensive classification for acetabular dysplasia. Journal of Arthroplasty, 32(9S), S20–S27. https://doi.org/10.1016/j.arth.2017.02.067 Epub 2017 Mar 3 PMID: 28389135.

    Article  Google Scholar 

  20. Wells, J., Nepple, J. J., Crook, K., Ross, J. R., Bedi, A., Schoenecker, P., & Clohisy, J. C. (2017). Femoral morphology in the dysplastic hip: three-dimensional characterizations with CT. Clinical Orthopaedics and Related Research, 475(4), 1045–1054. https://doi.org/10.1007/s11999-016-5119-2.PMID:27752989;PMCID:PMC5339134

    Article  PubMed  Google Scholar 

  21. Jaremko, J. L., Wang, C. C., & Dulai, S. (2014). Reliability of indices measured on infant hip MRI at time of spica cast application for dysplasia. Hip International, 24(4), 405–16. https://doi.org/10.5301/hipint.5000143 Epub 2014 May 30. PMID: 24970320.

    Article  PubMed  Google Scholar 

  22. Hesham, K., Carry, P. M., Freese, K., Kestel, L., Stewart, J. R., Delavan, J. A., & Novais, E. N. (2017). Measurement of femoral version by MRI is as reliable and reproducible as CT in children and adolescents with hip disorders. Journal of Pediatric Orthopedics, 37(8), 557–562. https://doi.org/10.1097/BPO.0000000000000712.PMID:28323254;PMCID:PMC5368029

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jia, H., Wang, L., Chang, Y., et al. (2020). Assessment of irreducible aspects in developmental hip dysplasia by magnetic resonance imaging. BMC Pediatrics, 20, 550. https://doi.org/10.1186/s12887-020-02420-2

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rosenbaum, Daniel G., et al. (2016). “MR imaging in postreduction assessment of developmental dysplasia of the hip: goals and obstacles.” radiographics, no. 3. Radiological Society of North America (RSNA). https://doi.org/10.1148/rg.2016150159

    Article  Google Scholar 

  25. Onaç, O., Alpay, Y., Yapıcı, F., & Bayhan, A. İ. (2021). Correlation of postoperative magnetic resonance image measurements with persisting acetabular dysplasia in open reduction of developmental hip dysplasia. Joint Diseases and Related Surgery, 32(2), 461–467. https://doi.org/10.52312/jdrs.2021.48 Epub 2021 Jun 11. PMID: 34145825; PMCID: PMC8343841.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shi, X. T., Li, C. F., Cheng, C. M., Feng, C. Y., Li, S. X., & Liu, J. G. (2019). Preoperative planning for total hip arthroplasty for neglected developmental dysplasia of the hip. Orthopedic Surgery, 11(3), 348–355. https://doi.org/10.1111/os.12472

    Article  Google Scholar 

  27. Albers, C. E., Rogers, P., Wambeek, N., Ahmad, S. S., Yates, P. J., & Prosser, G. H. (2017). Preoperative planning for redirective, periacetabular osteotomies. Journal of Hip Preservation Surgery, 4(4), 276–288. https://doi.org/10.1093/jhps/hnx030 PMID:29250336;PMCID:PMC5721378.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tallroth, Kaj, & Lepistö, Jyri. (2006). Computed tomography measurement of acetabular dimensions: normal values for correction of dysplasia. Acta Orthopaedica. https://doi.org/10.1080/17453670610012665

    Article  PubMed  Google Scholar 

  29. Shalaby, M.H., Samir, S., Deif, A (2017). CT measurement of femoral anteversion angle in patients with unilateral developmental hip dysplasia: A comparative study between 2D and 3D techniques. Egyptian Journal of Radiology and Nuclear Medicine 48(3), 639–643.

    Article  Google Scholar 

  30. Ahmed, A., Amin, Mohie El, & Fadel, Din. (2019). Role of intraoperative arthrogram in decision making of closed versus medial open reduction of developmental hip dysplasia. International Journal of Research in Orthopaedics, 5, 1037.

    Article  Google Scholar 

  31. Grissom, L., Harcke, H. T., & Thacker, M. (2008). Imaging in the surgical management of developmental dislocation of the hip. Clinical Orthopaedics and Related Research, 466(4), 791–801. https://doi.org/10.1007/s11999-008-0161-3 Epub 2008 Feb 21. PMID: 18288547; PMCID: PMC2504666.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Graf, R. (1984). Classification of hip joint dysplasia by means of sonography. Archives of Orthopaedic and Trauma Surgery, 102(4), 248–255.

    Article  CAS  Google Scholar 

  33. Graf, R. (1984). Fundamentals of sonographic diagno sis of infant hip dysplasia. Journal of Pediatric Orthopedics, 4(6), 735–740.

    Article  CAS  Google Scholar 

  34. Graf, R. (1997). Ultrasonography-guided therapy. Der Orthopäde, 26(1), 33–42.

    CAS  PubMed  Google Scholar 

  35. Rosendahl, K., Aslaksen, A., Lie, R. T., & Markestad, T. (1995). Reliability of ultrasound in the early diagnosis of developmental dysplasia of the hip. Pediatric Radiology, 25(3), 219–224. https://doi.org/10.1007/BF02021541 PMID: 7644309.

    Article  CAS  PubMed  Google Scholar 

  36. Simon, E. A., Saur, F., Buerge, M., Glaab, R., Roos, M., & Kohler, G. (2004). Inter-observer agreement of ultrasonographic measurement of alpha and beta angles and the final type classification based on the Graf method. Swiss Medical Weekly, 134(45–46), 671–677. PMID: 15611889.

    CAS  PubMed  Google Scholar 

  37. Roovers, E. A., Boere-Boonekamp, M. M., Geertsma, T. S., Zielhuis, G. A., & Kerkhoff, A. H. (2003). Ultrasonographic screening for developmental dysplasia of the hip in infants. Reproducibility of assessments made by radiographers. The Journal of Bone and Joint Surgery, 85(5), 726–30. PMID: 12892198.

    Article  CAS  Google Scholar 

  38. Orak, M. M., Onay, T., Çağırmaz, T., Elibol, C., Elibol, F. D., & Centel, T. (2015). The reliability of ultrasonography in developmental dysplasia of the hip: How reliable is it in different hands? Indian Journal of Orthopedic, 49(6), 610–4. https://doi.org/10.4103/0019-5413.168753 PMID: 26806967; PMCID: PMC4705726.

    Article  Google Scholar 

  39. Dias, J. J., Thomas, I. H., Lamont, A. C., Mody, B. S., & Thompson, J. R. (1993). The reliability of ultrasonographic assessment of neonatal hips. Journal of Bone and Joint Surgery. British Volume, 75(3), 479–482. https://doi.org/10.1302/0301-620X.75B3.8496227 PMID: 8496227.

    Article  CAS  Google Scholar 

  40. Jaremko, J. L., Mabee, M., Swami, V. G., Jamieson, L., Chow, K., & Thompson, R. B. (2014). Potential for change in US diagnosis of hip dysplasia solely caused by changes in probe orientation: patterns of alpha-angle variation revealed by using three-dimensional US. Radiology, 273(3), 870–878. https://doi.org/10.1148/radiol.14140451 Epub 2014 Jun 25 PMID: 24964047.

    Article  PubMed  Google Scholar 

  41. Mostofi, E., Chahal, B., Zonoobi, D., et al. (2019). Reliability of 2D and 3D ultrasound for infant hip dysplasia in the hands of novice users. European Radiology, 29, 1489–1495. https://doi.org/10.1007/s00330-018-5699-1

    Article  PubMed  Google Scholar 

  42. Zonoobi, D., Hareendranathan, A., Mostofi, E., Mabee, M., Pasha, S., Cobzas, D., Rao, P., Dulai, S. K., Kapur, J., & Jaremko, J. L. (2018). Developmental hip dysplasia diagnosis at three-dimensional US: a Multicenter Study. Radiology, 287(3), 1003–1015. https://doi.org/10.1148/radiol.2018172592 Epub 2018 Apr 24 PMID: 29688160.

    Article  PubMed  Google Scholar 

  43. Quader, N., Hodgson, A. J., Mulpuri, K., Cooper, A., & Abugharbieh, R. (2017). A 3D femoral head coverage metric for enhanced reliability in diagnosing hip dysplasia. In M. Descoteaux, L. Maier-Hein, A. Franz, P. Jannin, D. Collins, & S. Duchesne (Eds.), Medical image computing and computer assisted intervention—MICCAI 2017. MICCAI 2017. Lecture notes in computer science. Cham: Springer.

    Google Scholar 

  44. Quader, N. (2018). Automatic characterization of developmental dysplasia of the hip in infants using ultrasound imaging (T). University of British Columbia. Retrieved from https://open.library.ubc.ca/collections/ubctheses/24/items/1.0364129

  45. Stoica, Z., Dumitrescu, D., Popescu, M., Gheonea, I., Gabor, M., & Bogdan, N. (2009). Imaging of avascular necrosis of femoral head: familiar methods and newer trends. Current Health Sciences Journal, 35(1), 23–28. PMID: 24778812; PMCID: PMC3945237.

    PubMed  PubMed Central  Google Scholar 

  46. Resnick, D., & Niwayama, G. (1995). Osteonecrosis: diagnostic techniques, special situations and complications. In D. Resnick (Ed.), Diagnosis of bone and joint disorders (3rd ed., pp. 3495–3558). Philadelphia: WB Saunders Co.

    Google Scholar 

  47. Ntoulia, A., Barnewolt, C. E., Doria, A. S., Ho-Fung, V. M., Lorenz, N., Mentzel, H. J., & Back, S. J. (2021). Contrast-enhanced ultrasound for musculoskeletal indications in children. Pediatric Radiology. https://doi.org/10.1007/s00247-021-04964-6 Epub ahead of print. PMID: 33783575.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Back, S. J., Chauvin, N. A., Ntoulia, A., Ho-Fung, V. M., Calle Toro, J. S., Sridharan, A., Morgan, T. A., Kozak, B., Darge, K., & Sankar, W. N. (2020). Intraoperative contrast-enhanced ultrasound imaging of femoral head perfusion in developmental dysplasia of the hip: a feasibility Study. Journal of Ultrasound in Medicine, 39(2), 247–257. https://doi.org/10.1002/jum.15097 Epub 2019 Jul 23 PMID: 31334874.

    Article  PubMed  Google Scholar 

  49. Gornitzky, A. L., Georgiadis, A. G., Seeley, M. A., Horn, B. D., & Sankar, W. N. (2016). Does perfusion MRI after closed reduction of developmental dysplasia of the hip reduce the incidence of avascular necrosis? Clinical Orthopaedics and Related Research, 474(5), 1153–1165. https://doi.org/10.1007/s11999-015-4387-6.PMID:26092677;PMCID:PMC4814438

    Article  PubMed  Google Scholar 

  50. Tiderius, C., Jaramillo, D., Connolly, S., Griffey, M., Rodriguez, D. P., Kasser, J. R., Millis, M. B., Zurakowski, D., & Kim, Y. J. (2009). Post-closed reduction perfusion magnetic resonance imaging as a predictor of avascular necrosis in developmental hip dysplasia: a preliminary report. Journal of Pediatric Orthopedics, 29(1), 14–20. https://doi.org/10.1097/BPO.0b013e3181926c40 PMID: 19098638.

    Article  PubMed  Google Scholar 

  51. Hareendranathan, A. R., Mabee, M., Punithakumar, K., Noga, M., & Jaremko, J. L. (2016). A technique for semiautomatic segmentation of echogenic structures in 3D ultrasound, applied to infant hip dysplasia. International Journal of Computer Assisted Radiology and Surgery, 11(1), 31–42. https://doi.org/10.1007/s11548-015-1239-5 Epub 2015 Jun 20 PMID: 26092660.

    Article  PubMed  Google Scholar 

  52. El-Hariri, H. (2020). Reliable and robust hip dysplasia measurement with three-dimensional ultrasound and convolutional neural networks (T). University of British Columbia. Retrieved from https://open.library.ubc.ca/collections/ubctheses/24/items/1.0389533

  53. Çiçek Ö., Abdulkadir A., Lienkamp S.S., Brox T., Ronneberger O. (2016) 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. In: Ourselin S., Joskowicz L., Sabuncu M., Unal G., Wells W. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. MICCAI 2016. Lecture Notes in Computer Science, vol 9901. Springer, Cham. https://doi.org/10.1007/978-3-319-46723-8_49

  54. Golan, D., Donner, Y., Mansi, C., Jaremko, J., Ramachandran, M., & on behalf of CUDL, , et al. (2016). Fully automating Graf’s method for DDH diagnosis using deep convolutional neural networks. In G. Carneiro (Ed.), Deep learning and data labeling for medical applications. DLMIA 2016 LABELS 2016. Lecture Notes in Computer Science. Cham: Springer.

    Google Scholar 

  55. Z. Zhang, M. Tang, D. Cobzas, D. Zonoobi, M. Jagersand and J. L. Jaremko. End-to-end detection-segmentation network with ROI convolution. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 2018, pp. 1509–1512. https://doi.org/10.1109/ISBI.2018.8363859.

  56. M. Tang, Z. Zhang, D. Cobzas, M. Jagersand and J. L. Jaremko. Segmentation-by-detection: A cascade network for volumetric medical image segmentation. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 2018, pp. 1356–1359. https://doi.org/10.1109/ISBI.2018.8363823.

  57. Houssam El-Hariri, Antony J. Hodgson, Kishore Mulpuri, Rafeef Garbi, Automatically delineating key anatomy in 3-D ultrasound volumes for hip dysplasia screening, ultrasound in medicine & biology, 2021, ISSN 0301–5629. https://doi.org/10.1016/j.ultrasmedbio.2021.05.011.

  58. Expert Panel on Pediatric Imaging: Jie C. Nguyen, MD, MSa ; Scott R. Dorfman, MDb ; Cynthia K. Rigsby, MDc ; Ramesh S. Iyer, MDd ; Adina L. Alazraki, MDe ; Sudha A. Anupindi, MDf ; Dianna M. E. Bardo, MDg ; Brandon P. Brown, MDh ; Sherwin S. Chan, MD, PhDi ; Tushar Chandra, MDj ; Matthew D. Garber, MDk ; Michael M. Moore, MDl ; Nirav K. Pandya, MDm; Narendra S. Shet, MDn ; Alan Siegel, MD, MSo ; Boaz Karmazyn, MD.p, Developmental Dysplasia of the Hip (DDH)–Child. Available at https://acsearch.acr.org/docs/69437/Narrative/. American College of Radiology. Accessed Aug 19, 2021

  59. Clinical practice guideline: early detection of developmental dysplasia of the hip. Committee on Quality Improvement, Subcommittee on Developmental Dysplasia of the Hip. American Academy of Pediatrics. Pediatrics 2000;105:896–905.

  60. Mulpuri, K., Song, K. M., Goldberg, M. J., & Sevarino, K. (2015). Detection and nonoperative management of pediatric developmental dysplasia of the hip in infants up to six months of age. Journal of American Academy of Orthopaedic Surgeons, 23, 202–205.

    Article  Google Scholar 

  61. American Journal of Roentgenology. 2014;203: 1324–1335. https://doi.org/10.2214/AJR.13.12449

  62. von Kries, R., Ihme, N., Oberle, D., Lorani, A., Stark, R., Altenhofen, L., & Niethard, F. U. (2003). Effect of ultrasound screening on the rate of first operative procedures for developmental hip dysplasia in Germany. Lancet, 362(9399), 1883–1887. https://doi.org/10.1016/S0140-6736(03)14957-4 PMID: 14667743.

    Article  Google Scholar 

Download references

Acknowledgements

Jacob L. Jaremko is grateful for the support of Medical Imaging Consultants, his Canada CIFAR AI Chair, WCHRI and his assistant Carol Rae.

Author information

Authors and Affiliations

Authors

Contributions

SG contributed conceptualization, investigation, data curation, writing—original draft. ARH contributed methodology, data curation, writing—review and editing. JLJ contributed conceptualization, methodology, data curation, writing—review and editing, supervision.

Corresponding author

Correspondence to Siyavash Ghasseminia.

Ethics declarations

Conflict of interest

Jacob L. Jaremko is co-founder of MEDO.ai, a start-up company focused on the use of AI to automate analysis of ultrasound images including for hip dysplasia. Siyavash Ghasseminia and Abhilash Rakkunedeth Hareendranathan declare that they have no conflict of interest.

Ethical standard statement

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Informed consent

For this type of study informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasseminia, S., Hareendranathan, A.R. & Jaremko, J.L. Narrative Review on the Role of Imaging in DDH. JOIO 55, 1456–1465 (2021). https://doi.org/10.1007/s43465-021-00511-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43465-021-00511-5

Keywords

Navigation