Skip to main content

Advertisement

Log in

How is Biodegradable Scaffold Effective in Gap Non-union? Insights from an Experiment

  • Original Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Objective

To evaluate the role of composite (Chitosan/Chondroitin sulphate/gelatin/nano-bioglass) scaffold in the union of critical size bone defect created in the rabbit’s ulna.

Methods

The composite (Chitosan/Chondroitin sulphate/gelatin/nano-bioglass) scaffold was fabricated using the freeze-drying technique under standard laboratory conditions. The scaffold was cut into the appropriate size and transferred into the defect created (critical bone size defect 1 cm) over the right ulna in the rabbit. The scaffold was not implanted on the left side thus the left side ulna served as control. Results were assessed on serial radiological examination. Rabbits were sacrificed at 20 weeks for histopathological examination (Haematoxylin–Eosin staining and Mason’s trichrome staining) and scanning electron microscope observation. Radiological scoring was done by Lane and Sandhu’s scoring.

Results

Among 12 rabbits, 10 could complete the follow-up. Among those 10 rabbits, 8 among the test group showed good evidence of bone formation at the gap non-union scaffold implanted site. Histological evidence of new bone formation, collagen synthesis, scaffold resorption, minimal chondrogenesis was evident by 20 weeks in the test group. Two rabbits had poor bone formation.

Conclusion

The chitosan-chondroitin sulphate-gelatin-nano-bioglass composite scaffold is efficient in osteoconduction and osteoinduction in the gap non-union model as it is biocompatible, bioactive, and non-immunogenic as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Turnbull, G., Clarke, J., Picard, F., et al. (2017). 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater., 3(3), 278–314. https://doi.org/10.1016/j.bioactmat.2017.10.001.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Campana, V., Milano, G., Pagano, E., et al. (2014). Bone substitutes in orthopaedic surgery: from basic science to clinical practice. Journal of Materials Science. Materials in Medicine, 25(10), 2445–2461. https://doi.org/10.1007/s10856-014-5240-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Faour, O., Dimitriou, R., Cousins, C. A., & Giannoudis, P. V. (2011). The use of bone graft substitutes in large cancellous voids: any specific needs? Injury, 42(Suppl 2), S87-90. https://doi.org/10.1016/j.injury.2011.06.020.

    Article  PubMed  Google Scholar 

  4. Greenwald AS, Boden SD, Goldberg VM, et al. (2001) Bone-graft substitutes: facts, fictions, and applications. J Bone Joint Surg Am. 83-A(Suppl 2 Pt 2):98–103. doi: https://doi.org/10.2106/00004623-200100022-00007

  5. Cooper, G. M., Mooney, M. P., Gosain, A. K., Campbell, P. G., Losee, J. E., & Huard, J. (2010). Testing the “critical-size” in calvarial bone defects: revisiting the concept of a critical-sized defect (CSD). Plastic and Reconstructive Surgery, 125(6), 1685–1692. https://doi.org/10.1097/PRS.0b013e3181cb63a3.

    Article  CAS  PubMed  Google Scholar 

  6. Sohn, H.-S., & Oh, J.-K. (2019). Review of bone graft and bone substitutes with an emphasis on fracture surgeries. Biomaterials Research, 23(1), 9. https://doi.org/10.1186/s40824-019-0157-y.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Goulet, J. A., Senunas, L. E., DeSilva, G. L., & Greenfield, M. L. V. H. (1997). Autogenous iliac crest bone graft: complications and functional assessment. Clinical Orthopaedics and Related Research, 339, 76–81.

    Article  Google Scholar 

  8. Fernandez de Grado G, Keller L, Idoux-Gillet Y, et al. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. J Tissue Eng. 9:2041731418776819. doi: https://doi.org/10.1177/2041731418776819

  9. Schlickewei, W., & Schlickewei, C. (2007). The use of bone substitutes in the treatment of bone defects – the clinical view and history. Macromolecular Symposium, 253(1), 10–23. https://doi.org/10.1002/masy.200750702.

    Article  CAS  Google Scholar 

  10. Pryor, L. S., Gage, E., Langevin, C.-J., et al. (2009). Review of bone substitutes. Craniomaxillofacial Trauma Reconstr., 2(3), 151–160. https://doi.org/10.1055/s-0029-1224777.

    Article  Google Scholar 

  11. Singh, B. N., Veeresh, V., Mallick, S. P., et al. (2019). Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering. International Journal of Biological Macromolecules, 133, 817–830. https://doi.org/10.1016/j.ijbiomac.2019.04.107.

    Article  CAS  PubMed  Google Scholar 

  12. Singh, B. N., Veeresh, V., Mallick, S. P., Sinha, S., Rastogi, A., & Srivastava, P. (2020). Generation of scaffold incorporated with nanobioglass encapsulated in chitosan/chondroitin sulfate complex for bone tissue engineering. International Journal of Biological Macromolecules, 153, 1–16. https://doi.org/10.1016/j.ijbiomac.2020.02.173.

    Article  CAS  PubMed  Google Scholar 

  13. Lane, J. M., & Sandhu, H. S. (1987). Current approaches to experimental bone grafting. Orthopedic Clinics of North America, 18(2), 213–225.

    Article  CAS  Google Scholar 

  14. Jones, J. R. (2013). Review of bioactive glass: from Hench to hybrids. Acta Biomaterialia, 9(1), 4457–4486. https://doi.org/10.1016/j.actbio.2012.08.023.

    Article  CAS  PubMed  Google Scholar 

  15. Hench, L. L. (2006). The story of Bioglass. Journal of Materials Science. Materials in Medicine, 17(11), 967–978. https://doi.org/10.1007/s10856-006-0432-z.

    Article  CAS  PubMed  Google Scholar 

  16. Chaudhari, A., Braem, A., Vleugels, J., et al. (2011). Bone tissue response to porous and functionalized titanium and silica based coatings. PLoS ONE, 6(9), e24186. https://doi.org/10.1371/journal.pone.0024186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kawakami, T., Antoh, M., Hasegawa, H., Yamagishi, T., Ito, M., & Eda, S. (1992). Experimental study on osteoconductive properties of a chitosan-bonded hydroxyapatite self-hardening paste. Biomaterials, 13(11), 759–763. https://doi.org/10.1016/0142-9612(92)90014-F.

    Article  CAS  PubMed  Google Scholar 

  18. Zou, X. H., Foong, W. C., Cao, T., Bay, B. H., Ouyang, H. W., & Yip, G. W. (2004). Chondroitin sulfate in palatal wound healing. Journal of Dental Research, 83(11), 880–885. https://doi.org/10.1177/154405910408301111.

    Article  CAS  PubMed  Google Scholar 

  19. Büttner, M., Möller, S., Keller, M., et al. (2013). Over-sulfated chondroitin sulfate derivatives induce osteogenic differentiation of hMSC independent of BMP-2 and TGF-β1 signalling. Journal of Cellular Physiology, 228(2), 330–340. https://doi.org/10.1002/jcp.24135.

    Article  CAS  PubMed  Google Scholar 

  20. Kavya, K. C., Dixit, R., Jayakumar, R., Nair, S. V., & Chennazhi, K. P. (2012). Synthesis and characterization of chitosan/chondroitin sulfate/nano-SiO2 composite scaffold for bone tissue engineering. Journal of Biomedical Nanotechnology, 8(1), 149–160. https://doi.org/10.1166/jbn.2012.1363.

    Article  CAS  PubMed  Google Scholar 

  21. Criado Gonzalez, Miryam & Rey, Jose & Mijangos, C. & Hernandez, Rebeca (2016) Doublemembrane thermoresponsive hydrogels from gelatin and chondroitin sulphate with enhanced mechanical properties. RSC Adv 6:105821–105826

  22. Webster, T. J., Ergun, C., Doremus, R. H., Siegel, R. W., & Bizios, R. (2000). Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials, 21(17), 1803–1810. https://doi.org/10.1016/s0142-9612(00)00075-2.

    Article  CAS  PubMed  Google Scholar 

  23. Marelli, B., Ghezzi, C. E., Mohn, D., et al. (2011). Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function. Biomaterials, 32(34), 8915–8926. https://doi.org/10.1016/j.biomaterials.2011.08.016.

    Article  CAS  PubMed  Google Scholar 

  24. Lemos, E. M. F., Patrício, P. S. O., Pereira, M. M., Lemos, E. M. F., Patrício, P. S. O., & Pereira, M. M. (2016). 3D nanocomposite chitosan/bioactive glass scaffolds obtained using two different routes: an evaluation of the porous structure and mechanical properties. Quím Nova., 39(4), 462–466. https://doi.org/10.5935/0100-4042.20160047.

    Article  CAS  Google Scholar 

  25. Xu, C., Su, P., Chen, X., et al. (2011). Biocompatibility and osteogenesis of biomimetic bioglass-collagen-phosphatidylserine composite scaffolds for bone tissue engineering. Biomaterials, 32(4), 1051–1058. https://doi.org/10.1016/j.biomaterials.2010.09.068.

    Article  CAS  PubMed  Google Scholar 

  26. Fu, Q., Saiz, E., Rahaman, M. N., & Tomsia, A. P. (2011). Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C Mater Biol Appl., 31(7), 1245–1256. https://doi.org/10.1016/j.msec.2011.04.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rezwan, K., Chen, Q. Z., Blaker, J. J., & Boccaccini, A. R. (2006). Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 27(18), 3413–3431. https://doi.org/10.1016/j.biomaterials.2006.01.039.

    Article  CAS  PubMed  Google Scholar 

  28. Suárez-González, D., Barnhart, K., Saito, E., Vanderby, R., Hollister, S. J., & Murphy, W. L. (2010). Controlled nucleation of hydroxyapatite on alginate scaffolds for stem cell-based bone tissue engineering. J Biomed Mater Res A., 95(1), 222–234. https://doi.org/10.1002/jbm.a.32833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou, H., & Xu, H. H. (2011). The fast release of stem cells from alginate-fibrin microbeads in injectable scaffolds for bone tissue engineering. Biomaterials, 32(30), 7503–7513. https://doi.org/10.1016/j.biomaterials.2011.06.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivam Sinha.

Ethics declarations

Conflict of interest

We hereby declare that we do not have any sort of conflict of interest with any person or authority.

Ethical standard statement

Approval of CPCSEA was obtained for animal experiment.

Informed consent

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veeresh, V., Sinha, S., Manjhi, B. et al. How is Biodegradable Scaffold Effective in Gap Non-union? Insights from an Experiment. JOIO 55, 741–748 (2021). https://doi.org/10.1007/s43465-020-00313-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43465-020-00313-1

Keywords

Navigation