Skip to main content

Advertisement

Log in

Three-Dimensional Printed Anatomical Models Help in Correcting Foot Alignment in Hallux Valgus Deformities

  • Original Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Background

Hallux valgus (HV) is the most common pathologic entity affecting the great toe. The goal of corrective surgery is to restore foot mechanics and provide pain relief. The purpose of the study was to create individual angle using life-size foot models with three-dimensional (3D) printing technology to design a section on HV osteotomy.

Materials and Methods

Ten female patients with a diagnosis of HV were included. Radiologic [HV angle and intermetatarsal (IM) angle] and clinical [American Orthopaedic Foot and Ankle Score (AOFAS)] assessment was done pre- and postoperatively. All the operations were planned together with 3D life-size models generated from computed tomography (CT) scans. Benefits of using the 3D life-size models were noted. The 3D model’s perception was evaluated.

Results

The mean AOFAS score, mean HV, and IM angles had improved significantly (P < 0.05). The visual and tactile inspection of 3D models allowed the best anatomical understanding, with faster and clearer comprehension of the surgical planning. At the first tarsometatarsal joint, the HV models showed significantly greater dorsiflexion, inversion, and adduction of the first metatarsal relative to the medial cuneiform. At the first metatarsophalangeal joint, the HV models showed significantly greater eversion and abduction of the first proximal phalanx relative to the first metatarsal. It provided satisfactory results about operation time and blood loss. 3D model’s perception was statistically significant (P < 0.05).

Conclusion

3D models help to transfer complex anatomical information to clinicians, which provide guidance in the preoperative planning stage, for intraoperative navigation. It helps to create a patient-specific angle section on osteotomy to correct IM angle better and improve postoperative foot function. The 3D personalized model allowed for a better perception of information when compared to the corresponding 3D reconstructed image provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cho, N. H., Kim, S., Kwon, D. J., & Kim, H. A. (2009). The prevalence of hallux valgus and its association with foot pain nd function in a rural Korean community. Journal of Bone and Joint Surgery British Volume, 91, 494–498.

    CAS  Google Scholar 

  2. Coughlin, M. J., & Jones, C. P. (2007). Hallux valgus: demographics, etiology, and radiographic assessment. Foot and Ankle International, 28, 759–777.

    PubMed  Google Scholar 

  3. Nix, S., Smith, M., & Vicenzino, B. (2010). Prevalence of hallux valgus in the general population: a systematic review and meta-analysis. Journal of Foot and Ankle Research, 3, 21.

    PubMed  PubMed Central  Google Scholar 

  4. Nguyen, U. S., Hillstrom, H. J., Li, W., Dufour, A. B., Kiel, D. P., Procter-Gray, E., et al. (2010). Factors associated with hallux valgus in a population-based study of older women and men: the MOBILIZE Boston study. Osteoarthritis Cartilage, 18, 41–46.

    PubMed  Google Scholar 

  5. Brahm, S. M. (1988). Shape of the first metatarsal head in hallux rigidus and hallux valgus. Journal of the American Podiatric Medical Association, 78, 300–304.

    CAS  PubMed  Google Scholar 

  6. Faber, F. W., Kleinrensink, G. J., Mulder, P. G., & Verhaar, J. A. (2001). Mobility of the first tarsometatarsal joint in hallux valgus patients: a radiographic analysis. Foot and Ankle International, 22, 965–969.

    CAS  PubMed  Google Scholar 

  7. Morton, D. J. (1928). Hypermobility of the first metatarsal bone: the interlinking factor between metatarsalgia and longitudinal arch strains. Journal of Bone and Joint Surgery, 10, 187–196.

    Google Scholar 

  8. Nix, S. E., Vicenzino, B. T., Collins, N. J., & Smith, M. D. (2012). Characteristics of foot structure and footwear associated with hallux valgus: a systematic review. Osteoarthritis Cartilage, 20, 1059–1074.

    CAS  PubMed  Google Scholar 

  9. Okuda, R., Kinoshita, M., Yasuda, T., Jotoku, T., Kitano, N., & Shima, H. (2007). The shape of the lateral edge of the first metatarsal head as a risk factor for recurrence of hallux valgus. Journal of Bone and Joint Surgery American Volume, 89, 2163–2172.

    Google Scholar 

  10. Perez, H. R., Reber, L. K., & Christensen, J. C. (2008). The effect of frontal plane position on first ray motion: forefoot locking mechanism. Foot and Ankle International, 29, 72–76.

    PubMed  Google Scholar 

  11. Ota, T., Nagura, T., Kokubo, T., Kitashiro, M., Ogihara, N., Takeshima, K., et al. (2017). Etiological factors in hallux valgus, a three-dimensional analysis of the first metatarsal. Journal of Foot and Ankle Research, 10, 43.

    PubMed  PubMed Central  Google Scholar 

  12. Lapıdus, P. W. (1960). The author’s bunion operation from 1931 to 1959. Clinical Orthopaedics, 16, 119–135.

    PubMed  Google Scholar 

  13. Lee, K. T., & Young, K. (2001). Measurement of first-ray mobility in normal vs. hallux valgus patients. Foot and Ankle International, 22, 960–964.

    CAS  PubMed  Google Scholar 

  14. Martin, H., Bahlke, U., Dietze, A., Zschorlich, V., Schmitz, K. P., & Mittlmeier, T. (2012). Investigation of first ray mobility during gait by kinematic fluoroscopic imaging—a novel method. BMC Musculoskeletics Disorder, 13, 14.

    Google Scholar 

  15. Kimura, T., Kubota, M., Taguchi, T., Suzuki, N., Hattori, A., & Marumo, K. (2017). Evaluation of first-ray mobility in patients with hallux valgus using weight-bearing CT and a 3-D analysis system: a comparison with normal feet. Journal of Bone and Joint Surgery American Volume, 99, 247–255.

    Google Scholar 

  16. Perera, A. M., Mason, L., & Stephens, M. M. (2011). The pathogenesis of hallux valgus. Journal of Bone and Joint Surgery American Volume, 93, 1650–1661.

    CAS  Google Scholar 

  17. Mann, R. A., & Coughlin, M. J. (1981). Hallux valgus—Etiology, anatomy, treatment and surgical considerations. Clinical Orthopaedics Related Research, 157, 31–41.

    Google Scholar 

  18. Coughlin, M. J., & Shurnas, P. S. (2003). Hallux valgus in men. Part II: First ray mobility after bunionectomy and factors associated with hallux valgus deformity. Foot and Ankle International, 24, 73–78.

    PubMed  Google Scholar 

  19. Dunn, J. E., Link, C. L., Felson, D. T., Crincoli, M. G., Keysor, J. J., & McKinlay, J. B. (2004). Prevalence of foot and ankle conditions in a multiethnic community sample of older adults. American Journal of Epidemiology, 159, 491–498.

    CAS  PubMed  Google Scholar 

  20. Dietze, A., Bahlke, U., Martin, H., & Mittlmeier, T. (2013). First ray instability in hallux valgus deformity: a radiokinematic and pedobarographic analysis. Foot and Ankle International, 34, 124–130.

    PubMed  Google Scholar 

  21. Drapeau, M. S., & Harmon, E. H. (2013). Metatarsal torsion in monkeys, apes, humans and australopiths. Journal of Human Evolution, 64, 93–108.

    PubMed  Google Scholar 

  22. Piqué-Vidal, C., Solé, M. T., & Antich, J. (2007). Hallux valgus inheritance: pedigree research in 350 patients with bunion deformity. Journal of Foot and Ankle Surgery, 46, 149–154.

    PubMed  Google Scholar 

  23. Fellner, D., & Milsom, P. B. (1995). Relationship between hallux valgus and first metatarsal head shape. Journal of British Podiatrics Medicine, 50, 54–56.

    Google Scholar 

  24. Ferrari, J., & Malone-Lee, J. (2002). The shape of the metatarsal head as a cause of hallux abductovalgus. Foot and Ankle International, 23, 236–242.

    PubMed  Google Scholar 

  25. King, D. M., & Toolan, B. C. (2004). Associated deformities and hypermobility in hallux valgus: an investigation with weightbearing radiographs. Foot and Ankle International, 25, 251–255.

    PubMed  Google Scholar 

  26. Katsui, R., Samoto, N., Taniguchi, A., Akahane, M., Isomoto, S., Sugimoto, K., et al. (2016). Relationship between displacement and degenerative changes of the sesamoids in hallux valgus. Foot and Ankle International, 37, 1303–1309.

    PubMed  Google Scholar 

  27. Kilmartin, T. E., & Wallace, W. A. (1991). First metatarsal head shape in juvenile hallux abducto valgus. Journal of Foot Surgery, 30, 506–508.

    CAS  PubMed  Google Scholar 

  28. Johnston, O. (1956). Further studies of the inheritance of hand and foot anomalies. Clinical Orthopaedics, 8, 146–160.

    CAS  PubMed  Google Scholar 

  29. Glasoe, W. M., Grebing, B. R., Beck, S., Coughlin, M. J., & Saltzman, C. L. (2005). A comparison of device measures of dorsal first ray mobility. Foot and Ankle International, 26, 957–961.

    PubMed  Google Scholar 

  30. Greisberg, J., Hansen, S. T., Jr., & Sangeorzan, B. (2003). Deformity and degeneration in the hindfoot and midfoot joints of the adult acquired flatfoot. Foot and Ankle International, 24, 530–534.

    PubMed  Google Scholar 

  31. Kim, J. Y., Park, J. S., Hwang, S. K., Young, K. W., & Sung, I. H. (2008). Mobility changes of the first ray after hallux valgus surgery: clinical results after proximal metatarsal chevron osteotomy and distal soft tissue procedure. Foot and Ankle International, 29, 468–472.

    PubMed  Google Scholar 

  32. Robinson, A. H., & Limbers, J. P. (2005). Modern concepts in the treatment of hallux valgus. Journal of Bone and Joint Surgery British Volume, 87, 1038–1045.

    CAS  Google Scholar 

  33. Tanaka, Y., Takakura, Y., Takaoka, T., Akiyama, K., Fujii, T., & Tamai, S. (1997). Radiographic analysis of hallux valgus in women on weightbearing and nonweightbearing. Clinical Orthopaedics Related Research, 336, 186–194.

    Google Scholar 

  34. Faber, F. W., van Kampen, P. M., & Bloembergen, M. W. (2013). Long-term results of the hohmann and lapidus procedure for the correction of hallux valgus: a prospective, randomised trial with eight- to 11-year follow-up involving 101 feet. Bone and Joint Journal, 95-B, 1222–1226.

    CAS  PubMed  Google Scholar 

  35. Ward, C. V., Kimbel, W. H., & Johanson, D. C. (2011). Complete fourth metatarsal and arches in the foot of australopithecus afarensis. Science, 331, 750–753.

    CAS  PubMed  Google Scholar 

  36. Govsa, F., Yagdi, T., Ozer, M. A., Eraslan, C., & Alagoz, A. K. (2017). Building 3D anatomical model of coiling of the internal carotid artery derived from CT angiographic data. European Archives Oto-Rhino-Laryngology, 274, 1097–1102.

    Google Scholar 

  37. Govsa, F., Karakas, A. B., Ozer, M. A., & Eraslan, C. (2018). Development of life-size patient-specific 3D-printed dural venous models for preoperative planning. World Neurosurgery, 110, e141–e149.

    PubMed  Google Scholar 

  38. Govsa, F., Ozer, M. A., Biceroglu, H., Karakas, A. B., Cagli, S., Eraslan, C., et al. (2018). Creation of 3-dimensional life size: patient-specific C1 fracture models for screw fixation. World Neurosurgery, 114, e173–e181.

    PubMed  Google Scholar 

  39. Kitaoka, H. B., Alexander, I. J., Adelaar, R. S., Nunley, J. A., Myerson, M. S., & Sanders, M. (1994). Clinical rating systems for the ankle-hindfoot, midfoot, hallux, and lesser toes. Foot and Ankle International, 15, 349–353.

    CAS  PubMed  Google Scholar 

  40. Ibrahim, T., Beiri, A., Azzabi, M., Best, A. J., Taylor, G. J., & Menon, D. K. (2007). Reliability and validity of the subjective component of the American orthopaedic foot and ankle society clinical rating scales. Journal of Foot and Ankle Surgery, 46, 65–74.

    PubMed  Google Scholar 

  41. Roddy, E., Zhang, W., & Doherty, M. (2008). Prevalence and associations of hallux valgus in a primary care population. Arthritis Rheumatism, 59, 857–862.

    PubMed  Google Scholar 

  42. Agrawal, Y., Desai, A., & Mehta, J. (2011). Lateral sesamoid position in hallux valgus: correlation with the conventional radiological assessment. Foot and Ankle Surgery, 17, 308–311.

    PubMed  Google Scholar 

  43. Mortier, J. P., Bernard, J. L., & Maestro, M. (2012). Axial rotation of the first metatarsal head in a normal population and hallux valgus patients. Orthopaedics Traumatology Surgery Research, 98, 677–683.

    Google Scholar 

  44. Kitashiro, M., Ogihara, N., Kokubo, T., Matsumoto, M., Nakamura, M., & Nagura, T. (2017). Age—and sex-associated morphological variations of metatarsal torsional patterns in humans. Clinical Anatomy, 30, 1058–1063.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Murat Ozturk.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms from the patients. In the form, the patients have given their consent for their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Ethical standard statement

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozturk, A.M., Suer, O., Coban, I. et al. Three-Dimensional Printed Anatomical Models Help in Correcting Foot Alignment in Hallux Valgus Deformities. JOIO 54 (Suppl 1), 199–209 (2020). https://doi.org/10.1007/s43465-020-00110-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43465-020-00110-w

Keywords

Navigation