Skip to main content
Log in

A close look at fire-induced explosive spalling of ultra-high performance concrete: from materials to structures

  • Review Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

The advent of ultra-high performance concrete (UHPC) represents a significant leap in concrete technology. Yet, the material’s vulnerability to fire-induced explosive spalling, characterized by concrete fragments being forcefully dislodged from the mass in fire scenarios, is the Achilles’ heel that could severely jeopardize UHPC’s integrity and hence structural safety. In response to this risk, there has been a growing interest in studying the explosive spalling of UHPC under fire exposure. This paper provides a critical review of the state-of-the-art research in this area. It looks into different experimental approaches for observing and demystifying fire-induced explosive spalling, then assesses how various factors (e.g., fiber type) affect UHPC’s propensity to such unfavorable events. Moving forward, the paper discusses numerical predictions of this phenomenon and, further, explains the consequences of explosive spalling on the fire resistance of UHPC components. Thus, the paper brings to light key insights from a large body of published literature. It also puts forward strategies to tackle this risk, with a focus on structural-level interventions, which have been largely overlooked in previous studies. The paper concludes by summarizing critical findings, highlighting ongoing challenges, pinpointing current knowledge gaps, and charting future research pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Hung C-C, El-Tawil S, Chao S-H. A review of developments and challenges for UHPC in structural engineering: behavior, analysis, and design. J Struct Eng. 2021;147(9):03121001.

    Article  Google Scholar 

  2. Azmee NM, Shafiq N. Ultra-high performance concrete: From fundamental to applications. Case Stud Construct Mater. 2018;9: e00197.

    Article  Google Scholar 

  3. Schmidt M, Fehling E. Ultra-high-performance concrete: research, development and application in Europe. ACI Spec Publ. 2005;228(1):51–78.

    Google Scholar 

  4. Jansson R. Fire spalling of concrete: theoretical and experimental studies: KTH Royal Institute of Technology. 2013.

  5. Hertz KD. Limits of spalling of fire-exposed concrete. Fire Saf J. 2003;38(2):103–16.

    Article  Google Scholar 

  6. Msaad Y, Bonnet G. Analyses of heated concrete spalling due to restrained thermal dilation: application to the “chunnel” fire. J Eng Mech. 2006;132(10):1124–32.

    Article  Google Scholar 

  7. Liu J-C, Tan KH, Yao Y. A new perspective on nature of fire-induced spalling in concrete. Constr Build Mater. 2018;184:581–90.

    Article  Google Scholar 

  8. Amran M, Murali G, Makul N, Kurpińska M, Nehdi ML. Fire-induced spalling of ultra-high performance concrete: a systematic critical review. Constr Build Mater. 2023;373: 130869.

    Article  Google Scholar 

  9. Missemer L, Ouedraogo E, Malecot Y, Clergue C, Rogat D. Fire spalling of ultra-high performance concrete: from a global analysis to microstructure investigations. Cem Concr Res. 2019;115:207–19.

    Article  Google Scholar 

  10. Bensalem H, Djaknoun S, Ouedraogo E, Amrouche R. Analysis of thermal-induced spalling tests on high to ultra-high performance concrete subjected to standard fire. Case Stud Construct Mater. 2021;15: e00704.

    Article  Google Scholar 

  11. Yang J, Peng G-F, Zhao J, Shui G-S. On the explosive spalling behavior of ultra-high performance concrete with and without coarse aggregate exposed to high temperature. Constr Build Mater. 2019;226:932–44.

    Article  Google Scholar 

  12. Ju Y, Wang L, Liu H, Tian K. An experimental investigation of the thermal spalling of polypropylene-fibered reactive powder concrete exposed to elevated temperatures. Sci Bull. 2015;60(23):2022–40.

    Article  Google Scholar 

  13. Ju Y, Tian K, Liu H, Reinhardt H-W, Wang L. Experimental investigation of the effect of silica fume on the thermal spalling of reactive powder concrete. Constr Build Mater. 2017;155:571–83.

    Article  Google Scholar 

  14. Zeiml M, Lackner R, Mang HA. Experimental insight into spalling behavior of concrete tunnel linings under fire loading. Acta Geotech. 2008;3(4):295–308.

    Article  Google Scholar 

  15. Naser M. Autonomous fire resistance evaluation. J Struct Eng. 2020;146(6):04020103.

    Article  Google Scholar 

  16. Sultangaliyeva F, Fernandes B, Carré H, La Borderie C. Optimizing choice of polypropylene fiber geometry for preventing spalling of high performance concrete due to fire. Fire Saf J. 2023;136: 103759.

    Article  Google Scholar 

  17. Kalifa P, Menneteau F-D, Quenard D. Spalling and pore pressure in HPC at high temperatures. Cem Concr Res. 2000;30(12):1915–27.

    Article  Google Scholar 

  18. Kalifa P, Chene G, Galle C. High-temperature behaviour of HPC with polypropylene fibres: from spalling to microstructure. Cem Concr Res. 2001;31(10):1487–99.

    Article  Google Scholar 

  19. Felicetti R, Monte FL, Pimienta P. A new test method to study the influence of pore pressure on fracture behaviour of concrete during heating. Cem Concr Res. 2017;94:13–23.

    Article  Google Scholar 

  20. Bangi MR, Horiguchi T. Pore pressure development in hybrid fibre-reinforced high strength concrete at elevated temperatures. Cem Concr Res. 2011;41(11):1150–6.

    Article  Google Scholar 

  21. Ozawa M, Parajuli SS, Uchida Y, Zhou B. Preventive effects of polypropylene and jute fibers on spalling of UHPC at high temperatures in combination with waste porous ceramic fine aggregate as an internal curing material. Constr Build Mater. 2019;206:219–25.

    Article  Google Scholar 

  22. Ju Y, Liu H, Tian K, Liu J, Wang L, Ge Z. An investigation on micro pore structures and the vapor pressure mechanism of explosive spalling of RPC exposed to high temperature. Sci China Technol Sci. 2013;56(2):458–70.

    Article  Google Scholar 

  23. Li Y, Pimienta P, Pinoteau N, Tan KH. Effect of aggregate size and inclusion of polypropylene and steel fibers on explosive spalling and pore pressure in ultra-high-performance concrete (UHPC) at elevated temperature. Cem Concr Compos. 2019;99:62–71.

    Article  Google Scholar 

  24. Ichikawa Y. Prediction of pore pressures, heat and moisture transfer leading to spalling of concrete during fire [PhD]: Imperial College London. 2000.

  25. Van der Heijden G, Pel L, Adan O. Fire spalling of concrete, as studied by NMR. Cem Concr Res. 2012;42(2):265–71.

    Article  Google Scholar 

  26. Stelzner L, Powierza B, Oesch T, Dlugosch R, Weise F. Thermally-induced moisture transport in high-performance concrete studied by X-ray-CT and 1H-NMR. Constr Build Mater. 2019;224:600–9.

    Article  Google Scholar 

  27. Monte FL, Lombardi F, Felicetti R, Lualdi M. Ground-penetrating radar monitoring of concrete at high temperature. Constr Build Mater. 2017;151:881–8.

    Article  Google Scholar 

  28. Pereira F, Pistol K, Korzen M, Weise F, Pimienta P, Carré H et al. (eds). Monitoring of fire damage processes in concrete by pore pressure and acoustic emission measurements. 2nd international Rilem workshop on concrete spalling due to fire exposure, Delft, The Nederlands. 2011.

  29. Grosse C, Richter R, Ozbolt J, Dehn F, Juknat M, editors. Spalling of HPC evaluated by acoustic emission and numerical analysis. In: 2nd International RILEM Workshop on Concrete Spalling due to Fire Exposure; Delft, The Netherlands. 2011.

  30. Ozawa M, Uchida S, Kamada T, Morimoto H. Study of mechanisms of explosive spalling in high-strength concrete at high temperatures using acoustic emission. Constr Build Mater. 2012;37:621–8.

    Article  Google Scholar 

  31. Mróz K, Hager I. Evaluation of nature and intensity of fire concrete spalling by frequency analysis of sound records. Cem Concr Res. 2021;148: 106539.

    Article  Google Scholar 

  32. Liu J-C, Tan KH. Mechanism of PVA fibers in mitigating explosive spalling of engineered cementitious composite at elevated temperature. Cem Concr Compos. 2018;93:235–45.

    Article  Google Scholar 

  33. Liang X, Wu C, Su Y, Chen Z, Li Z. Development of ultra-high performance concrete with high fire resistance. Constr Build Mater. 2018;179:400–12.

    Article  Google Scholar 

  34. Klingsch EW. Explosive spalling of concrete in fire [PhD Thesis]: ETH Zurich. 2014.

  35. Algourdin N, Pliya P, Beaucour A-L, Simon A, Noumowé A. Influence of polypropylene and steel fibres on thermal spalling and physical-mechanical properties of concrete under different heating rates. Constr Build Mater. 2020;259: 119690.

    Article  Google Scholar 

  36. Liu J-C, Huang L, Chen Z, Ye H. A comparative study of artificial intelligent methods for explosive spalling diagnosis of hybrid fiber-reinforced ultra-high-performance concrete. Int J Civ Eng. 2022;20(6):639–60.

    Article  Google Scholar 

  37. Normalisation CEd. EN 1992–1–2: Eurocode 2: DESIGN of concrete structures-part 1–2: general rules-structural fire design. Brussels, Belgium. 2004.

  38. Xing Z, Beaucour A-L, Hebert R, Noumowe A, Ledesert B. Influence of the nature of aggregates on the behaviour of concrete subjected to elevated temperature. Cem Concr Res. 2011;41(4):392–402.

    Article  Google Scholar 

  39. Yermak N, Pliya P, Beaucour A-L, Simon A, Noumowé A. Influence of steel and/or polypropylene fibres on the behaviour of concrete at high temperature: spalling, transfer and mechanical properties. Constr Build Mater. 2017;132:240–50.

    Article  Google Scholar 

  40. Mindeguia J-C, Pimienta P, Noumowé A, Kanema M. Temperature, pore pressure and mass variation of concrete subjected to high temperature—Experimental and numerical discussion on spalling risk. Cem Concr Res. 2010;40(3):477–87.

    Article  Google Scholar 

  41. Mohd Ali A, Sanjayan J, Guerrieri M. Specimens size, aggregate size, and aggregate type effect on spalling of concrete in fire. Fire Mater. 2018;42(1):59–68.

    Article  Google Scholar 

  42. Liu J-C, Huang L, Tian Z, Ye H. Knowledge-enhanced data-driven models for quantifying the effectiveness of PP fibers in spalling prevention of ultra-high performance concrete. Constr Build Mater. 2021;299: 123946.

    Article  Google Scholar 

  43. Luo B, Deng C, Luo Y. Mechanical properties and microstructure of UHPC with recycled glasses after exposure to elevated temperatures. J Build Eng. 2022:105369.

  44. Lee N, Koh K, Park S, Ryu G. Microstructural investigation of calcium aluminate cement-based ultra-high performance concrete (UHPC) exposed to high temperatures. Cem Concr Res. 2017;102:109–18.

    Article  Google Scholar 

  45. Tang J, Ma W, Pang Y, Fan J, Liu D, Zhao L, et al. Uniaxial compression performance and stress–strain constitutive model of the aluminate cement-based UHPC after high temperature. Constr Build Mater. 2021;309: 125173.

    Article  Google Scholar 

  46. Khan M, Lao J, Ahmad MR, Kai M-F, Dai J-G. The role of calcium aluminate cement in developing an efficient ultra-high performance concrete resistant to explosive spalling under high temperatures. Constr Build Mater. 2023;384: 131469.

    Article  Google Scholar 

  47. Aydin S, Baradan B. Engineering properties of reactive powder concrete without Portland cement. ACI Mater J. 2013;110(6):619.

    Google Scholar 

  48. Aydın S, Baradan B. High temperature resistance of alkali-activated slag-and portland cement-based reactive powder concrete. ACI Mater J. 2012;109(4).

  49. Cai R, Ye H. Clinkerless ultra-high strength concrete based on alkali-activated slag at high temperatures. Cem Concr Res. 2021;145: 106465.

    Article  Google Scholar 

  50. Huang L, Liu J-C, Cai R, Ye H. Mechanical degradation of ultra-high strength alkali-activated concrete subjected to repeated loading and elevated temperatures. Cem Concr Compos. 2021:104083.

  51. Liu J-C, Chen Z, Cai R, Ye H. Quantitative effects of mixture parameters on alkali-activated binder-based ultra-high strength concrete at ambient and elevated temperatures. J Adv Concr Technol. 2022;20(1):1–17.

    Article  Google Scholar 

  52. Larsen IL, Thorstensen RT. The influence of steel fibres on compressive and tensile strength of ultra high performance concrete: a review. Constr Build Mater. 2020;256: 119459.

    Article  Google Scholar 

  53. Zhu Y, Hussein H, Kumar A, Chen G. A review: material and structural properties of UHPC at elevated temperatures or fire conditions. Cem Concr Compos. 2021;123: 104212.

    Article  Google Scholar 

  54. Sultan HK, Alyaseri I. Effects of elevated temperatures on mechanical properties of reactive powder concrete elements. Constr Build Mater. 2020;261: 120555.

    Article  Google Scholar 

  55. Raza SS, Qureshi LA, Ali B, Raza A, Khan MM, Salahuddin H. Mechanical properties of hybrid steel–glass fiber-reinforced reactive powder concrete after exposure to elevated temperatures. Arab J Sci Eng. 2020;45(5):4285–300.

    Article  Google Scholar 

  56. Khan M, Lao J, Ahmad MR, Dai J-G. Influence of high temperatures on the mechanical and microstructural properties of hybrid steel-basalt fibers based ultra-high-performance concrete (UHPC). Constr Build Mater. 2024;411: 134387.

    Article  Google Scholar 

  57. Yıldırım M, Özhan HB. Durability properties of basalt fiber-reinforced mortars with different mineral admixtures exposed to high temperatures. Constr Build Mater. 2023;400: 132574.

    Article  Google Scholar 

  58. Alaskar A, Albidah A, Alqarni AS, Alyousef R, Mohammadhosseini H. Performance evaluation of high-strength concrete reinforced with basalt fibers exposed to elevated temperatures. J Build Eng. 2021;35: 102108.

    Article  Google Scholar 

  59. Chen Z, Wang X, Ding L, Jiang K, Liu X, Liu J, et al. Spalling resistance and mechanical properties of ultra-high performance concrete reinforced with multi-scale basalt fibers and hybrid fibers under elevated temperature. J Build Eng. 2023;77: 107435.

    Article  Google Scholar 

  60. Du J, Meng W, Khayat KH, Bao Y, Guo P, Lyu Z, et al. New development of ultra-high-performance concrete (UHPC). Compos B Eng. 2021;224: 109220.

    Article  Google Scholar 

  61. Zhang D, Tan KH. Effect of various polymer fibers on spalling mitigation of ultra-high performance concrete at high temperature. Cem Concr Compos. 2020;114: 103815.

    Article  Google Scholar 

  62. Pistol K, Weise F, Meng B, Schneider U (eds). The mode of action of polypropylene fibres in high performance concrete at high temperatures. In: 2nd International RILEM Workshop on Concrete Spalling due to fire exposure. RILEM Publications SARL. 2011.

  63. Zhang D, Dasari A, Tan KH. On the mechanism of prevention of explosive spalling in ultra-high performance concrete with polymer fibers. Cem Concr Res. 2018;113:169–77.

    Article  Google Scholar 

  64. Hager I, Mróz K. Role of polypropylene fibres in concrete spalling risk mitigation in fire and test methods of fibres effectiveness evaluation. Materials. 2019;12(23):3869.

    Article  Google Scholar 

  65. Shen Y, Dai M, Pu W, Xiang Z. Effects of content and length/diameter ratio of PP fiber on explosive spalling resistance of hybrid fiber-reinforced ultra-high-performance concrete. J Build Eng. 2022;58: 105071.

    Article  Google Scholar 

  66. Zhang D, Tan KH. Critical fiber dimesions for preventing spalling of ultra-high performance concrete at high temperature. Fire Technol. 2022:1–16.

  67. Ozawa M, Bo Z, Kawaguchi J, Uchida Y (eds) Preventive effect on spalling of UFC using jute fiber at high temperature. MATEC web of conferences; EDP Sciences. 2013.

  68. Sanchayan S, Foster SJ. High temperature behaviour of hybrid steel–PVA fibre reinforced reactive powder concrete. Mater Struct. 2016;49(3):769–82.

    Article  Google Scholar 

  69. Liu J-C, Tan KH. Fire resistance of ultra-high performance strain hardening cementitious composite: residual mechanical properties and spalling resistance. Cem Concr Compos. 2018;89:62–75.

    Article  Google Scholar 

  70. Park J-J, Yoo D-Y, Kim S, Kim S-W. Benefits of synthetic fibers on the residual mechanical performance of UHPFRC after exposure to ISO standard fire. Cem Concr Compos. 2019;104: 103401.

    Article  Google Scholar 

  71. Cai R, Liu J-C, Ye H. Spalling prevention of ultrahigh-performance concrete: comparative effectiveness of polyethylene terephthalate and polypropylene fibers. J Mater Civil Eng. 2021;33(12):04021344.

    Article  Google Scholar 

  72. Lee G, Han D, Han M-C, Han C-G, Son H-J. Combining polypropylene and nylon fibers to optimize fiber addition for spalling protection of high-strength concrete. Constr Build Mater. 2012;34:313–20.

    Article  Google Scholar 

  73. Missemer L, Ouedraogo E, Malecot Y, Rogat D, Clergue C (eds). Effects of polymer fibres inclusion in fire spalling of ultra-high performance concrete. In: 7th International Conference on Fracture Mechanics of Concrete and Concrete Structures FRAMCOS'7, May 24–27, 2010; 2010: IA-FraMCoS.

  74. Zhang D, Tan KH, Dasari A, Weng Y. Effect of natural fibers on thermal spalling resistance of ultra-high performance concrete. Cem Concr Compos. 2020;109: 103512.

    Article  Google Scholar 

  75. Zhang D, Tan GY, Tan KH. Combined effect of flax fibers and steel fibers on spalling resistance of ultra-high performance concrete at high temperature. Cem Concr Compos. 2021;121: 104067.

    Article  Google Scholar 

  76. Ren G, Gao X, Zhang H. Utilization of hybrid sisal and steel fibers to improve elevated temperature resistance of ultra-high performance concrete. Cem Concr Compos. 2022;130: 104555.

    Article  Google Scholar 

  77. Viana T, Bacelar B, Coelho I, Ludvig P, Santos W. Behaviour of ultra-high performance concretes incorporating carbon nanotubes under thermal load. Constr Build Mater. 2020;263: 120556.

    Article  Google Scholar 

  78. Lu H, Yao Y. Spalling mechanism of carbon nanotube concrete at elevated temperature. Constr Build Mater. 2022;314: 125594.

    Article  Google Scholar 

  79. Zhang Y, Zeiml M, Maier M, Yuan Y, Lackner R. Fast assessing spalling risk of tunnel linings under RABT fire: from a coupled thermo-hydro-chemo-mechanical model towards an estimation method. Eng Struct. 2017;142:1–19.

    Article  Google Scholar 

  80. Zhang Y, Zeiml M, Pichler C, Lackner R. Model-based risk assessment of concrete spalling in tunnel linings under fire loading. Eng Struct. 2014;77:207–15.

    Article  Google Scholar 

  81. Zhang D, Zhang Y, Dasari A, Tan KH, Weng Y. Effect of spatial distribution of polymer fibers on preventing spalling of UHPC at high temperatures. Cem Concr Res. 2021;140: 106281.

    Article  Google Scholar 

  82. McKinney J, Ali F. Artificial neural networks for the spalling classification and failure prediction times of high strength concrete columns. J Struct Fire Eng. 2014.

  83. Seitllari A, Naser M. Leveraging artificial intelligence to assess explosive spalling in fire-exposed RC columns. Comput Concr. 2019;24(3):271–82.

    Google Scholar 

  84. Naser M. Observational analysis of fire-induced spalling of concrete through ensemble machine learning and surrogate modeling. J Mater Civil Eng. 2021;33(1):04020428.

    Article  Google Scholar 

  85. Naser M, Kodur V. Explainable machine learning using real, synthetic and augmented fire tests to predict fire resistance and spalling of RC columns. Eng Struct. 2022;253: 113824.

    Article  Google Scholar 

  86. Naser M. Heuristic machine cognition to predict fire-induced spalling and fire resistance of concrete structures. Autom Constr. 2019;106: 102916.

    Article  Google Scholar 

  87. al-Bashiti MK, Naser M. Verifying domain knowledge and theories on Fire-induced spalling of concrete through eXplainable artificial intelligence. Constr Build Mater. 2022;348:128648.

  88. Lee J-H, Sohn Y-S, Lee S-H. Fire resistance of hybrid fibre-reinforced, ultra-high-strength concrete columns with compressive strength from 120 to 200 MPa. Mag Concrete Res. 2012;64(6):539–50.

    Article  Google Scholar 

  89. Choe G, Kim G, Gucunski N, Lee S. Evaluation of the mechanical properties of 200 MPa ultra-high-strength concrete at elevated temperatures and residual strength of column. Constr Build Mater. 2015;86:159–68.

    Article  Google Scholar 

  90. Elsayed M, Ali M, Abd E-A. Residual strength of ultrahigh-performance hybrid fibre-reinforced concrete columns subjected to high temperatures. Constr Build Mater. 2024;411: 134305.

    Article  Google Scholar 

  91. Li Y, Du P, Tan KH. Fire resistance of ultra-high performance concrete columns subjected to axial and eccentric loading. Eng Struct. 2021;248: 113158.

    Article  Google Scholar 

  92. Buch SH, Sharma UK. Empirical model for determining fire resistance of Reinforced Concrete columns. Constr Build Mater. 2019;225:838–52.

    Article  Google Scholar 

  93. Bajc U, Kolšek J, Planinc I, Bratina S. Fire resistance of RC columns with regard to spalling of concrete. Fire Saf J. 2022;130: 103568.

    Article  Google Scholar 

  94. Pimienta P, Mindeguia JC, Simon A, Behloul M. Behavior of UHPFRC at high temperatures. Designing and Building with UHPFRC. 2011:579–600.

  95. Kahanji C, Ali F, Nadjai A. Explosive spalling of ultra-high performance fibre reinforced concrete beams under fire. J Struct Fire Eng. 2016;7(4):328–48.

    Article  Google Scholar 

  96. Banerji S, Kodur V, Solhmirzaei R. Experimental behavior of ultra high performance fiber reinforced concrete beams under fire conditions. Eng Struct. 2020;208: 110316.

    Article  Google Scholar 

  97. Qin H, Yang J, Yan K, Doh J-H, Wang K, Zhang X. Experimental research on the spalling behaviour of ultra-high performance concrete under fire conditions. Constr Build Mater. 2021;303: 124464.

    Article  Google Scholar 

  98. Ren P, Hou X, Kodur V, Ge C, Zhao Y, Zhou W. Modeling the fire response of reactive powder concrete beams with due consideration to explosive spalling. Constr Build Mater. 2021;301: 124094.

    Article  Google Scholar 

  99. Cai X, Taerwe LR, Yuan Y. Hysteretic behavior of UHPC beam-column joints after fire exposure. Fire Saf J. 2020;117: 102987.

    Article  Google Scholar 

  100. Du L, Ji X, Lu K, Wang J. Evaluation of bond behaviors on functionally graded ultra-high performance concrete (FGUHPC) subjected to elevated temperature. Eng Struct. 2023;274: 115112.

    Article  Google Scholar 

  101. Hou X, Ren P, Rong Q, Zheng W, Zhan Y. Effect of fire insulation on fire resistance of hybrid-fiber reinforced reactive powder concrete beams. Compos Struct. 2019;209:219–32.

    Article  Google Scholar 

  102. Wang T, Yu M, Zhang X, Ye J. Experimental study on random temperature field of ultra-high performance concrete filled steel tube columns under elevated temperature. Compos Struct. 2022;289: 115445.

    Article  Google Scholar 

  103. Villar-Salinas S, Guzmán A, Carrillo J. Performance evaluation of structures with reinforced concrete columns retrofitted with steel jacketing. J Build Eng. 2021;33: 101510.

    Article  Google Scholar 

  104. Kodur VK, Bisby LA, Green MF. Experimental evaluation of the fire behaviour of insulated fibre-reinforced-polymer-strengthened reinforced concrete columns. Fire Saf J. 2006;41(7):547–57.

    Article  Google Scholar 

  105. Benzarti K, Colin X. Understanding the durability of advanced fibre-reinforced polymer (FRP) composites for structural applications. In: Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications. Elsevier. 2013:361–439.

  106. Böer P, Holliday L, Kang TH-K. Independent environmental effects on durability of fiber-reinforced polymer wraps in civil applications: a review. Constr Build Mater. 2013;48:360–70.

  107. Iidoi T, Ueda H, Koda Y, Iwaki I. Evaluation of soundness of PC road bridge in severe chloride environment. In: Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations. CRC Press; 2021;1161–8.

  108. Hertz K. Heat-induced explosion of dense concretes. Lyngby, Technical University of Denmark, Institute of Building Design Report. 1984(166).

  109. Noumowe AN, Clastres P, Debicki G, Costaz JL. Transient heating effect on high strength concrete. Nucl Eng Des. 1996;166(1):99–108.

    Article  Google Scholar 

  110. Phan LT, Lawson JR, Davis FL. Effects of elevated temperature exposure on heating characteristics, spalling, and residual properties of high performance concrete. Mater Struct. 2001;34(2):83–91.

    Article  Google Scholar 

  111. Fares H, Noumowe A, Remond S. Self-consolidating concrete subjected to high temperature: mechanical and physicochemical properties. Cem Concr Res. 2009;39(12):1230–8.

    Article  Google Scholar 

  112. Kanéma M, Pliya P, Noumowé A, Gallias J. Spalling, thermal, and hydrous behavior of ordinary and high-strength concrete subjected to elevated temperature. J Mater Civil Eng. 2011;23(7):921–30.

    Article  Google Scholar 

  113. Debicki G, Haniche R, Delhomme F. An experimental method for assessing the spalling sensitivity of concrete mixture submitted to high temperature. Cem Concr Compos. 2012;34(8):958–63.

    Article  Google Scholar 

  114. Akturk B, Yuzer N, Kabay N. Usability of raw rice husk instead of polypropylene fibers in high-strength concrete under high temperature. J Mater Civil Eng. 2015;28(1):04015072.

    Article  Google Scholar 

  115. Suescum-Morales D, Ríos JD, Martínez-De La Concha A, Cifuentes H, Jiménez JR, Fernández JM. Effect of moderate temperatures on compressive strength of ultra-high-performance concrete: A microstructural analysis. Cem Concr Res. 2021;140:106303.

  116. Ríos J, Cifuentes H, Leiva C, Ariza M, Ortiz M. Effect of polypropylene fibers on the fracture behavior of heated ultra-high performance concrete. Int J Fract. 2020;223(1):173–87.

    Article  Google Scholar 

  117. Canbaz M. The effect of high temperature on reactive powder concrete. Constr Build Mater. 2014;70:508–13.

    Article  Google Scholar 

  118. Hager I, Zdeb T, Krzemień K (eds) The impact of the amount of polypropylene fibres on spalling behaviour and residual mechanical properties of Reactive Powder Concretes. In: MATEC Web of Conferences; 2013: EDP Sciences.

  119. Zdeb T, Hager I, Śliwiński J. Reactive powder concrete–change in compressive strength and modulus of elasticity at high temperature. Brittle Matrix Composites. 2012;10: 135–43.

  120. Zeiml M, Leithner D, Lackner R, Mang HA. How do polypropylene fibers improve the spalling behavior of in-situ concrete? Cem Concr Res. 2006;36(5):929–42.

    Article  Google Scholar 

  121. Khoury GA. Polypropylene fibres in heated concrete. Part 2: Pressure relief mechanisms and modelling criteria. Mag Concrete Res. 2008;60(3):189–204.

  122. Schrefler BA, Majorana CE, Khoury GA, Gawin D. Thermo-hydro-mechanical modelling of high performance concrete at high temperatures. Eng Comput. 2002;19(7):787–819.

    Article  Google Scholar 

  123. Ichikawa Y, England GL. Prediction of moisture migration and pore pressure build-up in concrete at high temperatures. Nucl Eng Des. 2004;228(1–3):245–59.

    Article  Google Scholar 

  124. Tenchev R, Purnell P. An application of a damage constitutive model to concrete at high temperature and prediction of spalling. Int J Solids Struct. 2005;42(26):6550–65.

    Article  Google Scholar 

  125. Dwaikat MB, Kodur V. Hydrothermal model for predicting fire-induced spalling in concrete structural systems. Fire Saf J. 2009;44(3):425–34.

    Article  Google Scholar 

  126. De Morais MV, Pliya P, Noumowé A, Beaucour A-L, Ortola S. Contribution to the explanation of the spalling of small specimen without any mechanical restraint exposed to high temperature. Nucl Eng Des. 2010;240(10):2655–63.

    Article  Google Scholar 

  127. Zhang H, Davie C. A numerical investigation of the influence of pore pressures and thermally induced stresses for spalling of concrete exposed to elevated temperatures. Fire Saf J. 2013;59:102–10.

    Article  Google Scholar 

  128. Mazzucco G, Majorana C, Salomoni V. Numerical simulation of polypropylene fibres in concrete materials under fire conditions. Comput Struct. 2015;154:17–28.

    Article  Google Scholar 

  129. Zhao J, Zheng J-J, Peng G-F, van Breugel K. Numerical analysis of heating rate effect on spalling of high-performance concrete under high temperature conditions. Constr Build Mater. 2017;152:456–66.

    Article  Google Scholar 

  130. Yao Y, Wang K. Elastic-plastic damage model to predict pore-pressure effect on concrete behavior at elevated temperatures. J Eng Mech. 2017;143(10):04017122.

    Article  Google Scholar 

  131. Gawin D, Pesavento F, Castells AG. On reliable predicting risk and nature of thermal spalling in heated concrete. Arch Civ Mech Eng. 2018;18(4):1219–27.

    Article  Google Scholar 

  132. Liu J-C, Zhang Y. A simplified model to predict thermo-hygral behaviour and explosive spalling of concrete. J Adv Concr Technol. 2019;17(7):419–33.

    Article  MathSciNet  Google Scholar 

  133. Yao Y, Guo H, Tan K. An elastoplastic damage constitutive model of concrete considering the effects of dehydration and pore pressure at high temperatures. Mater Struct. 2020;53(1):19.

    Article  Google Scholar 

  134. Shen L, Li W, Zhou X, Feng J, Di Luzio G, Ren Q, et al. Multiphysics lattice discrete particle model for the simulation of concrete thermal spalling. Cem Concr Compos. 2020;106: 103457.

    Article  Google Scholar 

  135. Zhang J, Chen J, Zhang R, Guo R. A numerical investigation of thermal-induced explosive spalling behavior of a concrete material using cohesive interface model. Front Phys. 2022:331.

  136. Iwama K, Higuchi K, Maekawa K. Thermo-mechanistic multi-scale modeling of structural concrete at high temperature. J Adv Concr Technol. 2020;18(5):272–93.

    Article  Google Scholar 

  137. Miura T, Nakamura H, Yamamoto Y. Expansive spalling mechanism of concrete due to high temperature based on developed hygro-thermal-mechanical model by 3D-RBSM-TNM. Eng Fract Mech. 2023;284: 109216.

    Article  Google Scholar 

  138. Liu J-C, Zhang Z. A machine learning approach to predict explosive spalling of heated concrete. Arch Civ Mech Eng. 2020;20(4):134. https://doi.org/10.1007/s43452-020-00135-w.

    Article  Google Scholar 

  139. Tapeh ATG, Naser M. Discovering graphical heuristics on fire-induced spalling of concrete through explainable artificial intelligence. Fire Technol. 2022;58(5):2871–98.

    Article  Google Scholar 

  140. Liu J-C, Zhang Z. Neural network models to predict explosive spalling of PP fiber reinforced concrete under heating. J Build Eng. 2020;32: 101472.

    Article  Google Scholar 

  141. CoP H. Code of practice for structural use of concrete 2013. Hong Kong: Buildings Department (BD); 2013.

    Google Scholar 

  142. ACI. Code requirements for determining fire resistance of concrete and masonry construction assemblies. ACI Farmington Hills, MI; 2007.

  143. BoI S. IS 456-Code of practice for plain and reinforced cement concrete. India: New Delhi; 2000.

    Google Scholar 

  144. Li Y, Tan KH, Yang E-H. Influence of aggregate size and inclusion of polypropylene and steel fibers on the hot permeability of ultra-high performance concrete (UHPC) at elevated temperature. Constr Build Mater. 2018;169:629–37.

    Article  Google Scholar 

  145. Abdulraheem MS. Experimental investigation of fire effects on ductility and stiffness of reinforced reactive powder concrete columns under axial compression. J Build Eng. 2018;20:750–61.

    Article  Google Scholar 

Download references

Funding

This study was funded by China’s National Natural Science Foundation (51978280, 52378155) and Guangdong Provincial Key Laboratory of Modern Civil Engineering Technology (2021B1212040003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Yu Zhao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JC., Du, LP., Yao, Y. et al. A close look at fire-induced explosive spalling of ultra-high performance concrete: from materials to structures. Archiv.Civ.Mech.Eng 24, 124 (2024). https://doi.org/10.1007/s43452-024-00942-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-024-00942-5

Keywords

Navigation