Skip to main content
Log in

Mechanical and hygrothermal performance of fly-ash and seashells concrete: in situ experimental study and smart hygrothermal modeling for Normandy climate conditions

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the effect of partial substitution of cement by a smart mixture of waste materials, fly ash and Crepidula shells. The cement is replaced by fly ash and Crepidula accordingly in the range of 5, 10 and 15% by weight. This study focuses on three steps: (i) find the best formulation in terms of compression and hygrothermal behavior, (ii) build a prototype and follow the hygrothermal behavior with sensors, (iii) data collection and development of a neural network model to predict the hygrothermal behavior of the prototype. The results showed that for a fly ash-Crepidula incorporation rate up to 10%, the mechanical properties are higher than the control mortar. Furthermore, the cement substitution by fly ash and Crepidula improves the thermal conductivity of concrete. With the cement replacement of 30%, a prototype was built to monitor the hygrothermal behavior. The data collected from the wireless sensors placed in the prototype are used to train and validate the artificial neural network model. The model used in this study is conducted with eight inputs and two outputs data. The investigation of the condensation risk and the mould growth shows that the chosen concrete mixture can avoid the condensation phenomenon. Indeed, the smart fly ash-Crepidula mixture provides high silica, aluminate, and calcium contents, which react with water originating from humid ambient air to form additional hydrates as a result of pozzolanic reaction and lead to a continuous strengths enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Figure 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

Data are available. Author declared that all data and materials as well as software application support his published claims and comply with field standards.

References

  1. Direct CO2 emissions from selected heavy industry sectors. IEA. 2019. https://www.iea.org/data-and-statistics/charts/direct-co2-emissions-from-selected-heavy-industry-sectors-2019.

  2. Rashad AM. A comprehensive overview about the influence of different additives on the properties of alkali-activated slag—a guide for Civil Engineer. Constr Build Mater. 2013;47:29–55.

    Article  Google Scholar 

  3. Gartner E. Industrially interesting approaches to “low-CO2” cements. Cem Concr Res. 2004;34:1489–98.

    Article  CAS  Google Scholar 

  4. Liu J, Qin Q, Yu Q. The effect of size distribution of slag particles obtained in dry granulation on blast furnace slag cement strength. Powder Technol. 2020. https://doi.org/10.1016/j.powtec.2019.11.115.

    Article  Google Scholar 

  5. Mehta A, Siddique R, Ozbakkaloglu T, Uddin Ahmed Shaikh F, Belarbi R. Fly ash and ground granulated blast furnace slag-based alkali-activated concrete: mechanical, transport and microstructural properties. Constr Build Mater. 2020;257:119548.

    Article  CAS  Google Scholar 

  6. Xu W, Zhang Y, Liu B. Influence of silica fume and low curing temperature on mechanical property of cemented paste backfill. Constr Build Mater. 2020;254:119305.

    Article  CAS  Google Scholar 

  7. Ahmaruzzaman M. A review on the utilization of fly ash. Prog Energy Combust Sci. 2010;36:327–63.

    Article  CAS  Google Scholar 

  8. Bakharev T. Geopolymeric materials prepared using Class F fly ash and elevated temperature curing. Cem Concr Res. 2005;35:1224–32.

    Article  CAS  Google Scholar 

  9. Tang SW, Cai XH, He Z, Shao HY, Li ZJ, Chen E. Hydration process of fly ash blended cement pastes by impedance measurement. Constr Build Mater. 2016;113:939–50.

    Article  CAS  Google Scholar 

  10. Yu J, Lu C, Leung CKY, Li G. Mechanical properties of green structural concrete with ultrahigh-volume fly ash. Constr Build Mater. 2017;147:510–8.

    Article  Google Scholar 

  11. Rashad AM. A brief on high-volume Class F fly ash as cement replacement—a guide for Civil Engineer. Int J Sustain Built Environ. 2015;4:278–306.

    Article  Google Scholar 

  12. Bentz D, Peltz M, Durán-Herrera A, Valdez P, Juárez C. Thermal properties of high-volume fly ash mortars and concretes. J Build Phys. 2011;34:263–75.

    Article  CAS  Google Scholar 

  13. Durán-Herrera A, Juárez CA, Valdez P, Bentz DP. Evaluation of sustainable high-volume fly ash concretes. Cem Concr Compos. 2011;33:39–45.

    Article  Google Scholar 

  14. Yang E-H, Yang Y, Li VC. Use of high volumes of fly ash to improve ECC mechanical properties and material greenness. Mater J. 2007;104:620–8.

    CAS  Google Scholar 

  15. Lam L, Wong YL, Poon CS. Degree of hydration and gel/space ratio of high-volume fly ash/cement systems. Cem Concr Res. 2000;30:747–56.

    Article  CAS  Google Scholar 

  16. Berry EE, Hemmings RT, Cornelius BJ. Mechanisms of hydration reactions in high volume fly ash pastes and mortars. Cem Concr Compos. 1990;12:253–61.

    Article  CAS  Google Scholar 

  17. Escalante-Garcia J-I, Sharp JH. The chemical composition and microstructure of hydration products in blended cements. Cem Concr Compos. 2004;26:967–76.

    Article  CAS  Google Scholar 

  18. Lothenbach B, Scrivener K, Hooton RD. Supplementary cementitious materials. Cem Concr Res. 2011;41:1244–56.

    Article  CAS  Google Scholar 

  19. Tayeh BA, Hasaniyah MW, Zeyad AM, Yusuf MO. Properties of concrete containing recycled seashells as cement partial replacement: a review. J Clean Prod. 2019;237:117723.

    Article  CAS  Google Scholar 

  20. Chiffres clés de la filière pêche et aquaculture en France. 2019. https://www.franceagrimer.fr/Actualite/Filieres/Peche-et-aquaculture/2019/Chiffres-cles-de-la-filiere-peche-et-aquaculture-en-France-en-2019. Accessed 8 Oct 2021

  21. Wang J, Liu E, Li L. Characterization on the recycling of waste seashells with Portland cement towards sustainable cementitious materials. J Clean Prod. 2019;220:235–52.

    Article  ADS  CAS  Google Scholar 

  22. Bouasria M, Khadraoui F, Benzaama M-H, Touati K, Chateigner D, Gascoin S, et al. Partial substitution of cement by the association of Ferronickel slags and Crepidula fornicata shells. J Build Eng. 2021;33:101587.

    Article  Google Scholar 

  23. Hamdaoui M-A, Benzaama M-H, El Mendili Y, Chateigner D. A review on physical and data-driven modeling of buildings hygrothermal behavior: models, approaches and simulation tools. Energy Build. 2021;251:111343.

    Article  Google Scholar 

  24. Deb C, Schlueter A. Review of data-driven energy modelling techniques for building retrofit. Renew Sustain Energy Rev. 2021;144:110990.

    Article  Google Scholar 

  25. Benzaama MH, Rajaoarisoa LH, Lekhal MC, Menhoudj S, Mokhtari AM. Thermal inertia and energy efficiency assessment of Direct Solar Floor system using a switching-linear model. Appl Energy. 2021;300:117363.

    Article  Google Scholar 

  26. Li Y, O’Neill Z, Zhang L, Chen J, Im P, DeGraw J. Grey-box modeling and application for building energy simulations—a critical review. Renew Sustain Energy Rev. 2021;146:111174.

    Article  Google Scholar 

  27. Sun Y, Haghighat F, Fung BCM. A review of the-state-of-the-art in data-driven approaches for building energy prediction. Energy Build. 2020;221:110022.

    Article  Google Scholar 

  28. Wang Z, Chen Y. Data-driven modeling of building thermal dynamics: methodology and state of the art. Energy Build. 2019;203:109405.

    Article  Google Scholar 

  29. Kandiri A, Mohammadi Golafshani E, Behnood A. Estimation of the compressive strength of concretes containing ground granulated blast furnace slag using hybridized multi-objective ANN and salp swarm algorithm. Constr Build Mater. 2020;248:118676.

    Article  Google Scholar 

  30. Behnood A, Golafshani EM. Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves. J Clean Prod. 2018;202:54–64.

    Article  CAS  Google Scholar 

  31. Bilim C, Atiş CD, Tanyildizi H, Karahan O. Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network. Adv Eng Softw. 2009;40:334–40.

    Article  Google Scholar 

  32. Boğa AR, Öztürk M, Topçu İB. Using ANN and ANFIS to predict the mechanical and chloride permeability properties of concrete containing GGBFS and CNI. Compos Part B Eng. 2013;45:688–96.

    Article  Google Scholar 

  33. Chithra S, Kumar SRRS, Chinnaraju K, Alfin AF. A comparative study on the compressive strength prediction models for High Performance Concrete containing nano silica and copper slag using regression analysis and Artificial Neural Networks. Constr Build Mater. 2016;114:528–35.

    Article  CAS  Google Scholar 

  34. May Tzuc O, Rodríguez Gamboa O, Aguilar Rosel R, Che Poot M, Edelman H, Jiménez Torres M, et al. Modeling of hygrothermal behavior for green facade’s concrete wall exposed to nordic climate using artificial intelligence and global sensitivity analysis. J Build Eng. 2021;33:101625.

    Article  Google Scholar 

  35. Tijskens A, Roels S, Janssen H. Hygrothermal assessment of timber frame walls using a convolutional neural network. Build Environ. 2021;193:107652.

    Article  Google Scholar 

  36. Tijskens A, Roels S, Janssen H. Neural networks for metamodelling the hygrothermal behaviour of building components. Build Environ. 2019;162:106282.

    Article  Google Scholar 

  37. Chung WJ, Lim J-H. Cooling operation guidelines of thermally activated building system considering the condensation risk in hot and humid climate. Energy Build. 2019;193:226–39.

    Article  Google Scholar 

  38. Deshpande N, Londhe S, Kulkarni S. Modeling compressive strength of recycled aggregate concrete by Artificial Neural Network, Model Tree and Non-linear Regression. Int J Sustain Built Environ. 2014;3:187–98.

    Article  Google Scholar 

  39. Khademi F, Jamal SM, Deshpande N, Londhe S. Predicting strength of recycled aggregate concrete using Artificial Neural Network, Adaptive Neuro-Fuzzy Inference System and Multiple Linear Regression. Int J Sustain Built Environ. 2016;5:355–69.

    Article  Google Scholar 

  40. NF EN 197-1 (2012) Cement—part 1 : composition, specifications and conformity criteria for commo cements

  41. NF EN 196-1 (2016) Methods of testing cement—part 1: Determination of strength

  42. NF EN 450-1 (2012) Fly ash for concrete—part 1 : definition, specifications and conformit criteria

  43. El Mendili Y, Bouasria M, Benzaama M-H, Khadraoui F, Le Guern M, Chateigner D, et al. (2021) Mud-based construction material: Promising properties of french gravel wash mud mixed with by products, seashells and fly ash as a binder‬. Materials 14:6216

  44. Gillet P, Biellmann C, Reynard B, McMillan P. Raman spectroscopic studies of carbonates part I: high-pressure and high-temperature behaviour of calcite, magnesite, dolomite and aragonite. Phys Chem Miner. 1993;20:1–18.

    Article  ADS  CAS  Google Scholar 

  45. El Mendili Y, Vaitkus A, Merkys A, Gražulis S, Chateigner D, Mathevet F, et al. Raman Open Database: first interconnected Raman–X-ray diffraction open-access resource for material identification. J Appl Crystallogr. 2019;52:618–25.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  46. ASTM C204. Test Methods for Fineness of Hydraulic Cement by Air-Permeability Apparatus. 2018.

  47. NF P18-452. Concretes—measuring the flow time of concretes and mortars using a workabilitymeter. 2017.

  48. NF P15-431. Hydraulic binders. Methods for testing cement. Setting test. 1994.

  49. Haykin SS. Neural networks and learning machines. 3rd ed. New York Munich: Prentice-Hall; 2009.

    Google Scholar 

  50. Hodhod OA, Salama G. Developing an ANN model to simulate ASTM C1012–95 test considering different cement types and different pozzolanic additives. HBRC J. 2013;9:1–14.

    Article  Google Scholar 

  51. Kişi Ö. Streamflow forecasting using different artificial neural network algorithms. J Hydrol Eng. 2007;12:532–9.

    Article  Google Scholar 

  52. Topçu İB, Boğa AR, Hocaoğlu FO. Modeling corrosion currents of reinforced concrete using ANN. Autom Constr. 2009;18:145–52.

    Article  Google Scholar 

  53. Esping O. Effect of limestone filler BET(H2O)-area on the fresh and hardened properties of self-compacting concrete. Cem Concr Res. 2008;7:938–44.

    Article  Google Scholar 

  54. Gutteridge WA, Dalziel JA. Filler cement: the effect of the secondary component on the hydration of Portland cement: part 2: fine hydraulic binders. Cem Concr Res. 1990;20:853–61.

    Article  CAS  Google Scholar 

  55. Marzouki A, Lecomte A, Beddey A, Diliberto C, Ouezdou MB. The effects of grinding on the properties of Portland-limestone cement. Constr Build Mater. 2013;Complete:1145–55.

    Article  Google Scholar 

  56. Matschei T, Lothenbach B, Glasser FP. The role of calcium carbonate in cement hydration. Cem Concr Res. 2007;37:551–8.

    Article  CAS  Google Scholar 

  57. Georgescu M, Saca N. Properties of blended cements with limestone filler and fly ash content. Sci Bull. 2009;71:12.

    Google Scholar 

  58. Shaikh FUA, Supit SWM. Mechanical and durability properties of high volume fly ash (HVFA) concrete containing calcium carbonate (CaCO3) nanoparticles. Constr Build Mater. 2014;70:309–21.

    Article  Google Scholar 

  59. Li G. Properties of high-volume fly ash concrete incorporating nano-SiO2. Cem Concr Res. 2004;34:1043–9.

    Article  CAS  Google Scholar 

  60. Bouasria M, Babouri L, Khadraoui F, Chateigner D, Gascoin S, Pralong V, et al. Insight into the partial replacement of cement by ferronickel slags from New Caledonia. Eur J Environ Civ Eng. 2020;0:1–19.

    CAS  Google Scholar 

  61. Garbev K, Stemmermann P, Black L, Breen C, Yarwood J, Gasharova B. Structural features of C-S–H(I) and its carbonation in air—a Raman spectroscopic study. Part I: fresh phases. J Am Ceram Soc. 2007;90:900–7.

    Article  CAS  Google Scholar 

  62. Grangeon S, Claret F, Roosz C, Sato T, Gaboreau S, Linard Y. Structure of nanocrystalline calcium silicate hydrates: insights from X-ray diffraction, synchrotron X-ray absorption and nuclear magnetic resonance. J Appl Crystallogr. 2016;49(Pt 3):771–83.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chaou AA, Abdelouas A, Mendili YE, Bouakkaz R, Utsunomiya S, Martin C, et al. Vapor hydration of a simulated borosilicate nuclear waste glass in unsaturated conditions at 50 °C and 90 °C. RSC Adv. 2015;5:64538–49.

    Article  ADS  Google Scholar 

  64. Livingston RA, Monteiro PJM, Deb SK, Manghnani MH, Ross K. Raman scattering and X-ray diffraction study of the thermal decomposition of an ettringite-group crystal. Phys Chem Miner. 2003;30:31–8.

    Article  ADS  Google Scholar 

  65. De Weerdt K, Haha MB, Le Saout G, Kjellsen KO, Justnes H, Lothenbach B. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem Concr Res. 2011;41:279–91.

    Article  Google Scholar 

  66. Moon J, Oh JE, Balonis M, Glasser FP, Clark SM, Monteiro PJM. High pressure study of low compressibility tetracalcium aluminum carbonate hydrates 3CaO·Al2O3·CaCO3·11H2O. Cem Concr Res. 2012;42:105–10.

    Article  CAS  Google Scholar 

  67. Li D, Shah SL, Chen T. Analysis of dual-rate inferential control systems. Automatica. 2002;38:1053–9.

    Article  MathSciNet  Google Scholar 

  68. Kano M, Showchaiya N, Hasebe S, Hashimoto I. Inferential control of distillation compositions: selection of model and control configuration. Control Eng Pract. 2003;11:927–33.

    Article  Google Scholar 

  69. Lu N, Yang Y, Gao F, Wang F. Multirate dynamic inferential modeling for multivariable processes. Chem Eng Sci. 2004;59:855–64.

    Article  CAS  Google Scholar 

  70. Baratti R, Corti S, Servida A. A feedforward control strategy for distillation columns. Artif Intell Eng. 1997;11:405–12.

    Article  Google Scholar 

  71. Morejon RA, Principe JC. Advanced search algorithms for information-theoretic learning with kernel-based estimators. IEEE Trans Neural Netw. 2004;15:874–84.

    Article  PubMed  Google Scholar 

  72. Zayani R, Bouallegue R, Roviras D. Levenberg-Marquardt learning neural network for adaptive pre-0 distortion for time-varying HPA with memory in OFDM systems. J Wirl Com Netw. 2008;2008:5.

    Google Scholar 

  73. Nervetti G, Soma F. La verifica termoigrometrica delle pareti. Milano: Hoepli; 1982.

    Google Scholar 

Download references

Acknowledgements

This research is associated with the French DD&RS strategy (Sustainable Development and Social Responsibility).

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MB, M-HB, YE; methodology: MB, M-HB, YE; formal analysis and investigation: MB, M-HB, YE; writing—original draft preparation: MB, M-HB, YE; writing—review and editing: MB, M-HB, YE; supervision: M-HB, VP, YE.

Corresponding author

Correspondence to Yassine El Mendili.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Consent for publication

All authors agree to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouasria, M., Benzaama, MH., Pralong, V. et al. Mechanical and hygrothermal performance of fly-ash and seashells concrete: in situ experimental study and smart hygrothermal modeling for Normandy climate conditions. Archiv.Civ.Mech.Eng 22, 100 (2022). https://doi.org/10.1007/s43452-022-00421-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-022-00421-9

Navigation