Skip to main content
Log in

The study of the evolution of the microstructure and creep properties of Super 304H austenitic stainless steel after aging for up to 50,000 h

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

The paper discusses several aspects of degradation of Super 304H steel subjected to long-term aging up to 50,000 h at 650 and 750°C. The study includes microstructure examination by scanning and transmission electron microscopy along with X-ray microanalysis of a wide range of precipitates. The Super 304H steel has a structure characteristic for austenitic steels with annealing twins and single primary NBX precipitates of various sizes. Long-term aging leads to precipitation of several phases such as M23C6, MX carbides, σ phases, Z phase and ε-Cu phase. The precipitation processes lead to changes in the creep strength of the tested steel, the value of which strongly depends on the aging temperature used, which is measurably shown by the creep tests carried out with the elongation measured during the test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Mesjasz-Lech A. Planning of production resources use and environmental effects on the example of a thermal power plant. Procd Soc Behv. 2015;213:539–45. https://doi.org/10.1016/j.sbspro.2015.11.447.

    Article  Google Scholar 

  2. Golański G, Zielińska-Lipiec A, Zieliński A, Sroka M. Effect of long-term service on microstructure and mechanical properties of martensitic 9% Cr Steel. J Mater Eng Perform. 2017;26:1101–7. https://doi.org/10.1007/s11665-017-2556-3.

    Article  CAS  Google Scholar 

  3. Zieliński A, Golański G, Sroka M. Comparing the methods in determining residual life on the basis of creep tests of low-alloy Cr-Mo-V cast steels operated beyond the design service life. Int J Pres Ves Pip. 2017;152:1–6. https://doi.org/10.1016/j.ijpvp.2017.03.002.

    Article  CAS  Google Scholar 

  4. Golański G, Zieliński A, Sroka M. Microstructure and mechanical properties of TP347HFG austenitic stainless steel after long-term service. Int J Pres Ves Pip. 2020;188: 104160. https://doi.org/10.1016/j.ijpvp.2020.104160.

    Article  CAS  Google Scholar 

  5. Lu H, Xu F, Liu H, Wang J, Campbell DE, Ren H. Emergy-based analysis of the energy security of China. Energy. 2019;181:123–35. https://doi.org/10.1016/j.energy.2019.05.170.

    Article  Google Scholar 

  6. Sroka M, Zieliński A, Mikuła J. The service life of the repair welded joint of Cr-Mo / Cr-Mo-V. Arch Metall Mater. 2016;61:969–74. https://doi.org/10.1515/amm-2016-0217.

    Article  CAS  Google Scholar 

  7. Kępa J, Golański G, Zieliński A, Brodziak-Hyska A. Precipitation process in VM12 steel after ageing at 650°C temperature. J Vibroeng. 2012;14:143–50.

    Google Scholar 

  8. Rocha DHD, Silva RJ. Exergoenvironmental analysis of a ultra-supercritical coal-fired power plant. J Clean Prod. 2019;231:671–82. https://doi.org/10.1016/j.jclepro.2019.05.214.

    Article  Google Scholar 

  9. Guo X, Sun W, Becker A, Morris A, Pavier M, Flewitt P, Tierney M, Wales C. Thermal and stress analyses of a novel coated steam dual pipe system for use in advanced ultra-supercritical power plant. Int J Pres Ves Pip. 2019;176: 103933. https://doi.org/10.1016/j.ijpvp.2019.103933.

    Article  Google Scholar 

  10. Dudziak T, Deodeshmukh V, Backert L, Sobczak N, Witkowska M, Ratuszek W, Chruściel K, Zieliński A, Sobczak J, Bruzda G. Phase investigations under steam oxidation process at 800 °C for 1000 h of advanced steels and ni-based alloys. Oxid Met. 2017;87:139–58. https://doi.org/10.1007/s11085-016-9662-8.

    Article  CAS  Google Scholar 

  11. Stevanovic VD, Petrovic MM, Wala T, Milivojevic S, Ilic M, Muszynski S. Efficiency and power upgrade at the aged lignite-fired power plant by flue gas waste heat utilization: high pressure versus low pressure economizer installation. Energy. 2019;187: 115980. https://doi.org/10.1016/j.energy.2019.115980.

    Article  Google Scholar 

  12. Lin C, Li Y, Tang Y, Shi Y, Wang Q, Yuan X, Kellett J. Integrated assessment of the environmental and economic effects of an ultra-clean flue gas treatment process in coal-fired power plant. J Clean Prod. 2018;199:359–68. https://doi.org/10.1016/j.jclepro.2018.07.174.

    Article  CAS  Google Scholar 

  13. Golański G. Żarowytrzymałe stale austenityczne, Wydawnictwo Wydziału Inżynierii Produkcji i Technologii Materiałów, Częstochowa 2017 (in Polish).

  14. Zieliński A, Sroka M, Dudziak T. Microstructure and mechanical properties of Inconel 740h after long-term service. Materials. 2018;11:2130. https://doi.org/10.3390/ma11112130.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Golański G, Merda A, Zieliński A, Urbańczyk P, Słania J, Kierat M. Microstructure and mechanical properties of HR6W alloy dedicated for manufacturing of pressure elements in supercritical and ultrasupercritical power units. E3S Web Conf. 2019;82:01005. https://doi.org/10.1051/e3sconf/20198201005.

    Article  CAS  Google Scholar 

  16. Zieliński A, Dobrzański J, Purzyńska H, Sikora R, Dziuba-Kałuża M, Kania Z. Evaluation of creep strength of heterogeneous welded joint in HR6W alloy and Sanicro 25 steel. Arch Metall Mater. 2017;62:2057–64. https://doi.org/10.1515/amm-2017-0305.

    Article  CAS  Google Scholar 

  17. Sroka M, Nabiałek M, Szota M, Zieliński A. The influence of the temperature and ageing time on the NiCr23Co12Mo alloy microstructure. Rev Chim-Bucharest. 2017;68:737–41. https://doi.org/10.37358/RC.17.4.5541.

    Article  CAS  Google Scholar 

  18. Viswanathan R, Henry JF, Tanzosh J, Stanko G, Shingledecker J, Vitalis B, Purgert R. U.S. program on materials technology for ultra-supercritical coal power plants. J Mater Eng Perform. 2005;14:281–92. https://doi.org/10.1361/10599490524039.

    Article  CAS  Google Scholar 

  19. Maziasz PJ, Shingledecker JP, Evans ND. Developing new cast austenitic stainless steels with improved high-temperature creep resistance. J Press Vess-T ASME. 2009;131:051404. https://doi.org/10.1115/1.3141437.

    Article  CAS  Google Scholar 

  20. Iseda A, Okada H. Creep properties and Microstructuren of Super 304H, TP347HFG, HR3C. In: Proceedings of the 5th International Conference Advances in Materials Technology for Fossil Power Plants EPRI, Marco Island, USA; 2007, p. 61–62.

  21. Abe F. Research and development of heat-resistant materials for advanced USC power plants with steam temperatures of 700 °C and above. Engineering. 2015;1:211–24. https://doi.org/10.15302/j-eng-2015031.

    Article  CAS  Google Scholar 

  22. Di Gianfrancesco A. Materials for ultra-supercritical and advanced ultra-supercritical power plants. 1st ed. Sawston: Woodhead Publishing; 2016.

    Google Scholar 

  23. Zieliński A, Dobrzański J, Purzyńska H, Golański G. Properties, structure and creep resistance of austenitic steel Super 304H. Mater Test. 2015;57:859–65. https://doi.org/10.3139/120.110791.

    Article  ADS  CAS  Google Scholar 

  24. Zhong Z, Gu Y, Yuan Y. Microstructural stability and mechanical properties of a newly developed Ni–Fe-base superalloy. Mater Sci Eng A-Struct. 2015;622:101–7. https://doi.org/10.1016/j.msea.2014.11.010.

    Article  CAS  Google Scholar 

  25. Zieliński A, Sroka M, Miczka M, Śliwa A. Forecasting the particle diameter size distribution in P92 (X10CrWMoVNb9-2) steel after long-term ageing at 600 and 650°C. Arch Metall Mater. 2016;61:753–60. https://doi.org/10.1515/amm-2016-0128.

    Article  CAS  Google Scholar 

  26. Horváth J, Janovec J, Junek M. The changes in mechanical properties of austenitic creep resistant steels SUPER 304H and HR3C caused by medium-term isothermal ageing. Solid State Phenom. 2017;258:639–42. https://doi.org/10.4028/www.scientific.net/ssp.258.639.

    Article  Google Scholar 

  27. Yoo K-B, He Y, Lee H-S, Bae S-Y, Kim D-S, Shin K. Study of the scale formed on super 304H boiler tube steels after long-term steam oxidation at high temperatures. Mater Charact. 2018;146:71–80. https://doi.org/10.1016/j.matchar.2018.09.045.

    Article  CAS  Google Scholar 

  28. Li Y, Wang S, Wang L, Yu P, Yang J. Corrosion behavior of austenitic steel 304 in nearcritical aqueous solutions. In: Proceedings of the 2015 International Symposium on Energy Science and Chemical Engineering, Atlantis Press; 2015. https://doi.org/10.2991/isesce-15.2015.38

  29. Liang Z, Zhao Q, Deng J, Wang Y. Influence of aging treatment on the microstructure and mechanical properties of T92/Super 304H dissimilar metal welds. Mater High Temp. 2018;35(4):327–34. https://doi.org/10.1080/09603409.2017.1334857.

    Article  CAS  Google Scholar 

  30. Rizvi SA, Tewari SP. Effect of different Welding Parameters on the mechanical and microstructural properties of Stainless Steel 304H welded joints. Int J Eng Trans A. 2017;31(10):150–60. https://doi.org/10.5829/ije.2017.30.10a.21.

    Article  CAS  Google Scholar 

  31. Oua P, Xing H, Wang X, Sun J, Cui Z, Yang Ch. Coarsening and hardening behaviors of Cu – rich precipitates in Super304H austenitic steel. Metall Mater Trans A. 2015;46:3909–16. https://doi.org/10.1007/s11661-015-3004-3.

    Article  CAS  Google Scholar 

  32. Ou P, Xing H, Wang XL, Sun J. Tensile yield behavior and precipitation strengthening mechanism in Super304H steel. Mater Sci Eng A-Struct. 2014;600:171–5. https://doi.org/10.1016/j.msea.2014.01.085.

    Article  CAS  Google Scholar 

  33. Chen AY, Hu WF, Wang D, Zhu YK, Wang P, Yang H, Wang XY, Gu JF, Lu J. Improving the intergranular corrosion resistance of austenitic stainless steel by high density twinned structure. Scripta Mater. 2017;13:264–8. https://doi.org/10.1016/j.scriptamat.2016.11.032.

    Article  CAS  Google Scholar 

  34. Zieliński A, Golański G, Sroka M. Evolution of the microstructure and mechanical properties of HR3C austenitic stainless steel after ageing for up to 30 000 h at 650–750°C. Mater Sci Eng A-Struct. 2020;796: 139944. https://doi.org/10.1016/j.msea.2020.139944.

    Article  CAS  Google Scholar 

  35. Chi Ch-Y, Yu H-Y, Dong J-X, Liu W-Q, Cheng J-Ch, Liu Z-D, Xie X-S. The precipitation strengthening behavior of Cu- rich phase in Nb contained advanced Fe-Cr-Ni type austenitic heat resistant steel for USC power plant application. Prog Nat Sci. 2012;22:175–85. https://doi.org/10.1016/j.pnsc.2012.05.002.

    Article  Google Scholar 

  36. Zieliński A, Wersta R. Structure of S304H steel after 10 000 hours of aging. Energetyka. 2018;11:648–50.

    Google Scholar 

  37. Noskovich OI, Rabkin EI, Semenov VN, Straumal BB, Shvindlerman LS. Wetting and premelting phase transitions in 38° [100] tilt grain boundary in (Fe-12 at.% Si)-Zn alloy in the vicinity of the A2–B2 bulk ordering in Fe-12 at.% Si alloy. Acta Metall Mater. 1991;39:3091–8. https://doi.org/10.1016/0956-7151(91)90042-y.

    Article  CAS  Google Scholar 

  38. Straumal B, Kogtenkova O, Bulatov M, Nekrasov A, Baranchikov A, Baretzky B, Straumal A. Wetting of grain boundary triple junctions by intermetallic delta-phase in the Cu–In alloys. J Mater Sci. 2021;56:7840–8. https://doi.org/10.1007/s10853-020-05674-4.

    Article  ADS  CAS  Google Scholar 

  39. Chang L-S, Rabkin E, Straumal B, Lejček P, Hofmann S, Gust W. Temperature dependence of the grain boundary segregation of Bi in Cu polycrystals. Scripta Mater. 1997;37(6):729–35. https://doi.org/10.1016/s1359-6462(97)00171-1.

    Article  CAS  Google Scholar 

  40. Jin X, Xia X, Li Y, Zhao Y, Xue F, Zhang G. Quantitative study of microstructure evolution and the effect on mechanical properties of Super304H during aging. Mater High Temp. 2019;36(5):459–70. https://doi.org/10.1080/09603409.2019.1632508.

    Article  CAS  Google Scholar 

  41. Yu H, Chi Ch. Precipitation behaviour of Cu-rich phase in 18Cr9Ni3CuNbN austenitic heat - resistant steel at early aging state, Chin. J Mater Res. 2015;29:195–200. https://doi.org/10.11901/1005.3093.2014.610.

    Article  CAS  Google Scholar 

  42. Chi CY, Yu HY, Dong JX, Liu WQ, Cheng SC, Liu ZD, Xie XS. The precipitation strengthening behavior of Cu-rich phase in Nb contained advanced Fe–Cr–Ni type austenitic heat resistant steel for USC power plant application. Prog Nat Sci. 2012;22(3):175–85. https://doi.org/10.1016/j.pnsc.2012.05.002.

    Article  Google Scholar 

  43. Padilha AF, Machado IF, Plaut RI. Microstructures and mechanical properties of Fe-15%Cr-15%Ni austenitic stainless steels containing different levels of niobium additions submitted to various processing stages. J Mater Process Tech. 2005;170(1–2):89–96. https://doi.org/10.1016/j.jmatprotec.2005.05.002.

    Article  CAS  Google Scholar 

  44. Farooq M. Strengthening and mechanism degradation in austenitic stainless steels at elevated temperature. PhD thesis. Royal Institute of Technology, Stockholm; 2013

  45. Ji YS, Park J, Lee SY, Kim JW, Lee SM, Nam J, Hwang B, Suh JY, Shim JHJMC. Long-term evolution ofσphase in 304H austenitic stainless steel: experimental andcomputational investigation. Mater Charact. 2017;128:23–9. https://doi.org/10.1016/j.matchar.2017.03.030.

    Article  CAS  Google Scholar 

  46. Kuboň Z, Stejskalová Š, Kander L. Effect of sigma phase on fracture behavior of steels and weld joints of components in power industry working at supercritical conditions. Austenitic Stainl Steels New Aspects. 2017. https://doi.org/10.5772/intechopen.71569.

    Article  Google Scholar 

  47. Hsieh C-C, Wu W. Overview of intermetallic sigma (σ) phase precipitation in stainless steels. ISRN Metall. 2012;2012:1–16. https://doi.org/10.5402/2012/732471.

    Article  CAS  Google Scholar 

  48. Golański G., Zieliński A., Purzyńska H. Precipitation process in creep-resistant austenitic steels. Austenitic stainless steels. London: InTech Publication; 2017, p. 93–112. https://doi.org/10.5772/intechopen.70941

  49. Padilha AF, Rios PR. Decomposition of austenite in austenite stainless steel. ISIJ Int. 2002;42:325–37. https://doi.org/10.2355/isijinternational.42.325.

    Article  CAS  Google Scholar 

  50. Barcik J. Mechanism of σ-phase precipitation in Cr-Ni austenitic steels. Mater Sci Technol. 1988;4:5–15. https://doi.org/10.1179/mst.1988.4.1.5.

    Article  ADS  CAS  Google Scholar 

  51. Wang X, Li Y, Chen D, Sun J. Precipitate evolution during the aging of Super304H steel and its influence on impact toughness. Mater Sci Eng A-Struct. 2019;754:238–45. https://doi.org/10.1016/j.msea.2019.03.086.

    Article  CAS  Google Scholar 

  52. Jiang J, Liu Z, Gao Q, Zhang H, Hao A, Qu F, Li H. The effect of isothermal aging on creep behavior of modified 2.5 Al alumina-forming austenitic steel. Mater Sci Eng A Struct. 2020;797:140219. https://doi.org/10.1016/j.msea.2020.140219.

    Article  CAS  Google Scholar 

  53. Sklenicka V, Kucharova K, Svobodova M, Kral P, Kvapilova M, Dvorak J. The effect of a prior short-term ageing on mechanical and creep properties of P92 steel. Mater Charact. 2018;136:388–97. https://doi.org/10.1016/j.matchar.2018.01.008.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The results in this publication were obtained as a part of research co-financed by the National Science Centre under contract 2011/01/D/ST8/07219 – Project: “Creep test application to model lifetime of materials for modern power generation industry”, and co-financed rector's grant in the area of scientific research and development works, Silesian University of Technology, 10/010/RGJ21/1032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sroka.

Ethics declarations

Conflict of interest

Author declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zieliński, A., Wersta, R. & Sroka, M. The study of the evolution of the microstructure and creep properties of Super 304H austenitic stainless steel after aging for up to 50,000 h. Archiv.Civ.Mech.Eng 22, 89 (2022). https://doi.org/10.1007/s43452-022-00408-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-022-00408-6

Keywords

Navigation