Skip to main content
Log in

Experimental characterization of the AA7075 aluminum alloy using hot shear compression test

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

The experimental characterization of the material under shear loading is essential for researchers to study the plastic behavior of materials during manufacturing processes. Indeed, regardless of the loading mode, ductile materials mainly deform plastically under shear loading. Thus, for such material behavior analysis, shear tests are very useful. In this paper, a test procedure is defined to characterize the shear deformation of AA7075 aluminum alloy at high strain under compression loading. The Finite Element (FE) simulation is used to select the suitable specimen geometry for the testing. Finally, the experimental tests are carried out using a conventional compression device at a constant strain rate of 0.1 s−1 and at an elevated temperature of 20–500 °C. The results show that the drop in the flow stress curved relative to the increase in temperature exhibits the softening mechanism. The homogeneous behavior of the shear strain along the shear region was also observed and shown by the macro and micro images. The effect of temperature and equivalent strain on the evolution of the microstructure is discussed in detail. It is discovered that, various dynamic recrystallization mechanisms were recorded for aluminum alloy AA7075 depending on the imposed strain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Tarigopula V, et al. A study of large plastic deformations in dual phase steel using digital image correlation and FE analysis. Exp Mech. 2008;48(2):181–96.

    Article  Google Scholar 

  2. Rusinek A, Klepaczko J. Shear testing of a sheet steel at wide range of strain rates and a constitutive relation with strain-rate and temperature dependence of the flow stress. Int J Plast. 2001;17(1):87–115. https://doi.org/10.1016/S0749-6419(00)00020-6.

    Article  CAS  Google Scholar 

  3. Hundy BB, Green AP. A determination of plastic stress-strain relations. J Mech Phys Solids. 1954;3(1):16–21. https://doi.org/10.1016/0022-5096(54)90035-6.

    Article  ADS  Google Scholar 

  4. Murr L. Metallurgical applications of shock-wave and high-strain-rate phenomena. New York: CRC Press; 1986. p. 1136.

    Google Scholar 

  5. Campbell JD, Ferguson WG. The temperature and strain-rate dependence of the shear strength of mild steel. Philos Mag. 1970;21(169):63–82. https://doi.org/10.1080/14786437008238397.

    Article  ADS  CAS  Google Scholar 

  6. Wei Z, Yu J, Li J, Li Y, Hu S. Influence of stress condition on adiabatic shear localization of tungsten heavy alloys. Int J Impact Eng. 2001;26(1–10):843–52. https://doi.org/10.1016/S0734-743X(01)00137-3.

    Article  Google Scholar 

  7. Gray GT, Vecchio KS, Livescu V. Compact forced simple-shear sample for studying shear localization in materials. Acta Mater. 2016;103:12–22. https://doi.org/10.1016/j.actamat.2015.09.051.

    Article  ADS  CAS  Google Scholar 

  8. Kim D-K, Lee S, Hyung Baek W. Microstructural study of adiabatic shear bands formed by high-speed impact in a tungsten heavy alloy penetrator. Mater Sci Eng A. 1998;249(1–2):197–205.

    Article  Google Scholar 

  9. Klopp RW, Clifton RJ, Shawki TG. Pressure-shear impact and the dynamic viscoplastic response of metals. Mech Mater. 1985;4(3–4):375–85. https://doi.org/10.1016/0167-6636(85)90033-X.

    Article  Google Scholar 

  10. B. Dodd and Y. Bai (2012) Adiabatic shear Localization. Elsevier. https://doi.org/10.1016/C2011-0-06979-X.

  11. Peirs J, Verleysen P, Degrieck J. Novel technique for static and dynamic shear testing of Ti6Al4V sheet. Exp Mech. 2012;52(7):729–41. https://doi.org/10.1007/s11340-011-9541-9.

    Article  Google Scholar 

  12. Brosius A, Yin Q, Güner A, Tekkaya AE. A new shear test for sheet metal characterization. Steel Res Int. 2011;82(4):323–8. https://doi.org/10.1002/srin.201000163.

    Article  CAS  Google Scholar 

  13. M Isakov, J Seidt, K O¨stman, A Gilat, and V-T. Kuokkala, “Characterization of a Ferritic stainless sheet Sseel in simple shear and uniaxial tension at different strain rates,” in volume 8: mechanics of solids, structures and fluids; vibration, acoustics and wave propagation, Jan, 2011, pp. 101–109. https://doi.org/10.1115/IMECE2011-63141.

  14. Rittel D, Lee S, Ravichandran G. A shear-compression specimen for large strain testing. Exp Mech. 2002;42(1):58–64. https://doi.org/10.1007/bf02411052.

    Article  CAS  Google Scholar 

  15. Dorogoy A, Rittel D, Godinger A. A shear-tension specimen for large strain testing. Exp Mech. 2016;56(3):437–49. https://doi.org/10.1007/s11340-015-0106-1.

    Article  Google Scholar 

  16. Moemeni S, Zarei-Hanzaki A, Abedi HR, Torabinejad V. The application of shear compression specimen to study shear deformation behavior of AZ31 Mg Alloy at high temperatures and quasi-static regime. Exp Mech. 2012;52(6):629–36. https://doi.org/10.1007/s11340-011-9525-9.

    Article  CAS  Google Scholar 

  17. Bouvier S, Haddadi H, Levée P, Teodosiu C. Simple shear tests: experimental techniques and characterization of the plastic anisotropy of rolled sheets at large strains. J Mater Process Technol. 2006;172(1):96–103. https://doi.org/10.1016/j.jmatprotec.2005.09.003.

    Article  Google Scholar 

  18. Chwalik P, Klepaczko JR, Rusinek A. Impact shear-numerical analyses of ASB evolution and failure for Ti-6Al-4V alloy. J Phys. 2003;4:257–62. https://doi.org/10.1051/jp4:20020703.

    Article  Google Scholar 

  19. Rokni MR, Zarei-Hanzaki A, Roostaei AA, Abedi HR. An investigation into the hot deformation characteristics of 7075 aluminum alloy. Mater Des. 2011;32(4):2339–44. https://doi.org/10.1016/j.matdes.2010.12.047.

    Article  CAS  Google Scholar 

  20. Joshi TC, Prakash U, Dabhade VV. Microstructural development during hot forging of Al 7075 powder. J Alloys Compd. 2015;639:123–30. https://doi.org/10.1016/j.jallcom.2015.03.099.

    Article  CAS  Google Scholar 

  21. Xiao W, Wang B, Wu Y, Yang X. Constitutive modeling of flow behavior and microstructure evolution of AA7075 in hot tensile deformation. Mater Sci Eng A. 2018;712:704–13. https://doi.org/10.1016/j.msea.2017.12.028.

    Article  CAS  Google Scholar 

  22. Yang X, Miura H, Sakai T. Continuous dynamic recrystallization in a superplastic 7075 aluminum alloy. Mater Trans. 2002;43(10):2400–7. https://doi.org/10.2320/matertrans.43.2400.

    Article  CAS  Google Scholar 

  23. Engineering ToolBox, “Friction and friction coefficients,” 2004. https://www.engineeringtoolbox.com/friction-coefficients-d_778.html.

  24. J. O. Hallquist, “LS-Dyna®Theory Manual,” 2006. [Online]. Available: www.lstc.com.

  25. Armstrong RW, Zerilli FJ. Dislocation mechanics based analysis of material dynamics behavior. J Phys Colloq. 1988;49(C3):C3-529-C3-534. https://doi.org/10.1051/jphyscol:1988374.

    Article  Google Scholar 

  26. Steinberg DJ, Cochran SG, Guinan MW. A constitutive model for metals applicable at high-strain rate. J Appl Phys. 1980;51(3):1498–504. https://doi.org/10.1063/1.327799.

    Article  ADS  CAS  Google Scholar 

  27. R. F. Muraca and J. S. Whittick (1972) “Aluminum alloy 7075 (2nd edn),” in Materials data handbook, San Carlos, California, p. 132.

  28. ASM matweb, “Aluminum 7075-T6; 7075-T651,” 2018. http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA7075T6.

  29. Brar NS, Joshi VS, Harris BW. Constitutive model constants for Al7075-T651 and Al7075-T6. AIP Conf Proc. 2009;1195(1):945–8. https://doi.org/10.1063/1.3295300.

    Article  ADS  CAS  Google Scholar 

  30. Zhang DN, Shangguan QQ, Xie CJ, Liu F. A modified Johnson-Cook model of dynamic tensile behaviors for 7075–T6 aluminum alloy. J Alloys Compd. 2015;619:186–94. https://doi.org/10.1016/j.jallcom.2014.09.002.

    Article  CAS  Google Scholar 

  31. Dieter GE, Kuhn HA, Semiatin SL (2003). Handbook of workability and process design. ASM International. 2003; p 414. https://doi.org/10.1361/hwpd2003p232.

  32. Ouyang J-H, Liang X-S (2013). High-Temperature Solid Lubricating Materials. Encycl Tribol. 1671–1681. https://doi.org/10.1007/978-0-387-92897-5_1236.

  33. Li Y, Ramesh KT, Chin ESC. The mechanical response of an A359/SiCp MMC and the A359 aluminum matrix to dynamic shearing deformations. Mater Sci Eng A. 2004;382(1–2):162–70. https://doi.org/10.1016/j.msea.2004.04.062.

    Article  CAS  Google Scholar 

  34. Dorogoy A, Rittel D, Godinger A. Modification of the shear-compression specimen for large strain testing. Exp Mech. 2015;55(9):1627–39. https://doi.org/10.1007/s11340-015-0057-6.

    Article  CAS  Google Scholar 

  35. R.J. Clifton and R.W. Klopp (1986) Metals handbook, 9th edn, ASM International, Metals Park, OH, vol. 8, p. 230.

  36. Gupta RK, Mathew C, Ramkumar P. Strain hardening in aerospace alloys. Front Aerosp Eng. 2015;4(1):1–13. https://doi.org/10.12783/fae.2015.0401.01.

    Article  Google Scholar 

  37. Gourdet S, Montheillet F. A model of continuous dynamic recrystallization. Acta Mater. 2003;51(9):2685–99. https://doi.org/10.1016/S1359-6454(03)00078-8.

    Article  ADS  CAS  Google Scholar 

  38. Van Geertruyden WH, Misiolek WZ, Wang PT. Grain structure evolution in a 6061 aluminum alloy during hot torsion. Mater Sci Eng A. 2006;419(1–2):105–14. https://doi.org/10.1016/j.msea.2005.12.018.

    Article  CAS  Google Scholar 

  39. Sun ZC, Zheng LS, Yang H. Softening mechanism and microstructure evolution of as-extruded 7075 aluminum alloy during hot deformation. Mater Charact. 2014;90:71–80. https://doi.org/10.1016/j.matchar.2014.01.019.

    Article  CAS  Google Scholar 

  40. Yue TM, Yan LJ, Chan CP, Dong CF, Man HC, Pang GKH. Excimer laser surface treatment of aluminum alloy AA7075 to improve corrosion resistance. Surf Coatings Technol. 2004;179(2–3):158–64. https://doi.org/10.1016/S0257-8972(03)00850-8.

    Article  CAS  Google Scholar 

  41. Jacumasso SC, de Martins JP, de Carvalho ALM. Analysis of precipitate density of an aluminium alloy by TEM and AFM. Rev Esc Minas. 2016;69(4):451–7. https://doi.org/10.1590/0370-44672016690019.

    Article  Google Scholar 

  42. Atkinson HV, Burke K, Vaneetveld G. Recrystallization in the semi-solid state in 7075 aluminium alloy. Mater Sci Eng A. 2008;490(1–2):266–76. https://doi.org/10.1016/j.msea.2008.01.057.

    Article  CAS  Google Scholar 

  43. Sakai T, Belyakov A, Kaibyshev R, Miura H, Jonas JJ. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog Mater Sci. 2014;60(1):130–207. https://doi.org/10.1016/j.pmatsci.2013.09.002.

    Article  CAS  Google Scholar 

  44. Jing L, Fu RD, Li YJ, Shi Y, Wang J, Du DX. Physical simulation of microstructural evolution in linear friction welded joints of Ti–6Al–4V alloy. Sci Technol Weld Join. 2015;20(4):286–90. https://doi.org/10.1179/1362171815Y.0000000007.

    Article  CAS  Google Scholar 

  45. Longère P, Dragon A. Dynamic vs. quasi-static shear failure of high strength metallic alloys: experimental issues. Mech Mater. 2015;80:203–18. https://doi.org/10.1016/j.mechmat.2014.05.001.

    Article  Google Scholar 

Download references

Acknowledgments

The authors want to thanks to David Villalta for helping in experimental setup and Unai Echeveste Elizalde for the help during the metallographic preparation and etching of the samples.

Funding

This project received funding from the European Union’s Marie Skłodowska–Curie Actions (MSCA) Innovative Training Networks (ITN) H2020-MSCA-ITN-2017 under the grant agreement No. 764979.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trunal Bhujangrao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhujangrao, T., Veiga, F., Froustey, C. et al. Experimental characterization of the AA7075 aluminum alloy using hot shear compression test. Archiv.Civ.Mech.Eng 21, 45 (2021). https://doi.org/10.1007/s43452-021-00194-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-021-00194-7

Keywords

Navigation