Skip to main content
Log in

Microstructure and mechanical properties of the AA7075 tube fabricated using shear assisted processing and extrusion (ShAPE)

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Shear-assisted processing and extrusion (ShAPE) experimental setup and tooling were adopted for extruding thin-walled AA7075 aluminum tube from as-cast non-homogenized billet material in a single run. The mechanical and microstructural characterizations were performed on the as-extruded tube through tensile, hardness, electron backscatter diffraction (EBSD), and energy dispersive spectroscopy (EDS) tests. The results showed that the ShAPE process developed a significantly refined microstructure with uniform and almost equiaxed grain structure on both hoop and axial cross-sections of the extrudate as well as through the thickness of the material. The pole figures and inverse pole figures of the EBSD data showed a strong shear texture development, and it was found out that axial shear is the dominant deformation mechanism in the regions near the inner surface of the tube, while combined axial and torsional shears are the two dominant modes of deformation near the outer surface of the extrudate. As for the mechanical properties, there was an increase of 150 and 73% in the yield and ultimate strengths of the tube produced using ShAPE process, respectively, and an 18% decrease in maximum uniform plastic elongation compared to the conventionally extruded AA7075-O tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Valiev RZ, Langdon TG. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci. 2006;51:881–981. https://doi.org/10.1016/j.pmatsci.2006.02.003.

    Article  CAS  Google Scholar 

  2. Zhilyaev A, Langdon T. Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci. 2008;53:893–979. https://doi.org/10.1016/j.pmatsci.2008.03.002.

    Article  CAS  Google Scholar 

  3. Ebrahimi M, Djavanroodi F, Nazari Tiji SA, Gholipour H, Gode C. Experimental investigation of the equal channel forward extrusion process. Metals. 2015;5:471–83. https://doi.org/10.3390/met5010471.

    Article  Google Scholar 

  4. Valiev RZ, Islamgaliev RK, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation. vol. 45. 2000.

  5. Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng R. 2005;50:1–78. https://doi.org/10.1016/j.mser.2005.07.001.

    Article  CAS  Google Scholar 

  6. Węglowski MS. Friction stir processing—state of the art. Arch Civ Mech Eng. 2018;18:114–29. https://doi.org/10.1016/j.acme.2017.06.002.

    Article  Google Scholar 

  7. Nouri Z, Taghiabadi R, Moazami Goudarzi M. Mechanical properties enhancement of cast Al-8.5Fe-1.3V-1.7Si (FVS0812) alloy by friction stir processing. Arch Civ Mech Eng. 2020. https://doi.org/10.1007/s43452-020-00106-1.

    Article  Google Scholar 

  8. Li J, Shen Y, Hou W, Qi Y. Friction stir welding of Ti-6Al-4V alloy: friction tool, microstructure, and mechanical properties. J Manuf Process. 2020;58:344–54. https://doi.org/10.1016/j.jmapro.2020.08.025.

    Article  Google Scholar 

  9. Trimble D, O’Donnell GE, Monaghan J. Characterisation of tool shape and rotational speed for increased speed during friction stir welding of AA2024-T3. J Manuf Process. 2015;17:141–50. https://doi.org/10.1016/j.jmapro.2014.08.007.

    Article  Google Scholar 

  10. Prasad Mahto R, Pal SK. Friction stir welding of dissimilar materials: an investigation of microstructure and nano-indentation study. J Manuf Process. 2020;55:103–18. https://doi.org/10.1016/j.jmapro.2020.03.050.

    Article  Google Scholar 

  11. Gotawala N, Shrivastava A. Analysis of material distribution in dissimilar friction stir welded joints of Al 1050 and copper. J Manuf Process. 2020;57:725–36. https://doi.org/10.1016/j.jmapro.2020.07.043.

    Article  Google Scholar 

  12. Saju TP, Narayanan RG. Dieless friction stir lap joining of AA 5050–H32 with AA 6061–T6 at varying pre-drilled hole diameters. J Manuf Process. 2020;53:21–33. https://doi.org/10.1016/j.jmapro.2020.01.048.

    Article  Google Scholar 

  13. Evans WT, Cox C, Gibson BT, Strauss AM, Cook GE. Two-sided friction stir riveting by extrusion: a process for joining dissimilar materials. J Manuf Process. 2016;23:115–21. https://doi.org/10.1016/j.jmapro.2016.06.001.

    Article  Google Scholar 

  14. Baffari D, Buffa G, Campanella D, Fratini L, Reynolds AP. Process mechanics in friction stir extrusion of magnesium alloys chips through experiments and numerical simulation. J Manuf Process. 2017;29:41–9. https://doi.org/10.1016/j.jmapro.2017.07.010.

    Article  Google Scholar 

  15. Baffari D, Reynolds AP, Masnata A, Fratini L, Ingarao G. Friction stir extrusion to recycle aluminum alloys scraps: energy efficiency characterization. J Manuf Process. 2019;43:63–9. https://doi.org/10.1016/j.jmapro.2019.03.049.

    Article  Google Scholar 

  16. Tang W, Reynolds AP. Production of wire via friction extrusion of aluminum alloy machining chips. J Mater Process Technol. 2010;210:2231–7. https://doi.org/10.1016/j.jmatprotec.2010.08.010.

    Article  CAS  Google Scholar 

  17. Tahmasbi K, Mahmoodi M. Evaluation of microstructure and mechanical properties of aluminum AA7022 produced by friction stir extrusion. J Manuf Process. 2018;32:151–9. https://doi.org/10.1016/j.jmapro.2018.02.008.

    Article  Google Scholar 

  18. Li X, Tang W, Reynolds AP, Tayon WA, Brice CA. Strain and texture in friction extrusion of aluminum wire. J Mater Process Technol. 2016;229:191–8. https://doi.org/10.1016/j.jmatprotec.2015.09.012.

    Article  CAS  Google Scholar 

  19. Jafarzadeh H, Babaei A, Esmaeili-Goldarag F. Friction stir radial backward extrusion (FSRBE) as a new grain refining technique. Arch Civ Mech Eng. 2018;18:1374–85. https://doi.org/10.1016/j.acme.2018.04.006.

    Article  Google Scholar 

  20. Zangiabadi A, Kazeminezhad M. Development of a novel severe plastic deformation method for tubular materials: tube channel pressing ( TCP ). Mater Sci Eng A. 2011;528:5066–72. https://doi.org/10.1016/j.msea.2011.03.012.

    Article  CAS  Google Scholar 

  21. Wang JT, Li Z, Langdon TG. Principles of severe plastic deformation using tube high-pressure shearing. Scr Mater. 2012;67:810–3. https://doi.org/10.1016/j.scriptamat.2012.07.028.

    Article  CAS  Google Scholar 

  22. Abu-farha F. A preliminary study on the feasibility of friction stir back extrusion. Scr Mater. 2012;66:615–8. https://doi.org/10.1016/j.scriptamat.2012.01.059.

    Article  CAS  Google Scholar 

  23. Zhang S, Frederick A, Wang Y, Eller M, Mcginn P, Hu A. Microstructure evolution and mechanical property characterization of 6063 aluminum alloy tubes processed with friction stir back extrusion. JOM. 2019;71:4436–44. https://doi.org/10.1007/s11837-019-03852-7.

    Article  ADS  CAS  Google Scholar 

  24. Khorrami MS, Movahedi M. Microstructure evolutions and mechanical properties of tubular aluminum produced by friction stir back extrusion. J Mater. 2015;65:74–9. https://doi.org/10.1016/j.matdes.2014.09.018.

    Article  CAS  Google Scholar 

  25. Whalen S, Joshi V, Overman N, Caldwell D, Lavender C, Skszek T. Scaled-up fabrication of thin-walled ZK60 tubing using shear assisted processing and extrusion (ShAPE). Magnes Technol. 2017;2017:315–21. https://doi.org/10.1007/978-3-319-52392-7.

    Article  Google Scholar 

  26. Whalen S, Overman N, Joshi V, Varga T, Graff D, Lavender C. Magnesium alloy ZK60 tubing made by shear assisted processing and extrusion (ShAPE). Mater Sci Eng A. 2019;755:278–88. https://doi.org/10.1016/j.msea.2019.04.013.

    Article  CAS  Google Scholar 

  27. Darsell JT, Overman NR, Joshi VV, Whalen SA, Mathaudhu SN. Shear assisted processing and extrusion (ShAPETM) of AZ91E flake: a study of tooling features and processing effects. J Mater Eng Perform. 2018;27:4150–61. https://doi.org/10.1007/s11665-018-3509-1.

    Article  CAS  Google Scholar 

  28. Asgharzadeh A, Nazari Tiji SA, Esmaeilpour R, Park T, Pourboghrat F. Determination of hardness-strength and -flow behavior relationships in bulged aluminum alloys and verification by FE analysis on Rockwell hardness test. Int J Adv Manuf Technol. 2020;106:315–31. https://doi.org/10.1007/s00170-019-04565-6.

    Article  Google Scholar 

  29. Sheppard T, Tunnicliffe PJ, Patterson SJ, Summary I. Direct and indirect extrusion of a high strength aerospace alloy (AA 7075). J Mech Work Technol. 1982;6:313–31.

    Article  Google Scholar 

  30. Ahmadkhanbeigi M, Shapourgan O, Faraji G. Microstructure and mechanical properties of Al tube processed by friction stir tube back extrusion (FSTBE). Trans Indian Inst Met. 2017;70:1849–56. https://doi.org/10.1007/s12666-016-0987-4.

    Article  CAS  Google Scholar 

  31. Hangai Y, Nakano Y, Utsunomiya T, Kuwazuru O, Yoshikawa N. Drop weight impact behavior of Al–Si–Cu alloy foam-filled thin-walled steel pipe fabricated by friction stir back extrusion. J Mater Eng Perform. 2017;26:894–900. https://doi.org/10.1007/s11665-016-2484-7.

    Article  CAS  Google Scholar 

  32. Mathew N, Dinaharan I, Vijay SJ, Murugan N. Microstructure and mechanical characterization of aluminum seamless tubes produced by friction stir back extrusion. Trans Indian Inst Met. 2016;69:1811–8. https://doi.org/10.1007/s12666-016-0841-8.

    Article  CAS  Google Scholar 

  33. Asgharzadeh A, Nazari Tiji SA, Park T, Kim JH, Pourboghrat F. Cellular automata modeling of the kinetics of static recrystallization during the post-hydroforming annealing of steel tube. J Mater Sci. 2020;55:7938–57. https://doi.org/10.1007/s10853-020-04559-w.

    Article  ADS  CAS  Google Scholar 

  34. Ghosh A, Ghosh M. Microstructure and texture development of 7075 alloy during homogenisation. Philos Mag. 2018;98:1470–90. https://doi.org/10.1080/14786435.2018.1439596.

    Article  ADS  CAS  Google Scholar 

  35. Khalil AM, Loginova IS, Pozdniakov AV, Mosleh AO, Solonin AN. Evaluation of the microstructure and mechanical properties of a new modified cast and laser-melted AA7075 alloy. Materials. 2019. https://doi.org/10.3390/ma12203430.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nazari Tiji SA, Park T, Asgharzadeh A, Kim H, Athale M, Kim JH, et al. Characterization of yield stress surface and strain-rate potential for tubular materials using multiaxial tube expansion test method. Int J Plast. 2020;133:102838. https://doi.org/10.1016/j.ijplas.2020.102838.

    Article  CAS  Google Scholar 

  37. McQueen HJ, Imbert CAC. Dynamic recrystallization: plasticity enhancing structural development. J Alloys Compd. 2004;378:35–43. https://doi.org/10.1016/j.jallcom.2003.10.067.

    Article  CAS  Google Scholar 

  38. Jamalian M, Joshi VV, Whalen S, Lavender C, Field DP. Microstructure and texture evolution of magnesium alloy after shear assisted processing and extrusion (ShAPETM). IOP Conf Ser Mater Sci Eng. 2018. https://doi.org/10.1088/1757-899X/375/1/012007.

    Article  Google Scholar 

  39. Li X, Overman N, Roosendaal T, Olszta M, Zhou C, Wang H, et al. Microstructure and mechanical properties of pure copper wire produced by shear assisted processing and extrusion. JOM. 2019;71:4799–805. https://doi.org/10.1007/s11837-019-03752-w.

    Article  CAS  Google Scholar 

  40. Bronkhorst CA, Kalidindi SR, Anand L. Polycrystalline plasticity and the evolution of crystallographic texture in FCC metals. Philos Trans R Soc A. 1992;341:443–77.

    ADS  CAS  Google Scholar 

  41. Chen LR, Xiao XZ, Yu L, Chu HJ, Duan HL. Texture evolution and mechanical behaviour of irradiated face-centred cubic metals subject areas. Proc Math Eng Phys Sci. 2018;474:20170604.

    CAS  Google Scholar 

  42. Segal V. Review: modes and processes of severe plastic. Materials. 2018. https://doi.org/10.3390/ma11071175.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nazari Tiji SA, Asgari A, Djavanroodi F. Material deformation in equal channel forward extrusion process. Metall Res Technol. 2017;114:2–9. https://doi.org/10.1051/metal/2017040.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank LIFT for the support through the grant number GRT00045017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhang Pourboghrat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazari Tiji, S.A., Asgharzadeh, A., Park, T. et al. Microstructure and mechanical properties of the AA7075 tube fabricated using shear assisted processing and extrusion (ShAPE). Archiv.Civ.Mech.Eng 21, 44 (2021). https://doi.org/10.1007/s43452-021-00179-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-021-00179-6

Keywords

Navigation