Processing routes, resulting microstructures, and strain rate dependent deformation behaviour of advanced high strength steels for automotive applications

Abstract

Automobile industry is continuously striving to obtain light body-in-white structures to meet tightened regulations on flue-gas emissions/crash-testing parameters. ‘Advanced high strength steels (AHSS)’ find increased applications in the automotive industry because of improved crashworthiness/formability at reasonably low costs. AHSS category mainly includes transformation induced plasticity (TRIP) steels, twinning induced plasticity (TWIP) steels, dual phase (DP) steels, complex-phase (CP) steels, and quenching-partitioning (Q&P) steels. AHSSs provide superior strength-ductility combination than conventional high-strength steels by virtue of their multi-phase microstructures. Mechanical properties of AHSSs are greatly influenced by processing routes/derived microstructures. Furthermore, mechanical properties/tensile deformation behavior are also strain rate dependent. During an automobile crash, deformation occurs at strain rates which are exceedingly higher than quasi-static conditions. So, investigation of AHSS properties under both quasi-static as well as high strain rates conditions is important to check applicability for superior crash-resistance. The present work critically reviews details of processing routes, room temperature microstructures, mechanical properties, and finally strain rate dependence of tensile deformation behaviour of AHSSs. Finally, main gaps in existing literature/scope for future research with regards to high strain rate deformation dependent properties of this steel category are presented.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. 1.

    Zhao J, Jiang Z. Thermomechanical processing of advanced high strength steels. Prog Mater Sci. 2018;94:174–242.

    Article  Google Scholar 

  2. 2.

    Nanda T, Singh V, Singh V, Chakraborty A, Sharma S. Third generation of advanced high-strength steels: processing routes and properties. Proc Inst Mech Eng Part L J Mater Des Appl. 2016;233(2):209–38.

    Google Scholar 

  3. 3.

    Li S, Kang Y, Zhu G, Kuang S. Effects of strain rates on mechanical properties and fracture mechanism of DP780 dual phase steel. J Mater Eng Perform. 2015;24(6):2426–34.

    Article  Google Scholar 

  4. 4.

    Knobloch M, Pauli J, Fontana M. Influence of the strain-rate on the mechanical properties of mild carbon steel at elevated temperatures. Mater Des. 2013;49:553–65.

    Article  Google Scholar 

  5. 5.

    Huh H, Lee HJ, Song JH. Dynamic hardening equation of the auto-body steel sheet with the variation of temperature. Int J Automot Technol. 2012;13(1):43–60.

    Article  Google Scholar 

  6. 6.

    Taylor MD, Choi KS, Sun X, Matlock DK, Packard CE, Xu L, Barlat F. Correlations between nanoindentation hardness and macroscopic mechanical properties in DP980 steels. Mater Sci Eng A. 2014;597:431–9.

    Article  Google Scholar 

  7. 7.

    Guillonneau G, Mieszala M, Wehrs J, Schwiedrzik J, Grop S, Frey D, Philippe L, Breguet JM, Michler J, Wheeler JM. Nanomechanical testing at high strain rates: new instrumentation for nanoindentation and microcompression. Mater Des. 2018;148:39–48.

    Article  Google Scholar 

  8. 8.

    Golling S, Frómeta D, Casellas D. Investigation on the influence of loading-rate on fracture toughness of AHSS grades. Mater Sci Eng A. 2018;726:332–41.

    Article  Google Scholar 

  9. 9.

    Che J, Zhou T, Liang Z, Wu J, Wang X. An integrated Johnson–Cook and Zerilli–Armstrong model for material flow behavior of Ti–6Al–4V at high strain rate and elevated temperature. J Braz Soc Mech Sci Eng. 2018;40:1–10.

    Article  Google Scholar 

  10. 10.

    Lin YC, Zhang J, Zhong J. Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel. Comput Mater Sci. 2008;43:752–8.

    Article  Google Scholar 

  11. 11.

    Kuziak R, Kawalla R, Waengler S. Advanced high strength steels for automotive industry. Arch Civ Mech Eng. 2008;8:103–17.

    Article  Google Scholar 

  12. 12.

    Lee YK, Han J. Current opinion in medium manganese steel. Mater Sci Technol. 2015;31(7):843–56.

    Article  Google Scholar 

  13. 13.

    Schmitt JH, Iung T. New developments of advanced high-strength steels for automotive applications. C R Phys. 2018;19(8):641–56.

    Article  Google Scholar 

  14. 14.

    Matlock DK, Speer JG. Processing opportunities for new advanced high-strength sheet steels. Mater Manuf Process. 2010;25(1):7–13.

    Article  Google Scholar 

  15. 15.

    Hilditch TB, de Souza T, Hodgson PD. Properties and automotive applications of advanced high-strength steels (AHSS). In: Welding and joining of advanced high strength steels (AHSS); 2015. p. 9–28.

  16. 16.

    Keeler S, Kimkchi M. Advanced high strength steels applications guidelines V5. In: World Auto Steel; 2015.

  17. 17.

    Meyers MA. Dynamic behavior of materials. New York: Wiley; 1994. p. 296–382.

    Google Scholar 

  18. 18.

    Ruan D, Kariem MA, Crouch IG. High strain rate and specialized testing. In: Crouch IG, editor. The science of armour materials. London: Woodhead Publishing; 2017. p. 581–637.

    Google Scholar 

  19. 19.

    Gu X, Xu Y, Peng F, Misra RDK, Wang Y. Role of martensite/austenite constituents in novel ultra-high strength TRIP-assisted steels subjected to non-isothermal annealing. Mater Sci Eng A. 2019;754:318–29.

    Article  Google Scholar 

  20. 20.

    Jing C, Wang M, Wang Z, Tan Q, Kim S. Microstructure and mechanical behavior of cold-rolled CMnAlSi TRIP-aided steel sheets. Trans Nonferr Met Soc China. 2009;19:579–82.

    Article  Google Scholar 

  21. 21.

    Sherbiny AE, Fawkhry MKE, Shash AY, Hossany TE. Replacement of silicon by aluminum with the aid of vanadium for galvanized TRIP steel. J Mater Res Technol. 2020;9(3):3578–89.

    Article  Google Scholar 

  22. 22.

    Soleimani M, Kalhor A, Mirzadeh H. Transformation-induced plasticity (TRIP) in advanced steels: a review. Mater Sci Eng A. 2020;795:140023.

    Article  Google Scholar 

  23. 23.

    Yi HL. Review on δ-transformation-induced plasticity (TRIP) steels with low density: the concept and current progress. JOM. 2014;66(9):1759–69.

    Article  Google Scholar 

  24. 24.

    Van Slycken J, Verleysen P, Degrieck J, Samek L, De Cooman BC. High-strain-rate behavior of low-alloy multiphase aluminum- and silicon-based transformation-induced plasticity steels. Metall Mater Trans A. 2006;37(5):1527–39.

    Article  Google Scholar 

  25. 25.

    Xu PG, Tomota Y, Arakaki Y, Harjo S, Sueyoshi H. Evaluation of austenite volume fraction in TRIP steel sheets using neutron diffraction. Mater Charact. 2017;127:104–10.

    Article  Google Scholar 

  26. 26.

    Podany P, Reardon C, Koukolikova M, Prochazka R, Franc A. Microstructure, mechanical properties and welding of low carbon, medium manganese TWIP/TRIP steel. Metals. 2018;8(4):263–81.

    Article  Google Scholar 

  27. 27.

    Basuki A, Aernoudt E. Influence of rolling of TRIP steel in the intercritical region on the stability of retained austenite. J Mater Process Technol. 1999;89–90:37–43.

    Article  Google Scholar 

  28. 28.

    Wang HS, Yuan G, Zhang YX, Cao GM, Li CG, Kang J, Misra RDK, Wang GD. Microstructural evolution and mechanical properties of duplex TRIP steel produced by strip casting. Mater Sci Eng A. 2017;692:43–52.

    Article  Google Scholar 

  29. 29.

    Papaefthymiou S, Prahl U, Bleck W, Zwaag S, Sietsma J. Experimental observations on the correlation between microstructure and fracture of multiphase steels. Int J Mater Res. 2006;97:1723–30.

    Article  Google Scholar 

  30. 30.

    Uthaisangsuk V, Prahl U, Bleck W. Modelling of damage and failure in multiphase high strength DP and TRIP steels. Eng Fract Mech. 2011;78:469–86.

    Article  Google Scholar 

  31. 31.

    Choi ID, Bruce DM, Kim SJ, Lee CG, Park SH, Matlock DK, Speer JG. Deformation behavior of low carbon TRIP sheet steels at high strain rates. Iron Steel Inst Jpn Int. 2002;42(12):1483–9.

    Article  Google Scholar 

  32. 32.

    Huh H, Kim SB, Song JH, Lim J. Dynamic tensile characteristics of TRIP-type and DP-type steel sheets for an auto-body. Int J Mech Sci. 2008;50:918–31.

    MATH  Article  Google Scholar 

  33. 33.

    Fu RY, Wei XC, Shi W, Li L, De Cooman BC, Wollants P, Zhuand XD, Wang L. Dynamic tensile characteristic of high strength low alloy TRIP steel and its modeling. In: Proceeding of the international conference on TRIP-aided high strength ferrous alloys; 2002. p. 287–291.

  34. 34.

    Wei XC, Li L, Fu RY, Shi W. On the tensile mechanical property of Si–Mn TRIP steels at high strain rate. Acta Metall Sin (Engl Lett). 2002;15(3):285–94.

    Google Scholar 

  35. 35.

    Kim J, Kim D, Han HN, Barlat F, Lee M. Strain rate dependent tensile behavior of advanced high strength steels: experiment and constitutive modelling. Mater Sci Eng A. 2013;559:222–31.

    Article  Google Scholar 

  36. 36.

    Gao Y, Xu C, He Z, Li L. Response characteristics and adiabatic heating during high strain rate for TRIP steel and DP steel. J Iron Steel Res Int. 2015;22(1):48–54.

    Article  Google Scholar 

  37. 37.

    Gronostajski Z, Niechajowicz A, Kuziak R, Krawczyk J, Polak S. The effect of the strain rate on the stress-strain curve and microstructure of AHSS. J Mater Process Technol. 2017;242:246–59.

    Article  Google Scholar 

  38. 38.

    Neu RW. Performance and characterization of TWIP steels for automotive applications. Mater Perform Charact. 2013;2(1):244–84.

    Google Scholar 

  39. 39.

    Cooman BCD, Chin K, Kim J. High Mn TWIP steels for automotive applications. In: Chiaberge M, editor. New trends and developments in automotive system engineering. Rijeka: IntechOpen; 2011.

    Google Scholar 

  40. 40.

    Dobrzanski LA, Borek W. Mechanical properties and microstructure of high-manganese TWIP, TRIP and TRIPLEX type steels. J Achiev Mater Manuf Eng. 2012;55:230–8.

    Google Scholar 

  41. 41.

    Dan WJ, Liu F, Zhang WG. Mechanical behavior prediction of TWIP steel in plastic deformation. Comput Mater Sci. 2014;94:114–21.

    Article  Google Scholar 

  42. 42.

    De Cooman BC. Phase transformation in high manganese twinning-induced plasticity (TWIP) steels. In: Pereloma E, Edmonds DV, editors. Phase transformations in steels. London: Woodhead Publishing; 2012. p. 295–331.

    Google Scholar 

  43. 43.

    Allain S, Chateau JP, Bouaziz O. A physical model of the twinning induced plasticity effect in a high manganese austenitic steel. Mater Sci Eng A. 2004;387:143–7.

    Article  Google Scholar 

  44. 44.

    Mazancova E, Mazanee K. Stacking fault energy in high manganese alloys. Mater Eng. 2009;16(2):26–31.

    Google Scholar 

  45. 45.

    Herbig M, Kuzmina M, Haase C, Marceau RKW, Gutierrez-Urrutia I, Haley D, Molodov DA, Choia P, Raabe D. Grain boundary segregation in Fe–Mn–C twinning-induced plasticity steels studied by correlative electron backscatter diffraction and atom probe tomography. Acta Mater. 2015;83:37–47.

    Article  Google Scholar 

  46. 46.

    Mahajan S, Pande CS, Imam MA, Rath BB. Formation of annealing twins in F.C.C. crystals. Acta Mater. 1997;45(6):2633–8.

    Article  Google Scholar 

  47. 47.

    Grassel O, Frommeyer G, Derder C, Hofmann H. Phase transformations and mechanical properties of Fe–Mn–Si–Al TRIP-steel. J Phys. 1997;4:383–8.

    Google Scholar 

  48. 48.

    Chung K, Ahn K, Yoo DH, Chung KH, Seo MH, Park SH. Formability of TWIP (twinning induced plasticity) automotive sheets. Int J Plast. 2011;27:52–81.

    Article  Google Scholar 

  49. 49.

    Dini G, Najafizadeh A, Ueji R, Monir-Vaghefi SM. Improved tensile properties of partially recrystallized submicron grained TWIP steel. Mater Lett. 2010;64:15–8.

    Article  Google Scholar 

  50. 50.

    Jin JE, Lee YK. Strain hardening behavior of a Fe–18Mn–0.6C–1.5Al TWIP steel. Mater Sci Eng A. 2009;527(1–2):157–61.

    Article  Google Scholar 

  51. 51.

    Gutierrez-Urrutia, Raabe D. Grain size effect on strain hardening in twinning-induced plasticity steels. Scr Mater. 2012;66(12):992–6.

    Article  Google Scholar 

  52. 52.

    Kanga S, Junga YS, Junb JH, Leea Y. Effects of recrystallization annealing temperature on carbide precipitation, microstructure, and mechanical properties in Fe–18Mn–0.6C–1.5Al TWIP steel. Mater Sci Eng A. 2010;527(3):745–51.

    Article  Google Scholar 

  53. 53.

    Zhou P, Liang ZY, Huang MX. Microstructural evolution of a nanotwinned steel under extremely high-strain-rate deformation. Acta Mater. 2018;149:407–15.

    Article  Google Scholar 

  54. 54.

    Bouaziz O, Allain S, Scott CP, Cugy P, Barbier D. High manganese austenitic twinning induced plasticity steels: a review of the microstructure properties relationships. Curr Opin Solid State Mater Sci. 2011;15:141–68.

    Article  Google Scholar 

  55. 55.

    Lebedkina TA, Lebyodkin MA, Chateau JP, Jacques A, Allain S. On the mechanism of unstable plastic flow in an austenitic FeMnC TWIP steel. Mater Sci Eng A. 2009;519:147–54.

    Article  Google Scholar 

  56. 56.

    Qin XM, Chen LQ, Deng W, Di HS. Effect of strain rate on mechanical properties of Fe–23Mn–2Al–0.2C TWIP steel. Chin J Mater Res. 2011;25(3):278–82.

    Google Scholar 

  57. 57.

    Lee SY, Lee SI, Hwang B. Effect of strain rate on tensile and serration behaviors of an austenitic Fe–22Mn–0.7C twinning-induced plasticity steel. Mater Sci Eng A. 2018;711:22–8.

    Article  Google Scholar 

  58. 58.

    Dobrzanski LA, Borek W, Mazurkiewicz J. Influence of high strain rates on the structure and mechanical properties of high-manganese austenitic TWIP-type steel. Mater Sci Eng Technol. 2016;47(5–6):428–35.

    Google Scholar 

  59. 59.

    Xiong ZP, Ren XP, Bao WP, Li SX, Qu HT. Dynamic mechanical properties of the Fe–30Mn–3Si–4Al TWIP steel after different heat treatments. Mater Sci Eng A. 2011;530:426–31.

    Article  Google Scholar 

  60. 60.

    Baumer, Bleck W. Strain hardening behavior of modern light-weight car body sheet steels. In: Forming the future: innovations in sheet metal forming (IDDRG 2007), Gyor, Hungary; 2007.

  61. 61.

    Grassel O, Kruger L, Frommeyer G, Meyer LW. High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development-properties-application. Int J Plast. 2000;16:1391–409.

    MATH  Article  Google Scholar 

  62. 62.

    Das T, Saha R, Bera S, Dahmen K, Ghosh M, Haldar A, Bleck W, Chowdhury SG. Effect of high tensile strain rate on the evolution of microstructure in Fe–Mn–C–Al twinning-induced plasticity (TWIP) steel. Metall Mater Trans A. 2015;46(1):6–11.

    Article  Google Scholar 

  63. 63.

    Curtze S, Kuokkala VT. Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate. Acta Mater. 2010;58:5129–41.

    Article  Google Scholar 

  64. 64.

    Tang ZY, Misra RDK, Maa M, Zan N, Wu ZQ, Ding H. Deformation twinning and martensitic transformation and dynamic mechanical properties in Fe–0.07C–23Mn–3.1Si–2.8Al TRIP/TWIP steel. Mater Sci Eng A. 2015;624:186–92.

    Article  Google Scholar 

  65. 65.

    Xu M, Mi Z, Li H, Tang D, Jiang H. Deformation mechanism transition in Fe–17Mn–0.4C–0.06V TWIP steel with different strain rates. Mater Sci Technol. 2018;34(2):242–51.

    Article  Google Scholar 

  66. 66.

    Khosravifard A. Influence of high strain rates on the mechanical behavior of high manganese steels. Iran J Mater Form. 2014;1(1):1–10.

    Google Scholar 

  67. 67.

    Sun MY, Wang XL, Wang ZQ, Wang XM, Li XC, Yan L, Misra RDK. The critical impact of intercritical deformation on variant pairing of bainite/martensite in dual-phase steels. Mater Sci Eng A. 2020;771:138668.

    Article  Google Scholar 

  68. 68.

    Manoj MK, Pancholi V, Nath SK. Mechanical properties and fracture behaviour of medium carbon dual phase steels. Int J Res Advent Technol. 2014;2(4):243–9.

    Google Scholar 

  69. 69.

    Tasan CC, Diehl M, Yan D, Bechtold M, Roters F, Schemmann L, Zheng C, Peranio N, Ponge D, Koyama M, Tsuzaki K, Raabe D. An overview of dual-phase steels: advances in microstructure-oriented processing and micromechanically guided design. Annu Rev Mater Res. 2015;45:391–431.

    Article  Google Scholar 

  70. 70.

    Lis AK, Gajda B. Modelling of the DP and TRIP microstructure in the C–Mn–Al–Si automotive steel. J Achiev Mater Manuf Eng. 2006;15(1–2):127–34.

    Google Scholar 

  71. 71.

    Concepción LVDL, Lorusso NH, Svobod GH. Effect of carbon content on microstructure and mechanical properties of dual phase steels. Procedia Mater Sci. 2015;8:1047–56.

    Article  Google Scholar 

  72. 72.

    Nouroozi M, Mirzadeh H, Zamani M. Effect of microstructural refinement and intercritical annealing time on mechanical properties of high-formability dual phase steel. Mater Sci Eng A. 2018;736:22–6.

    Article  Google Scholar 

  73. 73.

    Meng Q, Li J, Wang J, Zhang Z, Zhang L. Effect of water quenching process on microstructure and tensile properties of low alloy cold rolled dual-phase steel. Mater Des. 2009;30:2379–85.

    Article  Google Scholar 

  74. 74.

    Cao Y, Karlsson B, Ahlström J. Temperature and strain rate effects on the mechanical behaviour of dual phase steel. Mater Sci Eng A. 2015;636:124–32.

    Article  Google Scholar 

  75. 75.

    Dutta T, Dey S, Dattac S, Das D. Designing dual-phase steels with improved performance using ANN and GA in tandem. Comput Mater Sci. 2019;157:6–16.

    Article  Google Scholar 

  76. 76.

    Moreno DEF. Influence of microstructure on the corrosion performance of DP steels. Ph.D. Thesis, Eindhoven University of Technology, Colombia; 2014.

  77. 77.

    Ren C, Dan WJ, Huang TT, Zhang WG. Quantification analysis of the heterogeneity of microstructure of dual phase steel. Procedia Eng. 2017;207:2083–8.

    Article  Google Scholar 

  78. 78.

    Mohanty RR, Girina OA, Fonstein NM. Effect of heating rate on the austenite formation in low-carbon high-strength steels annealed in the intercritical region. Metall Mater Trans A. 2011;42:3680–90.

    Article  Google Scholar 

  79. 79.

    Kumar A, Singh SB, Ray KK. Influence of bainite/martensite-content on the tensile properties of low carbon dual-phase steels. Mater Sci Eng A. 2008;474:270–82.

    Article  Google Scholar 

  80. 80.

    Singh S, Nanda T, Kumar BR, Singh V. Controlled phase transformation simulations to design microstructure for tailored mechanical properties in steel. Mater Manuf Process. 2016;31:2064–75.

    Article  Google Scholar 

  81. 81.

    Mittal M, Nanda T, Kumar BR, Singh V. Effect of inter-critical annealing parameters on ferrite recrystallization and austenite formation in DP 590 steel. Mater Manuf Process. 2017;32:1231–8.

    Article  Google Scholar 

  82. 82.

    Wang J, Li G, Xiao A. Bainite-ferrite multi-phase steel strengthened by Ti-microalloying. Mater Trans. 2011;52:2027–31.

    Article  Google Scholar 

  83. 83.

    Pierman AP, Bouaziz O, Pardoen T, Jacques PJ, Brassart L. The influence of microstructure and composition on the plastic behaviour of dual-phase steels. Acta Mater. 2014;73:298–311.

    Article  Google Scholar 

  84. 84.

    Erdogan M, Tekeli S. The effect of martensite volume fraction and particle size on the tensile properties of a surface-carburized AISI 8620 steel with a dual-phase core microstructure. Mater Charact. 2002;49(5):445–54.

    Article  Google Scholar 

  85. 85.

    Mohammad RA, Ekrami A. Effect of ferrite volume fraction on work hardening behaviour of high bainite dual phase (DP) steels. Mater Sci Eng A. 2008;477:306–10.

    Article  Google Scholar 

  86. 86.

    Kumar BR, Singh V, Nanda T, Adhikary M, Halder N, Venugopalan T. Effect of tailoring martensite shape and spatial distribution on tensile deformation characteristics of dual phase steels. J Eng Mater Technol. 2018;140:1–11.

    Google Scholar 

  87. 87.

    Singh M, Das A, Venugopalan T, Mukherjee K, Walunj M, Nanda T, Kumar BR. Impact of martensite spatial distribution on quasi-static and dynamic deformation behavior of dual-phase steel. Metall Mater Trans A. 2018;49:463–75.

    Article  Google Scholar 

  88. 88.

    Zhang J, Di H, Deng Y, Misra RDK. Effect of martensite morphology and volume fraction on strain hardening and fracture behaviour of martensite-ferrite dual phase steel. Mater Sci Eng A. 2015;627:230–40.

    Article  Google Scholar 

  89. 89.

    Li CN, Ji FQ, Yuan G, Kang J, Misra RDK, Wang GD. The impact of thermo-mechanical controlled processing on structure-property relationship and strain hardening behavior in dual-phase steels. Mater Sci Eng A. 2016;662:100–10.

    Article  Google Scholar 

  90. 90.

    Bergstrom Y, Granbom Y, Sterkenburg D. A dislocation-based theory for the deformation hardening behavior of DP steels: impact of martensite content and ferrite grain size. J Metall. 2010;2010:1–16.

    Article  Google Scholar 

  91. 91.

    Ashrafi H, Shamanian M, Emadi R, Saeidi N. Correlation of tensile properties and strain hardening behavior with martensite volume fraction in dual-phase steels. Trans Indian Inst Met. 2017;70(6):1575–84.

    Article  Google Scholar 

  92. 92.

    Das A, Ghosh M, Tarafder S, Sivaprasad S, Chakrabarti D. Micromechanisms of deformation in dual phase steels at high strain rates. Mater Sci Eng A. 2017;680:249–58.

    Article  Google Scholar 

  93. 93.

    Sato K, Yu Q, Hiramoto J, Urabe T, Yoshitake A. A method to investigate strain rate effects on necking and fracture behaviour of advanced high-strength steels using digital imaging strain analysis. Int J Impact Eng. 2015;75:11–26.

    Article  Google Scholar 

  94. 94.

    Joo G, Huh H, Choi M. Tension/compression hardening behaviour of auto-body steel sheets at intermediate strain rates. Int J Mech Sci. 2016;108:174–87.

    Article  Google Scholar 

  95. 95.

    Wang W, Li M, He C, Wei X, Wang D, Du H. Experimental study on high strain rate behaviour of high strength 600–1000 MPa dual phase steels and 1200 MPa fully martensitic steels. Mater Des. 2013;47:510–21.

    Article  Google Scholar 

  96. 96.

    Bassim MN, Panic N. High strain rate effects on the strain of alloy steels. J Mater Process Technol. 1999;92:481–5.

    Article  Google Scholar 

  97. 97.

    Cadoni E, Singh NK, Forni D, Singh MK, Gupta NK. Strain rate effects on the mechanical behaviour of two dual phase steels in tension. Eur Phys J Spec Top. 2016;225:409–21.

    Article  Google Scholar 

  98. 98.

    Li Y, Song R, Jiang L, Zhao Z. Strength response of 1200 MPa grade martensite-ferrite dual-phase steel under high strain rates. Scr Mater. 2019;164:21–4.

    Article  Google Scholar 

  99. 99.

    Dong D, Liu Y, Yang Y, Li J, Ma M, Jiang T. Microstructure and dynamic tensile behavior of DP600 dual phase steel joint by laser welding. Mater Sci Eng A. 2014;594A:17–25.

    Article  Google Scholar 

  100. 100.

    Liu Y, Dong D, Wang L, Chu X, Wang P, Jin M. Strain rate dependent deformation and failure behavior of laser welded DP780 steel joint under dynamic tensile loading. Mater Sci Eng A. 2015;627A:296–305.

    Article  Google Scholar 

  101. 101.

    Liang J, Zhao Z, Wu H, Peng C, Sun B, Guo B, Liang J, Tang D. Mechanical behavior of two ferrite–martensite dual-phase steels over a broad range of strain rates. Metals. 2018;8(4):1–14.

    Article  Google Scholar 

  102. 102.

    Qin J, Chen R, Wen X, Lin Y, Liang M, Lu F. Mechanical behaviour of dual-phase high-strength steel under high strain rate tensile loading. Mater Sci Eng A. 2013;586:62–70.

    Article  Google Scholar 

  103. 103.

    Uenishi A, Yoshida H, Yonemura S, Hiwatashi S, Hirose S, Suzuki N. High strain rate properties of high strength steel sheets. Int J Automob Eng. 2011;2:109–13.

    Article  Google Scholar 

  104. 104.

    Oliver S, Jones TB, Fourlaris G. Dual phase versus TRIP strip steels: microstructural changes as a consequence of quasi-static and dynamic tensile testing. Mater Charact. 2007;58(4):390–400.

    Article  Google Scholar 

  105. 105.

    Chiyatan T, Uthaisangsuk V. Mechanical and fracture behaviour of high strength steels under high strain rate deformation: experiments and modelling. Mater Sci Eng A. 2020;779:139125.

    Article  Google Scholar 

  106. 106.

    Das A, Tarafder S, Sivaprasad S, Chakrabarti D. Influence of microstructure and strain rate on the strain partitioning behaviour of dual phase steels. Mater Sci Eng A. 2019;754:348–60.

    Article  Google Scholar 

  107. 107.

    Beynon ND, Jones TB, Fourlaris G. Effect of high strain rate deformation on microstructure of strip steels tested under dynamic tensile conditions. Mater Sci Technol. 2013;21:103–12.

    Article  Google Scholar 

  108. 108.

    Kumar BR, Patel NK, Mukherjee K, Walunj M, Mandal GK, Venugopalan T. Ferrite channel effect on ductility and strain hardenability of ultra-high strength dual phase steel. Mater Sci Eng A. 2017;685:187–93.

    Article  Google Scholar 

  109. 109.

    Cai H, Song R, Jiang L, Wei R, Li Y, Niu W. Plastic deformation behavior and construction of constitutive model in a wide range of strain rates of 800 MPa grade dual phase steel. Mech Mater. 2018;122:104–17.

    Article  Google Scholar 

  110. 110.

    Santofimia MJ, Zhao L, Sietsma J. Overview of mechanisms involved during the quenching and partitioning process in steels. Metall Mater Trans A. 2011;42:3620–6.

    Article  Google Scholar 

  111. 111.

    Huang X, Liu W, Huang Y, Chen CH, Huang W. Effect of a quenching–long partitioning treatment on the microstructure and mechanical properties of a 0.2C% bainitic steel. J Mater Process Technol. 2015;222:181–7.

    Article  Google Scholar 

  112. 112.

    Zhu X, Zhang K, Li W, Jin X. Effect of retained austenite stability and morphology on the hydrogen embrittlement susceptibility in quenching and partitioning treated steels. Mater Sci Eng A. 2016;658:400–8.

    Article  Google Scholar 

  113. 113.

    Santofimia MJ, Petrov RH, Zhao L, Sietsma J. Microstructural analysis of martensite constituents in quenching and partitioning steels. Mater Charact. 2014;92:91–5.

    Article  Google Scholar 

  114. 114.

    Clarke AJ, Speer JG, Miller MK, Hackenberg RE, Edmonds DV, Matlock DK, Rizzo FC, Clarke KD, Moor ED. Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: a critical assessment. Acta Mater. 2008;56(1):16–22.

    Article  Google Scholar 

  115. 115.

    Wu RM, Wang L, Jin XJ. Thermal stability of austenite and properties of quenching & partitioning (Q&P) treated AHSS. Phys Procedia. 2013;50:8–12.

    Article  Google Scholar 

  116. 116.

    Hao Q, Qin S, Liu Y, Zuo X, Chen N, Rong Y. Relation between microstructure and formability of quenching-partitioning-tempering martensitic steel. Mater Sci Eng A. 2016;671:135–46.

    Article  Google Scholar 

  117. 117.

    Wu R, Jin X, Wang C, Wang L. Effect of intercritical annealing on microstructural evolution and properties of quenched & partitioned (Q&P) steels. J Mater Eng Perform. 2016;25(4):1603–10.

    Article  Google Scholar 

  118. 118.

    Sun J, Yu H. Microstructure development and mechanical properties of quenching and partitioning (Q&P) steel and an incorporation of hot-dipping galvanization during Q&P process. Mater Sci Eng A. 2013;586:100–7.

    Article  Google Scholar 

  119. 119.

    Bleck W, Guo X, Ma Y. The TRIP effect and its application in cold formable sheet steels. Steel Res Int. 2017;88(10):1700218.

    Article  Google Scholar 

  120. 120.

    Santofimia MJ, Zhao L, Petrov R, Sietsma J. Characterization of the microstructure obtained by the quenching and partitioning process in a low carbon steel. Mater Charact. 2008;59(12):1758–64.

    Article  Google Scholar 

  121. 121.

    Li Q, Huang X, Huang W. Microstructure and mechanical properties of a medium-carbon bainitic steel by a novel quenching and dynamic partitioning (Q-DP) process. Mater Sci Eng A. 2016;662:129–35.

    Article  Google Scholar 

  122. 122.

    Clarke J, Speer JG, Matlock DK, Rizzo FC, Edmonds DV, Santofimia MJ. Influence of carbon partitioning kinetics on final austenite fraction during quenching and partitioning. Scri Mater. 2009;61(2):149–52.

    Article  Google Scholar 

  123. 123.

    Yang X, Xiong X, Yin Z, Wang H, Wang J, Chen D. Interrupted test of advanced high strength steel with tensile split Hopkinson bar method. Exp Mech. 2014;54:641–52.

    Article  Google Scholar 

  124. 124.

    Wang H, Zhang W, Ma D, Ma B, Chen D, Yang X, Fan C. Dynamic response of a Q&P steel to high-strain-rate tension. Acta Mech Solida Sin. 2017;30:484–92.

    Article  Google Scholar 

  125. 125.

    Li S, Zou D, Xia C, He J. Effect of strain rate on deformation-induced martensitic transformation of quenching and partitioning steels. Steel Res Int. 2016;87(10):1302–11.

    Article  Google Scholar 

  126. 126.

    Zou DQ, Li SH, He J. Temperature and strain rate dependent deformation induced martensitic transformation and flow behavior of quenching and partitioning steels. Mater Sci Eng A. 2017;680:54–63.

    Article  Google Scholar 

  127. 127.

    Xia P, Vercruysse F, Petrov R, Sabirov I, Rodríguez MC, Verleysen P. High strain rate tensile behavior of a quenching and partitioning (Q&P) Fe–0.25C–1.5Si–3.0Mn steel. Mater Sci Eng A. 2019;745:53–62.

    Article  Google Scholar 

  128. 128.

    Liu C, Wang L, Liu Y. Effects of strain rate on tensile deformation behavior of quenching and partitioning steel. Mater Sci Forum. 2013;749:401–6.

    Article  Google Scholar 

  129. 129.

    Hao Q, Qin S, Liu Y, Zuo X, Chen N, Huang W, Rong Y. Effect of retained austenite on the dynamic tensile behavior of novel quenching-partitioning-tempering martensitic steel. Mater Sci Eng A. 2016;662:16–25.

    Article  Google Scholar 

  130. 130.

    Wang M, Huang MX. Abnormal TRIP effect on the work hardening behavior of a quenching and partitioning steel at high strain rate. Acta Mater. 2020;188:551–9.

    Article  Google Scholar 

  131. 131.

    Sato K, Sueyoshi H, Yamada K. Characterization of complex phase steel using backscattered electron images with controlled collection angles. Microscopy. 2015;64:297–304.

    Article  Google Scholar 

  132. 132.

    Hairer F, Karelová A, Krempaszky C, Werner E, Hebesberger T, Pichler A. Etching techniques for the microstructural characterization of complex phase steels by light microscopy, Germany; 2008.

  133. 133.

    Bhattacharya D. Microalloyed steels for the automotive industry. Tecnologia em Metalurgia Materiais e Mineração. 2014;11:371–83.

    Article  Google Scholar 

  134. 134.

    Li D, Feng Y, Song S, Liu Q, Bai Q, Wu G, Lv N, Ren F. Influence of Nb-microalloying on microstructure and mechanical properties of Fe–25Mn–3Si–3Al TWIP steel. Mater Des. 2015;84:238–44.

    Article  Google Scholar 

  135. 135.

    Scott C, Remy B, Collet JL, Cael A, Bao C, Danoix F, Malard B, Curfs C. Precipitation strengthening in high manganese austenitic TWIP steels. Int J Mater Res. 2011;102:538–49.

    Article  Google Scholar 

  136. 136.

    Hairer F, Karelova A, Krempaszky C. Influence of heat treatment on the microstructure and hardness of a low alloyed complex phase steel. In: International doctoral seminar, Smolenice, Slovakia; 2009.

  137. 137.

    Zhou Y, Wang X, He X. Microstructure and mechanical properties of micro alloyed multiphase steel. J Mater Sci Forum. 2014;788:406–13.

    Article  Google Scholar 

  138. 138.

    Rapalska J, Dyja H, Koczurkiewicz B. The physical and numerical modeling of heat treatment the experimental complex-phase (CP) steel. Mater Sci Forum. 2012;706:1497–502.

    Article  Google Scholar 

  139. 139.

    Karelová A, Hairer F, Krempaszky C, Werner E, Hebesberger T, Pichler A. Influence of the overaging temperature on microstructure and mechanical properties of complex-phase bainitic steel. J Mater Sci Technol. 2009;2:129–35.

    Google Scholar 

  140. 140.

    Murari FD, Silva AL, Avillez RR. Cold-rolled multiphase boron steels: microstructure and mechanical properties. J Mater Res Technol. 2015;4:191–6.

    Article  Google Scholar 

  141. 141.

    Zhang M, Ning YX, Zhang J, Wan Z, Wang T. Forming performance of 800 MPa grade advanced high strength steels. Appl Mech Mater. 2014;455:173–8.

    Article  Google Scholar 

  142. 142.

    Zhang M, Zhang J, Ning Y, Wang T, Wan Z. Springback behaviour of advanced high strength steel (AHSS) CP800. J Adv Mater Res. 2013;820:45–9.

    Article  Google Scholar 

  143. 143.

    Singh K, Cadoni E, Singh MK, Gupta NK. Quasi-static and dynamic tensile behavior of CP800 steel. Mech Adv Mater Struct. 2014;21:531–7.

    Article  Google Scholar 

  144. 144.

    http://automotive.arcelormittal.com. Accessed 09 Aug 2019.

  145. 145.

    Erice B, Roth CC, Mohr D. Stress-state and strain-rate dependent ductile fracture of dual and complex phase steel. Mech Mater. 2018;116:11–32.

    Article  Google Scholar 

  146. 146.

    Cadoni E, Singh NK, Singh MK, Gupta NK. Strain rate behaviour of multi-phase and complex-phase steels for automotive applications. EPJ Web Conf. 2012;26(05003):1–6.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tarun Nanda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nanda, T., Singh, V., Singh, G. et al. Processing routes, resulting microstructures, and strain rate dependent deformation behaviour of advanced high strength steels for automotive applications. Archiv.Civ.Mech.Eng 21, 7 (2021). https://doi.org/10.1007/s43452-020-00149-4

Download citation

Keywords

  • AHSS
  • Strain rate
  • Tensile properties
  • TRIP steels
  • TWIP steels
  • DP steels