Skip to main content
Log in

Development of ultrafine grained Al–Zn–Mg–Cu alloy by equal channel angular pressing: microstructure, texture and mechanical properties

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

In this article, an effort has been made to investigate the evolution of microstructure, texture and mechanical properties of AA 7075 alloy during equal channel angular pressing (ECAP) by route BC at room temperature at a pressing speed of 1 mm/min. Transmission electron microscopy (TEM) revealed the presence of rod-like (MgZn2) precipitates in annealed conditions which were broken after two ECAP passes along with remarkable grain refinement due to high imposed strain after the second pass. After two consecutive ECAP passes, hardness, yield strength, and tensile strength of the alloy increased significantly in comparison to initial annealed condition. The fraction of high angle boundaries (HABs) and grain misorientation angle significantly increased after ECAP passes compared to the initial condition. Texture measurements were performed by X-ray diffractometer (XRD), on TD plane (parallel to extrusion direction). Texture results revealed the dominance of \(C_{\theta }\) and \(A_{2\theta }^{*}\) components after the first pass and the presence of strong \(B_{\theta }\), \(\bar{B}_{\theta }\) and \(\bar{A}_{\theta }\) components along with weaker \(A_{2\theta }^{*} ,\;C_{\theta }\) components after the second pass. Scanning electron microscopy (SEM) revealed that the average dimple size was gradually reduced with increasing the ECAP passes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lee SH, Saito Y, Sakai T, Utsunomiya H. Microstructures and mechanical properties of 6061 aluminum alloy processed by accumulative roll-bonding. Mater Sci Eng A. 2002;325:228–35.

    Article  Google Scholar 

  2. Stoica GM, Fielden DE, McDaniels R, Liu Y, Huang B, Liaw PK, Xu C, Langdon TG. An analysis of the shear zone for metals deformed by equal-channel angular processing. Mater Sci Eng A. 2005;410:239–42.

    Article  Google Scholar 

  3. Ferrasse S, Segal VM, Alford F. Effect of additional processing on texture evolution of Al0.5Cu alloy processed by equal channel angular extrusion (ECAE). Mater Sci Eng A. 2004;372:44–55.

    Article  Google Scholar 

  4. Kim JK, Jeong HG, Hong SI, Kim YS, Kim WJ. Effect of aging treatment on heavily deformed microstructure of a 6061 aluminum alloy after equal channel angular pressing. Scr Mater. 2001;45:901–7.

    Article  Google Scholar 

  5. Shadabroo MS, Eivani AR, Jafarian HR, Razavi SF, Zhou J. optimization of interpass annealing for a minimum recrystallized grain size and further grain refinement towards nanostructured AA6063 during equal channel angular pressing. Mater Charact. 2016;112:160–8.

    Article  Google Scholar 

  6. Roven HJ, Liu M, Werenskiold JC. Dynamic precipitation during severe plastic deformation of an Al–Mg–Si aluminium alloy. Mater Sci Eng A. 2008;483:54–8.

    Article  Google Scholar 

  7. Ebrahimi M, Attarilar S, Shaeri MH, Gode C, Armoon H, Djavanroodi F. An investigation into the effect of alloying elements on corrosion behavior of severely deformed Cu-Sn alloys by equal channel angular pressing. Arch Civ Mech Eng. 2019;19:842–50.

    Article  Google Scholar 

  8. Dadbakhsh S, Taheri AK, Smith CW. Strengthening study on 6082 Al alloy after combination of aging treatment and ECAP process. Mater Sci Eng A. 2010;527:4758–66.

    Article  Google Scholar 

  9. Cardoso KR, Travessa DN, Botta WJ, Jorge AM. High Strength AA7050 Al alloy processed by ECAP: microstructure and mechanical properties. Mater Sci Eng A. 2011;528:5804–11.

    Article  Google Scholar 

  10. Pirgazi H, Akbarzadeh A, Petrov R, Kestens L. Microstructure evolution and mechanical properties of AA1100 aluminum sheet processed by accumulative roll bonding. Mater Sci Eng A. 2008;497:132–8.

    Article  Google Scholar 

  11. Nagasekhar AV, Tickhon Y. Optimal tool angles for equal channel angular extrusion of strain hardening materials by finite element analysis. Comput Mater Sci. 2004;30:489–95.

    Article  Google Scholar 

  12. Cepeda-Jiménez CM, García-Infanta JM, Ruano OA, Carreño F. High strain rate superplasticity at intermediate temperatures of the Al 7075 alloy severely processed by equal channel angular pressing. J Alloys Compd. 2011;509:8649–56.

    Article  Google Scholar 

  13. Kumar SR, Gudimetla K, Venkatachalam P, Ravisankar B, Jayasankar K. Microstructural and mechanical properties of Al 7075 alloy processed by equal channel angular pressing. Mater Sci Eng A. 2012;533:50–4.

    Article  Google Scholar 

  14. Cardoso KR, Travessa DN, Jorge AM, Botta WJ. Microstructure evolution of AA7050 Al alloy during equal-channel angular pressing. Mater Res. 2012;5:1732–8.

    Google Scholar 

  15. Li S, Beyerlein IJ, Bourke MAM. Texture formation during equal channel angular extrusion of fcc and bcc materials: comparison with simple shear. Mater Sci Eng, A. 2005;394:66–77.

    Article  Google Scholar 

  16. Djavanroodi F, Ahmadian H, Naseri R, Koohkan K, Ebrahimi M. Experimental investigation of ultrasonic assisted equal channel angular pressing process. Arch Civ Mech Eng. 2016;16:249–55.

    Article  Google Scholar 

  17. Ebrahimi M, Shaeri MH, Naseri R, Gode C. Equal channel angular extrusion for tube configuration of Al-Zn-Mg-Cu alloy. Mater Sci Eng, A. 2018;731:569–76.

    Article  Google Scholar 

  18. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT. Producing bulk ultrafine-grained materials by severe plastic deformation. JOM. 2006;58:33–9.

    Article  Google Scholar 

  19. Leo P, Cerri E, Marco PPD, Roven HJ. Properties and deformation behaviour of severe plastic deformed aluminium alloys. J Mater Process Technol. 2007;182:207–14.

    Article  Google Scholar 

  20. Serban N, Ghiban N, Cojocaru V. Mechanical behavior and microstructural development of 6063-T1 aluminum alloy processed by equal-channel angular pressing (ECAP): pass number influence. JOM. 2012;64:607–14.

    Article  Google Scholar 

  21. S. Suwas, B. Beausir, L.S. Toth, J.J. Fundenberger, G. Gottstein. Texture evolution in commercially pure titanium after warm equal channel angular extrusion. Acta Mater. 2011;59:1121–33.

    Article  Google Scholar 

  22. Shaeri MH, Shaeri M, Salehi MT, Seyyedein SH, Djavanroodi F. Microstructure and texture evolution of Al-7075 alloy processed by equal channel angular pressing. Trans Nonferrous Met Soc China. 2015;25:1367–75.

    Article  Google Scholar 

  23. Esmaeilia A, Noghania MT, Shaeria MH, Razzaghiana A. 5th International biennial conference on ultrafine grained and nanostructured materials. In: Proc.UFGNSM15., 2015.

  24. Zhao YH, Liao XZ, Jin Z, Valiev RZ, Zhu YT. Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing. Acta Mater. 2004;52:4589–99.

    Article  Google Scholar 

  25. Ghosh A, Ghosh M, Shankar G. On the role of precipitates in controlling microstructure and mechanical properties of Ag and Sn added 7075 alloys during artificial ageing. Mater Sci Eng A. 2018;738:399–411.

    Article  Google Scholar 

  26. Islamgaliev R, Yunusova N, Sabirov I, Sergueeva A, Valiev RZ. Deformation behavior of nanostructured aluminum alloy processed by severe plastic deformation. Mater Sci Eng A. 2001;319:877–81.

    Article  Google Scholar 

  27. Zhenga LJ, Chena CQ, Zhoua TT, Liua PY, Zeng MG. Structure and properties of ultrafine-grained Al-Zn-Mg-Cu and Al-Cu-Mg-Mn alloys fabricated by ECA pressing combined with thermal treatment. Mater Character. 2003;49:455–61.

    Article  Google Scholar 

  28. Vaseghi M, Kim HS. A combination of severe plastic deformation and ageing phenomena in Al–Mg–Si Alloys. Mater Des. 2012;36:735–40.

    Article  Google Scholar 

  29. Shaeri MH, Salehi MT, Seyyedein SH, Abutalebi MR, Park JK. Microstructure and mechanical properties of Al-7075 alloy processed by equal channel angular pressing combined with aging treatment. Mater Des. 2014;57:250–7.

    Article  Google Scholar 

  30. Wang SC, Starink MJ, Gao N, Qiao XG, Xu C, Langdon TG. Texture evolution by shear on two planes during ECAP of a high-strength aluminum alloy. Acta Mater. 2008;56:3800–9.

    Article  Google Scholar 

  31. Valiev RZ, Langdon TG. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci. 2006;51:881–981.

    Article  Google Scholar 

  32. Shaeri MH, Shaeri M, Ebrahimi M, Salehi MT, Seyyedein SH. Effect of ECAP temperature on microstructure and mechanical properties of Al–Zn–Mg–Cu alloy. Prog Mater Sci. 2016;26:182–91.

    Google Scholar 

  33. Shaeri MH, Salehi MT, Seyyedein SH, Abutalebi MR, Park JK. Characterization of microstructure and deformation texture during equal channel Angular pressing of Al–Zn–Mg–Cu alloy. J Alloys Compd. 2013;576:350–7.

    Article  Google Scholar 

  34. Suwas S, Toth LS, Fundenberger JJ, Eberhardt A, Skrotzki W. Evolution of crystallographic texture during equal channel angular extrusion of silver. Scripta Mater. 2003;49:1203–8.

    Article  Google Scholar 

  35. Naghdy S, Kestens L, Hertelé S, Verleysen P. Evolution of microstructure and texture in commercial pure aluminium subjected to high pressure torsion processing. Mater Character. 2016;120:285–94.

    Article  Google Scholar 

  36. Eldanaf EA, Soliman MS, Almajid AA, El-Rayes MM. Enhancement of mechanical properties and grain size refinement of commercial purity aluminum 1050 processed by ECAP. Mater Sci Eng A. 2007;458:226–34.

    Article  Google Scholar 

  37. Zha M, Li Y, Mathiesen RH, Bjørge R, Roven HJ. Microstructure evolution and mechanical behavior of a binary Al–7 Mg alloy processed by equal-channel angular pressing. Acta Mater. 2015;84:42–54.

    Article  Google Scholar 

  38. Ghosh A, Ghosh M. Tensile and impact behaviour of thermo mechanically treated and micro-alloyed medium carbon steel bar. Constr Build Mater. 2018;192:657–70.

    Article  Google Scholar 

  39. Bracke L, Verbeken K, Kestens L, Penning J. Microstructure and texture evolution during cold rolling and annealing of a high Mn TWIP steel. Acta Mater. 2009;57:1512–24.

    Article  Google Scholar 

  40. Zhang Y, Jin S, Trimby PW, Liao X, Murashkin MY, Valiev RZ, Liu J, Cairney JM, Ringer SP, Sha G. Dynamic precipitation, segregation and strengthening of an Al-Zn-Mg-Cu alloy (AA7075) processed by high-pressure torsion. Acta Mater. 2019;162:19–32.

    Article  Google Scholar 

  41. Tang L, Xu G, Deng Y, Gan H, Ma A, Yin Z. Mechanical properties and microstructure of an Al-Zn-Mg-Sc-Zr alloy processed by warm equal channel angular pressing and subsequent aging. JOM. 2018;70:2684–91.

    Article  Google Scholar 

  42. Tang L, Peng X, Huang J, Ma A, Deng Y, Xu G. Microstructure and mechanical properties of severely deformed Al-Mg-Sc-Zr alloy and their evolution during annealing. Mater Sci Eng A. 2019;754:295–308.

    Article  Google Scholar 

  43. Dieter GE. Mechanical metallurgy, SI metric edition. Singapore: McGraw-Hill Book Company; 1988.

    Google Scholar 

  44. Mandal G, Roy C, Ghosh SK, Chatterjee S. Structure-property relationship in a 2 GPa grade micro-alloyed ultrahigh strength steel. J Alloys Compd. 2017;705:817–27.

    Article  Google Scholar 

  45. Ozturk F, Polat A, Toros S, Picu RC. Strain Hardening and Strain Rate Sensitivity Behaviors of Advanced High Strength Steels. J Iron Steel Res Int. 2013;20:68–74.

    Article  Google Scholar 

  46. Byun TS, Kim IS. Tensile properties and inhomogeneous deformation of ferrite-martensite dual-phase steels. J Mater Sci. 1993;28:2923–32.

    Article  Google Scholar 

  47. Beyerlein IJ, Tóth LS. Texture evolution in equal-channel angular extrusion. Prog Mater Sci. 2009;54:427–510.

    Article  Google Scholar 

  48. Eldanaf EA. Texture evolution and fraction of favorably oriented fibers in commercially pure aluminum processed to 16 ECAP passes. Mater Sci Eng A. 2008;492:141–52.

    Article  Google Scholar 

  49. Schaeben H, Hielscher R, Bachmann F. Texture analysis with MTEX—free and open source software toolbox. Solid State Phenom. 2010;160:63–8.

    Article  Google Scholar 

  50. Li S, Beyerlein IJ, Necker CT, Alexander DJ, Bourke M. Heterogeneity of deformation texture in equal channel angular extrusion of copper. Acta Mater. 2004;52:4859–75.

    Article  Google Scholar 

  51. Werenskiold JC, Roven HJ. Microstructure and texture evolution during ECAP of an AlMgSi alloy: observations, mechanisms and modelling. Mater Sci Eng A. 2005;410:174–7.

    Article  Google Scholar 

  52. Massion RA, Suwas S, Tóth LS, Skrotzki W, Fundenberger JJ, Eberhardt A. Experiments and modelling of ECAE textures of fcc polycrystals. Mater Sci Forum. 2005;495:839–44.

    Article  Google Scholar 

  53. Tóth LS, Massion RA, Germain L, Baik SC, Suwas S. Analysis of texture evolution in equal channel angular extrusion of copper using a new flow field. Acta Mater. 2004;52:1885–98.

    Article  Google Scholar 

  54. S. Suwas, R.A. Massion, L.S. Tóth, J.J. Fundenberger, A. Eberhardt. Evolution of crystallographic texture during equal channel angular extrusion of copper: the role of material variables. Mater Trans A. 2006;37:739–53.

    Article  Google Scholar 

  55. Gholinia A, Bate P, Prangnell PB. Modelling texture development during equal channel angular extrusion of aluminium. Acta Mater. 2002;50:2121–36.

    Article  Google Scholar 

  56. Ferrasse S, Segal VM, Kalidindi SR, Alford F. Texture evolution during equal channel angular extrusion: Part I. Effect of route, number of passes and initial texture. Mater Sci Eng A. 2004;368:28–40.

    Article  Google Scholar 

  57. Li S, Beyerlein IJ, Alexander DJ, Vogel SC. Texture evolution during equal channel angular extrusion: effect of initial texture from experiment and simulation. Scr Mater. 2005;52:1099–104.

    Article  Google Scholar 

  58. Skrotzki W, To’th LS, Klöden B, Brokmeier HG, Arruffat-Massion R. Texture after ECAP of a cube-oriented Ni single crystal. Acta Mater. 2008;56:3439–49.

    Article  Google Scholar 

  59. Venkatachalam P, Roy S, Ravisankar B, Thomas Paul V, Vijayalakshmi M, Suwas S. Texture evolution in an Al–Cu alloy during equal channel angular pressing: the effect of starting microstructure. J Mater Sci. 2011;46:6518–27.

    Article  Google Scholar 

  60. Naseri M, Hassani A, Tajally M. Fabrication and characterization of hybrid composite strips with homogeneously dispersed ceramic particles by severe plastic deformation. Ceram Int. 2015;41:3952–60.

    Article  Google Scholar 

  61. Naseri M, Reihanian M, Borhani E. A new strategy to simultaneous increase in the strength and ductility of AA2024 alloy via accumulative roll bonding (ARB). Mater Sci Eng A. 2016;656:12–20.

    Article  Google Scholar 

  62. Wang JW, Duan QQ, Huang CX, Wu SD, Zhang ZF. Tensile and compressive deformation behaviors of commercially pure Al processed by equal-channel angular pressing with different dies. Mater Sci Eng A. 2008;496:409–16.

    Article  Google Scholar 

  63. Fang DR, Duan QQ, Zhao NQ, Li JJ, Wu SD, Zhang ZF. Tensile properties and fracture mechanism of Al–Mg alloy subjected to equal channel angular pressing. Mater Sci Eng A. 2007;459:137–44.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to NRCM, IISC, Bangalore and Dr. Satyam Suwas, Professor, IISc, Bangalore for extending the X-ray texture facility at IISc, Bangalore. The authors also acknowledge Dr. Karabi Das, Professor, IIT, Kharagpur and the staff members of NIT Trichy for their enormous help.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abhishek Ghosh or Manojit Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A., Ghosh, M., Gudimetla, K. et al. Development of ultrafine grained Al–Zn–Mg–Cu alloy by equal channel angular pressing: microstructure, texture and mechanical properties. Archiv.Civ.Mech.Eng 20, 7 (2020). https://doi.org/10.1007/s43452-019-0003-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-019-0003-y

Keywords

Navigation