Skip to main content

Advertisement

Log in

AI/ML in Precision Medicine: A Look Beyond the Hype

  • Review
  • Published:
Therapeutic Innovation & Regulatory Science Aims and scope Submit manuscript

Abstract

Artificial Intelligence (AI) and Machine Learning (ML) are making headlines in medical research, especially in drug discovery, digital imaging, disease diagnostics, genetic testing, and optimal care pathway (personalized care). However, the potential uses and benefits of AI/ML applications need to be distinguished from hype. In the 2022 American Statistical Association Biopharmaceutical Section Regulatory-Industry Statistical Workshop, we convened a panel of experts from FDA and industry to talk about the challenges of successfully applying AI/ML in precision medicine and how to overcome those challenges. This paper provides a summary and expansion on the topics discussed in the panel: the application of AI/ML, bias, and data quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McCarthy J. What is Artificial Intelligence? Stanford, CA: Stanford University; 2007.

    Google Scholar 

  2. International Medical Device Regulator Forums: Machine Learning-enabled Medical Devices—A subset of Artificial Intelligence-enabled Medical Devices: Key Terms and Definitions. Retrieved from https://www.imdrf.org/sites/default/files/2021-10/Machine%20Learning-enabled%20Medical%20Devices%20-%20A%20subset%20of%20Artificial%20Intelligence-enabled%20Medical%20Devices%20-%20Key%20Terms%20and%20Definitions.pdf. Accessed 31 Jan 2023.

  3. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.

    Article  CAS  PubMed  Google Scholar 

  4. Shimizu H, Nakayama KI. Artificial intelligence in oncology. Cancer Sci. 2020;111:1452–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Esteva A, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gulshan V, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. J Am Med Assoc. 2016;316:2402–10.

    Article  Google Scholar 

  7. AI/ML-Enabled Medical Devices. https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices. Accessed 8 Feb 2023.

  8. The Precision Medicine Initiative. https://obamawhitehouse.archives.gov/precision-medicine. Accessed 30 Sept 2022.

  9. 2022 American Statistical Association (ASA) Biopharmaceutical Section Regulatory-Industry Statistical Workshop (RISW). https://ww2.amstat.org/meetings/biop/2022 Accessed 31 Jan 2023.

  10. The Many False Dawns AI in Healthcare. https://techmonitor.ai/technology/ai-and-automation/false-dawns-ai-in-healthcare. Accessed 4 Dec 2022.

  11. Swissmedic. https://www.swissmedic.ch/swissmedic/en/home/humanarzneimittel/clinical-trials/clinical-trials-on-medicinal-products/safety-measures-in-clinical-trials.html. Accessed 4 Dec 2022.

  12. Beede E, Baylor E, Hersch F, Iurchenko A, Wilcox L, Ruamviboonsuk P, Vardoulakis L. A human-centered evaluation of a deep learning system deployed in clinics for the detection of diabetic retinopathy. In: CHI’20, April 25–30, 2020, Honolulu, HI, USA. https://doi.org/10.1145/3313831.3376718

  13. Nelson MR, Tipney H, Painter JL, Shen J, Nicoletti P, Shen Y, Floratos A, Sham PC, Li MJ, Wang J, Cardon LR. The support of human genetic evidence for approved drug indications. Nat Genet. 2015;47(8):856–60.

    Article  CAS  PubMed  Google Scholar 

  14. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A, Vukcevic D, Delaneau O, O’Connell J, Cortes A. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562(7726):203–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fang H, De Wolf H, Knezevic B, Burnham KL, Osgood J, Sanniti A, Lledó Lara A, Kasela S, De Cesco S, Wegner JK, Handunnetthi L. A genetics-led approach defines the drug target landscape of 30 immune-related traits. Nat Genet. 2019;51(7):1082–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  17. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M, Alizadeh AA. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 2017;18(1):1–14.

    Article  Google Scholar 

  19. Li B, Li T, Liu JS, Liu XS. Computational deconvolution of tumor-infiltrating immune components with bulk tumor gene expression data. In: Boegel S, editor. Bioinformatics for Cancer Immunotherapy. New York, NY: Humana; 2020. p. 249–62.

    Chapter  Google Scholar 

  20. Xie M, Lee K, Lockhart JH, Cukras SD, Carvajal R, Beg AA, Flores ER, Teng M, Chung CH, Tan AC. TIMEx: tumor-immune microenvironment deconvolution web-portal for bulk transcriptomics using pan-cancer scRNA-seq signatures. Bioinformatics. 2021;37(20):3681–3.

    Article  CAS  PubMed  Google Scholar 

  21. Chiarito M, Luceri L, Oliva A, Stefanini GG, Condorelli G. Artificial intelligence and cardiovascular risk prediction: all that glitters is not gold. Eur Cariol Rev. 2022;17:e29. https://doi.org/10.15420/ecr.2022.11.

    Article  Google Scholar 

  22. Begg CB. Biases in assessment of diagnostic tests. Stat Med. 1987;6:411–23.

    Article  CAS  PubMed  Google Scholar 

  23. Moons KGM, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162:W1–73.

    Article  PubMed  Google Scholar 

  24. Altman DG, Royston P. What do we mean by validating a prognostic model? Statist Med. 2000;19:453–73.

    Article  CAS  Google Scholar 

  25. Wu E, Wu K, Daneshjou R, Ouyang D, Ho DE, Zou J. How medical AI devices are evaluated: limitations and recommendations from an analysis of FDA approvals. Nat Med. 2021;27:576–84.

    Article  Google Scholar 

  26. FDA Pivotal Clinical Study Guidance. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/design-considerations-pivotal-clinical-investigations-medical-devices Accessed 20 Jan 2023.

  27. Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD). https://www.fda.gov/media/122535/download. Accessed 22 Dec 2022.

  28. precisionFDA. https://precision.fda.gov/. Accessed 17 Oct 2022.

Download references

Disclaimer

This article reflects the views of the authors and should not be construed to represent FDA’s views or policies.

Funding

There is no funding involved in this work.

Author information

Authors and Affiliations

Authors

Contributions

Substantial contributions are equally distributed among all four authors.

Corresponding author

Correspondence to Zhiheng Xu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Biswas, B., Li, L. et al. AI/ML in Precision Medicine: A Look Beyond the Hype. Ther Innov Regul Sci 57, 957–962 (2023). https://doi.org/10.1007/s43441-023-00541-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43441-023-00541-1

Keywords

Navigation