Skip to main content

Advertisement

Log in

Ginsenoside Rg5 as an anticancer drug: a comprehensive review on mechanisms, structure–activity relationship, and prospects for clinical advancement

  • Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Cancer remains one of the leading causes of death in the world. Despite the considerable success of conventional treatment strategies, the incidence and mortality rates are still high, making developing new effective anticancer therapies an urgent priority. Ginsenoside Rg5 (Rg5) is a minor ginsenoside constituent obtained exclusively from ginseng species and is known for its broad spectrum of pharmacological activities. This article aimed to comprehensively review the anticancer properties of Rg5, focusing on action mechanisms, structure–activity relationship (SAR), and pharmacokinetics attributes. The in vitro and in vivo activities of Rg5 have been proven against several cancer types, such as breast, liver, lung, bone, and gastrointestinal (GI) cancers. The modulation of multiple signaling pathways critical for cancer growth and survival mediates these activities. Nevertheless, human clinical studies of Rg5 have not been addressed before, and there is still considerable ambiguity regarding its pharmacokinetics properties. In addition, a significant shortage in the structure–activity relationship (SAR) of Rg5 has been identified. Therefore, future efforts should focus on further optimization by performing extensive SAR studies to uncover the structural features essential for the potent anticancer activity of Rg5. Thus, this review highlights the value of Rg5 as a potential anticancer drug candidate and identifies the research areas requiring more investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

Akt:

Group of serine-threonine enzyme

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

AMPK:

AMP-activated protein kinase

AMP:

Adenosine monophosphate

ATM:

Ataxia telangiectasia mutation

Bad:

Proapoptotic BH3-only protein

Bak:

Bcl-2 homologous antagonist/killer

Bax:

Bcl-2 associated X-protein

Bcl-2:

B-cell lymphoma-2

Bcl-xL:

B-cell lymphoma extra large

BUN:

Blood urea nitrogen

Ca2+ :

Calcium cation

Cdc:

Cell division cycle

CDK 4:

Cyclin-dependent kinase-4

Cyclin B1:

Regulatory protein in mitosis of the cell cycle from G2 to M phase

Cyclin D1:

A regulator of cell cycle progression, oncogenic driver

Cyclin E2:

Regulatory protein in mitosis of the cell cycle, i.e. S-phase

Cyp450:

Cytochrome P450

Cyt C:

Cytochrome C

EphA2:

Erythropoietin-producing hepatocellular receptor A2

Erk:

Extracellular signal-regulated kinase

ESR2:

Estrogen receptor 2

GABA:

Gamma-aminobutyric acid

Ginsenoside Rg5:

Rg5

GIT:

Gastrointestinal tract

HSP:

Heat shock protein

IAPs:

Inhibitors of apoptosis proteins

IR:

Infrared

MDM2:

Mouse double minute 2

MS:

Mass spectrometry

mTOR:

Mammalian target of rapamycin

NAPQI:

N-acetyl-p-benzoquinone imine

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NIDDM:

Non-insulin-dependent diabetes mellitus

NLRP3:

NOD-like receptor family pyrin domain-containing 3

NMR:

Nuclear magnetic resonance

PARP:

Poly-adenosine diphosphate-ribose polymerase

p21:

Polyclonal-21 antibody

p15:

Polyclonal-15 antibody

p26:

Polyclonal-26 antibody

p70S6k:

P70 ribosomal s6 kinase

p53:

Polyclonal-53 antibody

PI3K:

Phosphatidyl inositol-3-kinase

PARP:

Poly-adenosine diphosphate-ribose polymerase

PPD:

Protopanaxadiol

PPT:

Protopanaxatriol

Ras:

Ras oncogenes

ROS:

Reactive oxygen species

SAR:

Structure–activity relationship

S6:

Serine-threonine protein-6

Smad 2/3:

Suppressor of mothers against decapentaplegic 2/3

TGF-β:

Transforming growth factor-beta:

T max :

Peak time

V d :

Volume of distribution

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  2. Sobral PJM, Vicente ATS, Salvador JAR. Recent advances in oridonin derivatives with anticancer activity. Front Chem. 2023;11:1066280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  4. Hassanpour SH, Dehghani M. Review of cancer from perspective of molecular. J Cancer Res Pract. 2017;4(4):127–9.

    Article  Google Scholar 

  5. Antwi SO, Eckert EC, Sabaque CV, Leof ER, Hawthorne KM, Bamlet WR, Chaffee KG, Oberg AL, Petersen GM. Exposure to environmental chemicals and heavy metals, and risk of pancreatic cancer. Cancer Causes Control. 2015;26(11):1583–91.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Parkin DM. The global health burden of infection-associated cancers in the year 2002. Int J Cancer. 2006;118(12):3030–44.

    Article  CAS  PubMed  Google Scholar 

  7. Gm C. The cell: a molecular approach. Sunderland: Sinauer Associates; 2000.

    Google Scholar 

  8. Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-Pinelo S, Paz-Ares L. Current challenges in cancer treatment. Clin Ther. 2016;38(7):1551–66.

    Article  PubMed  Google Scholar 

  9. Naeem A, Hu P, Yang M, Zhang J, Liu Y, Zhu W, Zheng Q. Natural products as anticancer agents: current status and future perspectives. Molecules. 2022;27(23):8367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sun LR, Zhou W, Zhang HM, Guo QS, Yang W, Li BJ, Sun ZH, Gao SH, Cui RJ. Modulation of multiple signaling pathways of the plant-derived natural products in cancer. Front Oncol. 2019;9:1153.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Atanasov AG, Zotchev SB, Dirsch VM, International Natural Product Sciences T, Supuran CT. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021;20(3):200–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shen J, Li J, Yu P, Du G. Research status and hotspots of anticancer natural products based on the patent literature and scientific articles. Front Pharmacol. 2022;13: 903239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Priya S, Satheeshkumar PK. Natural products from plants. In: Functional and Preservative Properties of Phytochemicals. Academic Press; 2020. p. 145–163.

  14. Klos P, Chlubek D. Plant-derived terpenoids: a promising tool in the fight against melanoma. Cancers (Basel). 2022;14(3):502.

    Article  CAS  PubMed  Google Scholar 

  15. Shagufta P. Introductory chapter: terpenes and terpenoids. In: Shagufta P, Areej A-T, editors. Terpenes and terpenoids. Rijeka: IntechOpen; 2018.

    Google Scholar 

  16. Swamy MK, Akhtar MS. Natural bio-active compounds. Singapore: Springer; 2019.

    Book  Google Scholar 

  17. Mahizan NA, Yang SK, Moo CL, Song AA, Chong CM, Chong CW, Abushelaibi A, Lim SE, Lai KS. Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules. 2019;24(14):2631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Darshani P, Sen Sarma S, Srivastava AK, Baishya R, Kumar D. Anti-viral triterpenes: a review. Phytochem Rev. 2022;21(6):1761–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Del Prado-Audelo ML, Cortes H, Caballero-Floran IH, Gonzalez-Torres M, Escutia-Guadarrama L, Bernal-Chavez SA, Giraldo-Gomez DM, Magana JJ, Leyva-Gomez G. Therapeutic applications of terpenes on inflammatory diseases. Front Pharmacol. 2021;12: 704197.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kamran S, Sinniah A, Abdulghani MAM, Alshawsh MA. Therapeutic potential of certain terpenoids as anticancer agents: a scoping review. Cancers (Basel). 2022;14(5):1100.

    Article  CAS  PubMed  Google Scholar 

  21. Ratan ZA, Haidere MF, Hong YH, Park SH, Lee JO, Lee J, Cho JY. Pharmacological potential of ginseng and its major component ginsenosides. J Ginseng Res. 2021;45(2):199–210.

    Article  PubMed  Google Scholar 

  22. Zhao L, Zhao H, Zhao Y, Sui M, Liu J, Li P, Liu N, Zhang K. Role of ginseng, quercetin, and tea in enhancing chemotherapeutic efficacy of colorectal cancer. Front Med (Lausanne). 2022;9: 939424.

    Article  PubMed  Google Scholar 

  23. Vayghan HJ, Ghadimi SS, Nourazarian AR. Preventive and therapeutic roles of ginseng - focus on colon cancer. Asian Pac J Cancer Prev. 2014;15(2):585–8.

    Article  PubMed  Google Scholar 

  24. Liu MY, Liu F, Gao YL, Yin JN, Yan WQ, Liu JG, Li HJ. Pharmacological activities of ginsenoside Rg5 (Review). Exp Ther Med. 2021;22(2):840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu Y, Fan D. The preparation of ginsenoside Rg5, its antitumor activity against breast cancer cells and its targeting of PI3K. Nutrients. 2020;12(1):246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ponnuraj SP, Siraj F, Kang S, Noh HY, Min JW, Kim YJ, Yang DC. Amelioration of insulin resistance by Rk1 + Rg5 complex under endoplasmic reticulum stress conditions. Pharmacognosy Res. 2014;6(4):292–6.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Simu SY, Ahn S, Castro-Aceituno V, Yang D-C. Ginsenoside Rg5: Rk1 exerts an anti-obesity effect on 3T3-L1 cell line by the downregulation of PPARγ and CEBPα. Iran J Biotechnol. 2017;15(4):252.

    Article  Google Scholar 

  28. Zhu Y, Zhu C, Yang H, Deng J, Fan D. Protective effect of ginsenoside Rg5 against kidney injury via inhibition of NLRP3 inflammasome activation and the MAPK signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. Pharmacol Res. 2020;155: 104746.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang P. Ginsenoside-Rg5 treatment inhibits apoptosis of chondrocytes and degradation of cartilage matrix in a rat model of osteoarthritis. Oncol Rep. 2017;37(3):1497–502.

    Article  CAS  PubMed  Google Scholar 

  30. Shao J, Zheng X, Qu L, Zhang H, Yuan H, Hui J, Mi Y, Ma P, Fan D. Ginsenoside Rg5/Rk1 ameliorated sleep via regulating the GABAergic/serotoninergic signaling pathway in a rodent model. Food Funct. 2020;11(2):1245–57.

    Article  PubMed  Google Scholar 

  31. Cho YL, Hur SM, Kim JY, Kim JH, Lee DK, Choe J, Won MH, Ha KS, Jeoung D, Han S, Ryoo S, Lee H, Min JK, Kwon YG, Kim DH, Kim YM. Specific activation of insulin-like growth factor-1 receptor by ginsenoside Rg5 promotes angiogenesis and vasorelaxation. J Biol Chem. 2015;290(1):467–77.

    Article  CAS  PubMed  Google Scholar 

  32. Qi LW, Wang CZ, Yuan CS. Ginsenosides from American ginseng: chemical and pharmacological diversity. Phytochemistry. 2011;72(8):689–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim HJ, Kim P, Shin CY. A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system. J Ginseng Res. 2013;37(1):8–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee SM, Bae BS, Park HW, Ahn NG, Cho BG, Cho YL, Kwak YS. Characterization of Korean Red Ginseng (Panax ginseng Meyer): history, preparation method, and chemical composition. J Ginseng Res. 2015;39(4):384–91.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Park SK, Hyun SH, In G, Park CK, Kwak YS, Jang YJ, Kim B, Kim JH, Han CK. The antioxidant activities of Korean Red Ginseng (Panax ginseng) and ginsenosides: a systemic review through in vivo and clinical trials. J Ginseng Res. 2021;45(1):41–7.

    Article  PubMed  Google Scholar 

  36. Shin BK, Kwon SW, Park JH. Chemical diversity of ginseng saponins from Panax ginseng. J Ginseng Res. 2015;39(4):287–98.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kim SK, Park JH. Trends in ginseng research in 2010. J Ginseng Res. 2011;35(4):389–98.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lee DH, Cho HJ, Kim HH, Rhee MH, Ryu JH, Park HJ. Inhibitory effects of total saponin from Korean red ginseng via vasodilator-stimulated phosphoprotein-Ser(157) phosphorylation on thrombin-induced platelet aggregation. J Ginseng Res. 2013;37(2):176–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Siddiqi MH, Siddiqi MZ, Ahn S, Kang S, Kim YJ, Sathishkumar N, Yang DU, Yang DC. Ginseng saponins and the treatment of osteoporosis: mini literature review. J Ginseng Res. 2013;37(3):261–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kang KS, Ham J, Kim YJ, Park JH, Cho EJ, Yamabe N. Heat-processed Panax ginseng and diabetic renal damage: active components and action mechanism. J Ginseng Res. 2013;37(4):379–88.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lee S, Kim MG, Ko SK, Kim HK, Leem KH, Kim YJ. Protective effect of ginsenoside Re on acute gastric mucosal lesion induced by compound 48/80. J Ginseng Res. 2014;38(2):89–96.

    Article  PubMed  Google Scholar 

  42. Lee CH, Kim JH. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J Ginseng Res. 2014;38(3):161–6.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hyun SH, Bhilare KD, In G, Park CK, Kim JH. Effects of Panax ginseng and ginsenosides on oxidative stress and cardiovascular diseases: pharmacological and therapeutic roles. J Ginseng Res. 2022;46(1):33–8.

    Article  PubMed  Google Scholar 

  44. Zhao A, Liu N, Yao M, Zhang Y, Yao Z, Feng Y, Liu J, Zhou G. A review of neuroprotective effects and mechanisms of Ginsenosides from Panax Ginseng in treating ischemic stroke. Front Pharmacol. 2022;13: 946752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ru W, Wang D, Xu Y, He X, Sun YE, Qian L, Zhou X, Qin Y. Chemical constituents and bioactivities of Panax ginseng (C. A. Mey). Drug Discov Ther. 2015;9(1):23–32.

    Article  CAS  PubMed  Google Scholar 

  46. Fan W, Huang Y, Zheng H, Li S, Li Z, Yuan L, Cheng X, He C, Sun J. Ginsenosides for the treatment of metabolic syndrome and cardiovascular diseases: pharmacology and mechanisms. Biomed Pharmacother. 2020;132: 110915.

    Article  CAS  PubMed  Google Scholar 

  47. So SH, Lee JW, Kim YS, Hyun SH, Han CK. Red ginseng monograph. J Ginseng Res. 2018;42(4):549–61.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhang F, Tang S, Zhao L, Yang X, Yao Y, Hou Z, Xue P. Stem-leaves of Panax as a rich and sustainable source of less-polar ginsenosides: comparison of ginsenosides from Panax ginseng, American ginseng and Panax notoginseng prepared by heating and acid treatment. J Ginseng Res. 2021;45(1):163–75.

    Article  PubMed  Google Scholar 

  49. Le TH, Lee SY, Lee GJ, Nguyen NK, Park JH, Nguyen MD. Effects of steaming on saponin compositions and antiproliferative activity of Vietnamese ginseng. J Ginseng Res. 2015;39(3):274–8.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kim SJ, Kim AK. Anti-breast cancer activity of fine black ginseng (Panax ginseng Meyer) and ginsenoside Rg5. J Ginseng Res. 2015;39(2):125–34.

    Article  PubMed  Google Scholar 

  51. Lee MR, Yun BS, Sung CK. Comparative study of white and steamed black Panax ginseng, P. quinquefolium, and P. notoginseng on cholinesterase inhibitory and antioxidative activity. J Ginseng Res. 2012;36(1):93–101.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Duana Z, Deng J, Dong Y, Zhu C, Lia W, Fana D. Anticancer effects of ginsenoside Rk3 on non-small cell lung cancer cells: in vitro and in vivo. Food Funct. 2017;8:3723–36.

    Article  Google Scholar 

  53. Potenza MA, Montagnani M, Santacroce L, Charitos IA, Bottalico L. Ancient herbal therapy: a brief history of Panax ginseng. J Ginseng Res. 2022;47(3):359–65.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hou M, Wang R, Zhao S, Wang Z. Ginsenosides in Panax genus and their biosynthesis. Acta Pharm Sin B. 2021;11(7):1813–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ramesh J, Thilakan RC, Gopalakrishnan RM, Vijayapoopathi S, Dorschel A, Venugopal B. Ginsenoside Rg5 sensitizes paclitaxel-resistant human cervical-adeno-carcinoma cells to paclitaxel-and enhances the anticancer effect of paclitaxel. Genes (Basel). 2022;13(7):1142.

    Article  CAS  PubMed  Google Scholar 

  56. Bai L, Gao J, Wei F, Zhao J, Wang D, Wei J. Therapeutic potential of ginsenosides as an adjuvant treatment for diabetes. Front Pharmacol. 2018;9:423.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Guo DD, Cheng LQ, Zhang YW, Zheng HC, Ma HY, Li L. An improved method for the preparation of Ginsenoside Rg5 from ginseng fibrous root powder. Heliyon. 2019;5(10): e02694.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Jo SK, Kim IS, Yoon KS, Yoon HH, Yoo HH. Preparation of ginsenosides Rg3, Rk1, and Rg5-selectively enriched ginsengs by a simple steaming process. Eur Food Res Technol. 2014;240(1):251–6.

    Article  Google Scholar 

  59. Wang Z, Hu JN, Yan MH, Xing JJ, Liu WC, Li W. Caspase-mediated anti-apoptotic effect of ginsenoside Rg5, a main rare ginsenoside, on acetaminophen-induced hepatotoxicity in mice. J Agric Food Chem. 2017;65(42):9226–36.

    Article  CAS  PubMed  Google Scholar 

  60. Kang KS, Yamabe N, Kim HY, Yokozawa T. Effect of sun ginseng methanol extract on lipopolysaccharide-induced liver injury in rats. Phytomedicine. 2007;14(12):840–5.

    Article  CAS  PubMed  Google Scholar 

  61. Nag SA, Qin J-J, Wang W, Wang M-H, Wang H, Zhang R. Ginsenosides as anticancer agents: in vitro and in vivo activities, structure–activity relationships, and molecular mechanisms of action. Front Pharmacol. 2012;3:25.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Feng R, Liu J, Wang Z, Zhang J, Cates C, Rousselle T, Meng Q, Li J. The structure-activity relationship of ginsenosides on hypoxia-reoxygenation induced apoptosis of cardiomyocytes. Biochem Biophys Res Commun. 2017;494(3–4):556–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Quan K, Liu Q, Wan J-Y, Zhao Y-J, Guo R-Z, Alolga RN, Li P, Qi L-W. Rapid preparation of rare ginsenosides by acid transformation and their structure-activity relationships against cancer cells. Sci Rep. 2015;5(1):8598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Qi L-W, Wang C-Z, Yuan C-S. American ginseng: potential structure–function relationship in cancer chemoprevention. Biochem Pharmacol. 2010;80(7):947–54.

    Article  CAS  PubMed  Google Scholar 

  65. Li W, Liu Y, Zhang J-W, Ai C-Z, Xiang N, Liu H-X, Yang L. Anti-androgen-independent prostate cancer effects of ginsenoside metabolites in vitro: mechanism and possible structure-activity relationship investigation. Arch Pharmacal Res. 2009;32:49–57.

    Article  Google Scholar 

  66. Fan W, Fan L, Wang Z, Mei Y, Liu L, Li L, Yang L, Wang Z. Rare ginsenosides: a unique perspective of ginseng research. J Adv Res. 2024. https://doi.org/10.1016/j.jare.2024.01.003.

    Article  PubMed  Google Scholar 

  67. Wang CZ, Yuan CS. Potential role of ginseng in the treatment of colorectal cancer. Am J Chin Med. 2008;36(6):1019–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Leung KW, Wong AS-T. Pharmacology of ginsenosides: a literature review. Chin Med. 2010;5(1):1–7.

    Article  Google Scholar 

  69. Yao W, Guan Y. Ginsenosides in cancer: a focus on the regulation of cell metabolism. Biomed Pharmacother. 2022;156: 113756.

    Article  CAS  PubMed  Google Scholar 

  70. Pan W, Xue B, Yang C, Miao L, Zhou L, Chen Q, Cai Q, Liu Y, Liu D, He H. Biopharmaceutical characters and bioavailability improving strategies of ginsenosides. Fitoterapia. 2018;129:272–82.

    Article  CAS  PubMed  Google Scholar 

  71. Cai H, Wen X, Wen L, Tirelli N, Zhang X, Zhang Y, Su H, Yang F, Chen G. Enhanced local bioavailability of single or compound drugs delivery to the inner ear through application of PLGA nanoparticles via round window administration. Int J Nanomed. 2014;9:5591.

    Article  Google Scholar 

  72. Li T, Shu Y-J, Cheng J-Y, Liang R-C, Dian S-N, Lv X-X, Yang M-Q, Huang S-L, Chen G, Yang F. Pharmacokinetics and efficiency of brain targeting of ginsenosides Rg1 and Rb1 given as Nao-Qing microemulsion. Drug Dev Ind Pharm. 2015;41(2):224–31.

    Article  CAS  PubMed  Google Scholar 

  73. Kong L-T, Wang Q, Xiao B-X, Liao Y-H, He X-X, Ye L-H, Liu X-M, Chang Q. Different pharmacokinetics of the two structurally similar dammarane sapogenins, protopanaxatriol and protopanaxadiol, in rats. Fitoterapia. 2013;86:48–53.

    Article  CAS  PubMed  Google Scholar 

  74. Kim D-H. Gut microbiota-mediated pharmacokinetics of ginseng saponins. J Ginseng Res. 2018;42(3):255–63.

    Article  PubMed  Google Scholar 

  75. Kim HJ, Oh TK, Kim YH, Lee J, Moon JM, Park YS, Sung CM. Pharmacokinetics of Ginsenoside Rb1, Rg3, Rk1, Rg5, F2, and compound K from Red Ginseng Extract in Healthy Korean Volunteers. Evid-Based Complement Altern Med. 2022. https://doi.org/10.1155/2022/8427519.

    Article  Google Scholar 

  76. Zou Y, Liu P. Ginsenoside-Rg5 inhibits proliferation of the breast carcinoma cells through promotion of the proteins involved in AMP kinase pathway. Int J Clin Exp Med. 2016;9(9):17664–9.

    CAS  Google Scholar 

  77. Cui Y, Su Y, Deng L, Wang W. Ginsenoside-Rg5 inhibits retinoblastoma proliferation and induces apoptosis through suppressing BCL2 expression. Chemotherapy. 2019;63(5):293–300.

    Article  Google Scholar 

  78. Zhang D, Wang A, Feng J, Zhang Q, Liu L, Ren H. Ginsenoside Rg5 induces apoptosis in human esophageal cancer cells through the phosphoinositide-3 kinase/protein kinase B signaling pathway. Mol Med Rep. 2019;19(5):4019–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Chen C, Lv Q, Li Y, Jin Y-H. The anti-tumor effect and underlying apoptotic mechanism of ginsenoside Rk1 and Rg5 in human liver cancer cells. Molecules. 2021;26(13):3926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu M-Y, Liu F, Gao Y-L, Yin J-N, Yan W-Q, Liu J-G, Li H-J. Pharmacological activities of ginsenoside Rg5. Exp Ther Med. 2021;22(2):1–9.

    Article  Google Scholar 

  81. Kim H, Choi P, Kim T, Kim Y, Song BG, Park Y-T, Choi S-J, Yoon CH, Lim W-C, Ko H. Ginsenosides Rk1 and Rg5 inhibit transforming growth factor-β1-induced epithelial-mesenchymal transition and suppress migration, invasion, anoikis resistance, and development of stem-like features in lung cancer. J Ginseng Res. 2021;45(1):134–48.

    Article  PubMed  Google Scholar 

  82. Britt KL, Cuzick J, Phillips K-A. Key steps for effective breast cancer prevention. Nat Rev Cancer. 2020;20(8):417–36.

    Article  CAS  PubMed  Google Scholar 

  83. Wang D, DuBois RN. Role of prostanoids in gastrointestinal cancer. J Clin Investig. 2018;128(7):2732–42.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Liu Y, Fan D. Ginsenoside Rg5 induces G2/M phase arrest, apoptosis and autophagy via regulating ROS-mediated MAPK pathways against human gastric cancer. Biochem Pharmacol. 2019;168:285–304.

    Article  CAS  PubMed  Google Scholar 

  85. Kivelä T. The epidemiological challenge of the most frequent eye cancer: retinoblastoma, an issue of birth and death. BMJ Publishing Group Ltd.; 2009. p. 1129–31.

    Google Scholar 

  86. Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 2020;5(1):8.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kim Y-J, Zhang D, Yang D-C. Biosynthesis and biotechnological production of ginsenosides. Biotechnol Adv. 2015;33(6):717–35.

    Article  CAS  PubMed  Google Scholar 

  88. Eaton BR, Schwarz R, Vatner R, Yeh B, Claude L, Indelicato DJ, Laack N. Osteosarcoma. Pediatr Blood Cancer. 2021;68: e28352.

    Article  PubMed  Google Scholar 

  89. Liu M-Y, Liu F, Li Y-J, Yin J-N, Gao Y-L, Wang X-Y, Yang C, Liu J-G, Li H-J. Ginsenoside Rg5 inhibits human osteosarcoma cell proliferation and induces cell apoptosis through PI3K/Akt/mTORC1-related LC3 autophagy pathway. Oxid Med Cell Longev. 2021;2021:1–12.

    Article  Google Scholar 

  90. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin. 2018;68(6):394–424.

    PubMed  Google Scholar 

  91. Dong Y, Fu R, Yang J, Ma P, Liang L, Mi Y, Fan D. Folic acid-modified ginsenoside Rg5-loaded bovine serum albumin nanoparticles for targeted cancer therapy in vitro and in vivo. Int J Nanomed. 2019;14:6971–88.

    Article  CAS  Google Scholar 

  92. Liu Y, Fan D. Ginsenoside Rg5 induces apoptosis and autophagy via the inhibition of the PI3K/Akt pathway against breast cancer in a mouse model. Food Funct. 2018;9(11):5513–27.

    Article  CAS  PubMed  Google Scholar 

  93. Feng S-L, Luo H-B, Cai L, Zhang J, Wang D, Chen Y-J, Zhan H-X, Jiang Z-H, Xie Y. Ginsenoside Rg5 overcomes chemotherapeutic multidrug resistance mediated by ABCB1 transporter: in vitro and in vivo study. J Ginseng Res. 2020;44(2):247–57.

    Article  PubMed  Google Scholar 

  94. Li H, Li H. Ginsenoside-Rg5 inhibits growth and metastasis of ovarian carcinoma via suppressing expression of fibroblast growth factor-8b (FGF8b). J King Saud Univ-Sci. 2020;32(1):1162–7.

    Article  Google Scholar 

  95. Chen Y, Chen G, Li J, Huang YY, Li Y, Lin J, Chen LZ, Lu JP, Wang YQ, Wang CX, Pan LK, Xia XF, Yi X, Chen CB, Zheng XW, Guo ZQ, Pan JJ. Association of tumor protein p53 and ataxia-telangiectasia mutated comutation with response to immune checkpoint inhibitors and mortality in patients with non-small cell lung cancer. JAMA Netw Open. 2019;2(9): e1911895.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Song L, Yang F, Wang Z, Yang L, Zhou Y. Ginsenoside Rg5 inhibits cancer cell migration by inhibiting the nuclear factor-κB and erythropoietin-producing hepatocellular receptor A2 signaling pathways. Oncol Lett. 2021;21(6):1–8.

    Article  Google Scholar 

  97. Zhou X, Jiao D, Dou M, Zhang W, Hua H, Chen J, Li Z, Li L, Han X. Association of APC gene promoter methylation and the risk of gastric cancer: a meta-analysis and bioinformatics study. Medicine (Baltimore). 2020;99(16): e19828.

    Article  CAS  PubMed  Google Scholar 

  98. Wang YS, Li H, Li Y, Zhu H, Jin YH. Identification of natural compounds targeting Annexin A2 with an anti-cancer effect. Protein Cell. 2018;9(6):568–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yu SE, Mwesige B, Yi Y-S, Yoo BC. Ginsenosides: the need to move forward from bench to clinical trials. J Ginseng Res. 2019;43(3):361–7.

    Article  PubMed  Google Scholar 

  100. Kim H, Lee JH, Kim JE, Kim YS, Ryu CH, Lee HJ, Kim HM, Jeon H, Won H-J, Lee J-Y. Micro-/nano-sized delivery systems of ginsenosides for improved systemic bioavailability. J Ginseng Res. 2018;42(3):361–9.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Wu J, Jeong HK, Bulin SE, Kwon SW, Park JH, Bezprozvanny I. Ginsenosides protect striatal neurons in a cellular model of Huntington’s disease. J Neurosci Res. 2009;87(8):1904–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Park JY, Choi P, Kim T, Ko H, Kim H-K, Kang KS, Ham J. Protective effects of processed ginseng and its active ginsenosides on cisplatin-induced nephrotoxicity: in vitro and in vivo studies. J Agric Food Chem. 2015;63(25):5964–9.

    Article  CAS  PubMed  Google Scholar 

  103. Yang Y-L, Li J, Liu K, Zhang L, Liu Q, Liu B, Qi L-W. Ginsenoside Rg5 increases cardiomyocyte resistance to ischemic injury through regulation of mitochondrial hexokinase-II and dynamin-related protein 1. Cell Death Dis. 2017;8(2):e2625–e2625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wan Y, Wang J, Xu J-F, Tang F, Chen L, Tan Y-Z, Rao C-L, Ao H, Peng C. Panax ginseng and its ginsenosides: potential candidates for the prevention and treatment of chemotherapy-induced side effects. J Ginseng Res. 2021;45(6):617–30.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Choi S-Y, Kim K-J, Song J-H, Lee B-Y. Ginsenoside Rg5 prevents apoptosis by modulating heme-oxygenase-1/nuclear factor E2-related factor 2 signaling and alters the expression of cognitive impairment-associated genes in thermal stress-exposed HT22 cells. J Ginseng Res. 2018;42(2):225–8.

    Article  PubMed  Google Scholar 

  106. Panossian A, Abdelfatah S, Efferth T. Network pharmacology of Red Ginseng (Part I): effects of ginsenoside Rg5 at physiological and sub-physiological concentrations. Pharmaceuticals. 2021;14(10):999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Clarkson C, Maharaj VJ, Crouch NR, Grace OM, Pillay P, Matsabisa MG, Bhagwandin N, Smith PJ, Folb PI. In vitro antiplasmodial activity of medicinal plants native to or naturalised in South Africa. J Ethnopharmacol. 2004;92(2–3):177–91.

    Article  PubMed  Google Scholar 

  108. Chu S, Gu J, Feng L, Liu J, Zhang M, Jia X, Liu M, Yao D. Ginsenoside Rg5 improves cognitive dysfunction and beta-amyloid deposition in STZ-induced memory impaired rats via attenuating neuroinflammatory responses. Int Immunopharmacol. 2014;19(2):317–26.

    Article  CAS  PubMed  Google Scholar 

  109. Cho Y-L, Hur S-M, Kim J-Y, Kim J-H, Lee D-K, Choe J, Won M-H, Ha K-S, Jeoung D, Han S. Specific activation of insulin-like growth factor-1 receptor by ginsenoside Rg5 promotes angiogenesis and vasorelaxation. J Biol Chem. 2015;290(1):467–77.

    Article  CAS  PubMed  Google Scholar 

  110. Kim E-J, Jung I-H, Van Le TK, Jeong J-J, Kim N-J, Kim D-H. Ginsenosides Rg5 and Rh3 protect scopolamine-induced memory deficits in mice. J Ethnopharmacol. 2013;146(1):294–9.

    Article  CAS  PubMed  Google Scholar 

  111. Lee JG, Lee YY, Kim SY, Pyo JS, Yun-Choi HS, Park JH. Platelet antiaggregating activity of ginsenosides isolated from processed ginseng. Die Pharm-An Int J Pharm Sci. 2009;64(9):602–4.

    CAS  Google Scholar 

  112. Liu J, Liu Y, Lin H, Zhou B, Yu H, Li L, Wang C, Li X, Li P, Liu J. The effect of ginsenoside Rg5, isolated from black ginseng, on heart failure in zebrafish based on untargeted metabolomics. J Funct Foods. 2021;76: 104325.

    Article  CAS  Google Scholar 

  113. Wei Y, Yang H, Zhu C, Deng J, Fan D. Ginsenoside Rg5 relieves type 2 diabetes by improving hepatic insulin resistance in db/db mice. J Funct Foods. 2020;71: 104014.

    Article  CAS  Google Scholar 

  114. Gwilt PR, Nahhas RR, Tracewell WG. The effects of diabetes mellitus on pharmacokinetics and pharmacodynamics in humans. Clin Pharmacokinet. 1991;20:477–90.

    Article  CAS  PubMed  Google Scholar 

  115. Larson AM. Acetaminophen hepatotoxicity. Clin Liver Dis. 2007;11:525–48.

    Article  PubMed  Google Scholar 

  116. Rumack BH. Acetaminophen hepatotoxicity: the first 35 years. J Toxicol Clin Toxicol. 2002;40(1):3–20.

    Article  CAS  PubMed  Google Scholar 

  117. Nelson SD. Molecular mechanisms of the hepatotoxicity caused by acetaminophen. In: Seminars in liver disease. Thieme Medical Publishers, Inc.; 1990. p. 267–78.

    Google Scholar 

  118. Lee WM. Drug-induced hepatotoxicity. N Engl J Med. 1995;333(17):1118–27.

    Article  CAS  PubMed  Google Scholar 

  119. Shahid RK, Ahmed S, Le D, Yadav S. Diabetes and cancer: risk, challenges, management and outcomes. Cancers. 2021;13(22):5735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kim SI, Park JH, Ryu J-H, Park JD, Lee YH, Park J-H, Kim T-H, Kim JM, Baek N-I. Ginsenoside Rg 5, a genuine dammarane glycoside from Korean red ginseng. Arch Pharmacal Res. 1996;19:551–3.

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and design were performed by J.S.-R.; investigation, data curation, and writing were performed by T.E., A.M.M., E.A. M. M., I.B., M.R., K.Y., M.A.M., S.F.A.; validation, review, and editing were performed by D.B., S.H., J.S.-R. All the authors contributed equally, read, and approved the final manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Javad Sharifi-Rad.

Ethics declarations

Conflict of interest

The authors wish to confirm that there are no known conflicts of interest associated with this publication, and there has been no significant financial support for this work that could have influenced its outcome.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsaman, T., Muddathir, A.M., Mohieldin, E.A.M. et al. Ginsenoside Rg5 as an anticancer drug: a comprehensive review on mechanisms, structure–activity relationship, and prospects for clinical advancement. Pharmacol. Rep 76, 287–306 (2024). https://doi.org/10.1007/s43440-024-00586-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-024-00586-5

Keywords

Navigation