Skip to main content

Advertisement

Log in

Tanshinone IIA targeting cell signaling pathways: a plausible paradigm for cancer therapy

  • Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Natural compounds originating from plants offer a wide range of pharmacological potential and have traditionally been used to treat a wide range of diseases including cancer. Tanshinone IIA (Tan IIA), a bioactive molecule found in the roots of the Traditional Chinese Medicine (TCM) herb Salvia miltiorrhiza, has been shown to have remarkable anticancer properties through several mechanisms, such as inhibition of tumor cell growth and proliferation, metastasis, invasion, and angiogenesis, as well as induction of apoptosis and autophagy. It has demonstrated excellent anticancer efficacy against cell lines from breast, cervical, colorectal, gastric, lung, and prostate cancer by modulating multiple signaling pathways including PI3K/Akt, JAK/STAT, IGF-1R, and Bcl-2–Caspase pathways. This review focuses on the role of Tan IIA in the treatment of various cancers, as well as the underlying molecular mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

Data sharing does not apply to this article as no datasets were generated or analyzed during the current study.

Abbreviations

AACT:

Acetyl-CoA C-acetyltransferase

Akt:

Protein kinase B

AML:

Acute myeloid leukemia

AMPK:

AMP-activated protein kinase

AP-1:

Activator protein 1

ATF6:

Activating transcription factor 6

AURKA:

Aurora kinase A

BAX:

Bcl-2-associated X protein

Bcl-XL:

B-cell lymphoma-extra large

bFGF:

Basic fibroblast growth factor

BIP:

Binding immunoglobulin protein

CD80:

Cluster of differentiation 80

Cdc25A:

Cell division cycle 25 A

CDK:

Cyclin-dependent kinases

CHOP:

C/EBP homologous protein

CML:

Chronic myeloid leukemia

CPP:

Copalyl diphosphate

CRC:

Colorectal cancer cells

CTLA-4:

Cytotoxic T-lymphocyte associated antigen-4

DMAPP:

Dimethylallyl pyrophosphate

DXS:

1-Deoxy-D-xylulose-5-phosphate synthase

EGFR:

Epithelial growth factor receptor

eIF2α:

Eukaryotic translation initiation factor 2α

ERK:

Extracellular signal-related kinase

FLIPs:

FLICE inhibitory protein

FOXM1:

Forkhead box protein M1

FPP:

Farnesyl diphosphate

FPPS:

FPP synthase

G3P:

Glyceraldehyde-3-phosphate

GADD153:

α Growth arrest and DNA damage-inducible gene 153

GFAP:

Glial fibrillary acidic protein

GGPP:

Geranylgeranyl diphosphate

GGPPS:

GGPP synthase

GPP:

Geranyl diphosphate

GPPS:

GPP synthase

HER2:

Receptor tyrosine-protein kinase erbB-2

HIF-1 α:

Hypoxia-inducible factor 1 α

HMGR:

3-Hydroxy-3-methylglutaryl-CoA reductase

HPV:

Human papillomavirus

IGF-1:

Insulin-like growth factor- 1

IL-6:

Interleukin 6

IL-8:

Pro-inflammatory cytokine interleukin-8

IPI:

IPP isomerase

IPP:

Isopentenyl pyrophosphate

IRE1:

Inositol-requiring gene 1

JAK:

Janus-activated kinase

JNK:

C-jun N-terminal kinase

KEGG:

KEGG: Kyoto Encyclopedia of Genes and Genomes

Ki-67:

Antigen KI-67

MAPK:

Mitogen-activated protein kinase

MEP:

Methylerythritol phosphate

MFF:

Mitochondrial fission factor

MMP-2:

Matrix metalloproteinase 2

mTOR:

Mammalian target of rapamycin

MVA:

Mevalonate

NF-κB:

Nuclear factor kappa B

Notch-1:

Notch homolog 1

NSCLC:

Non‐small cell lung cancer

PARP:

Poly(ADP ribose) polymerase

PC12:

Pheochromocytoma cells

PCNA:

Proliferating cell nuclear antigen

PD-1:

Programmed cell death-1 receptor

PD-L1:

Programmed cell death-ligand 1

PERK:

Protein kinase RNA-like endoplasmic reticulum kinase

PI3K:

Phosphatidylinositol-3-kinase

PKC:

Protein kinase C

PLC:

Phospholipase C

RAS:

Rat sarcoma virus

Rb:

Retinoblastoma

Skp2:

S-phase kinase-associated protein 2

SmCPS:

CPP synthase

SmKSL:

Kaurene synthase-like cyclase

STAT3:

Signal transducer and activator of transcription 3

Tan IIA:

Tanshinone IIA

TCM:

Traditional Chinese Medicine

TIMP:

Tissue inhibitor of matrix metalloproteinase protein

uPA:

Urokinase plasminogen activator

VEGF/VEGFR2:

Vascular endothelial growth factor/VEGF receptor 2

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021;71:209–49. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  3. Dutta S. Natural products: an upcoming therapeutic approach to cancer. Food Chem Toxicol. 2019;120:240–55.

    Article  Google Scholar 

  4. Martin GS. Cell signaling and cancer. Cancer Cell 2003;4:167–74. https://doi.org/10.1016/S1535-6108(03)00216-2.

  5. Gotwals P, Cameron S, Cipolletta D, Cremasco V, Crystal A, Hewes B, et al. Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat Rev Cancer. 2017;17:286–301. https://doi.org/10.1038/nrc.2017.17.

    Article  CAS  PubMed  Google Scholar 

  6. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015;27:450–61. https://doi.org/10.1016/j.ccell.2015.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang C-Y, Ju D-T, Chang C-F, Muralidhar Reddy P, Velmurugan BK. A review on the effects of current chemotherapy drugs and natural agents in treating non–small cell lung cancer. Biomedicine. 2017;7:23. https://doi.org/10.1051/bmdcn/2017070423.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Uddin F, Hoque M. Non-flavonoids targeting cancer stem cells: a promising therapeutic avenue for cancer treatment. In: Tabrez S, Imran Khan M, editors. Polyphenols-based nanotherapeutics cancer management. Singapore: Springer; 2021. p. 289–334. https://doi.org/10.1007/978-981-16-4935-6_8.

    Chapter  Google Scholar 

  9. Christen P, Cuendet M. Plants as a source of therapeutic and health products. Chim Int J Chem. 2012;66:320–3. https://doi.org/10.2533/chimia.2012.320.

    Article  CAS  Google Scholar 

  10. Hashem S, Ali TA, Akhtar S, Nisar S, Sageena G, Ali S, et al. Targeting cancer signaling pathways by natural products: exploring promising anti-cancer agents. Biomed Pharmacother. 2022;150:113054. https://doi.org/10.1016/j.biopha.2022.113054.

    Article  CAS  PubMed  Google Scholar 

  11. Wang H, Oo Khor T, Shu L, Su Z-Y, Fuentes F, Lee J-H, et al. Plants vs cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer Agents Med Chem. 2012;12:1281–305. https://doi.org/10.2174/187152012803833026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jiang Z, Gao W, Huang L. Tanshinones, critical pharmacological components in Salvia miltiorrhiza. Front Pharmacol. 2019;10:202. https://doi.org/10.3389/fphar.2019.00202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ansari MA, Khan FB, Safdari HA, Almatroudi A, Alzohairy MA, Safdari M, et al. Prospective therapeutic potential of Tanshinone IIA: an updated overview. Pharmacol Res. 2021;164:105364. https://doi.org/10.1016/j.phrs.2020.105364.

    Article  CAS  PubMed  Google Scholar 

  14. Fu L, Han B, Zhou Y, Ren J, Cao W, Patel G, et al. The anticancer properties of tanshinones and the pharmacological effects of their active ingredients. Front Pharmacol. 2020;11:193. https://doi.org/10.3389/fphar.2020.00193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Alam SSM, Uddin F, Khan FB, Kamal MA, Hoque M. Therapeutic and pharmacological potential of Tanshinones against lung cancer: a systematic review. Phytomedicine Plus. 2022;2:100202. https://doi.org/10.1016/j.phyplu.2021.100202.

    Article  Google Scholar 

  16. Lv C, Zeng H-W, Wang J-X, Yuan X, Zhang C, Fang T, et al. The antitumor natural product tanshinone IIA inhibits protein kinase C and acts synergistically with 17-AAG. Cell Death Dis. 2018;9:165. https://doi.org/10.1038/s41419-017-0247-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lu L, Liu Y, Zhang Z, Zhang H. Analysis of Danshen and twelve related Salvia species. Nat Prod Commun. 2012;7:1934578X1200700. https://doi.org/10.1177/1934578X1200700121.

    Article  Google Scholar 

  18. Won S-H, Lee H-J, Jeong S-J, Lee H-J, Lee E-O, Jung D-B, et al. Tanshinone IIA induces mitochondria dependent apoptosis in prostate cancer cells in association with an inhibition of phosphoinositide 3-kinase/AKT pathway. Biol Pharm Bull. 2010;33:1828–34. https://doi.org/10.1248/bpb.33.1828.

    Article  CAS  PubMed  Google Scholar 

  19. Zhong C, Lin Z, Ke L, Shi P, Li S, Huang L, et al. Recent research progress (2015–2021) and perspectives on the pharmacological effects and mechanisms of Tanshinone IIA. Front Pharmacol. 2021;12:778847. https://doi.org/10.3389/fphar.2021.778847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dong Y, Morris-Natschke SL, Lee K-H. Biosynthesis, total syntheses, and antitumor activity of tanshinones and their analogs as potential therapeutic agents. Nat Prod Rep. 2011;28:529. https://doi.org/10.1039/c0np00035c.

    Article  CAS  PubMed  Google Scholar 

  21. Gao W, Sun H-X, Xiao H, Cui G, Hillwig ML, Jackson A, et al. Combining metabolomics and transcriptomics to characterize tanshinone biosynthesis in Salvia miltiorrhiza. BMC Genomics. 2014;15:73. https://doi.org/10.1186/1471-2164-15-73.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Guo J, Zhou YJ, Hillwig ML, Shen Y, Yang L, Wang Y, et al. CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts. Proc Natl Acad Sci. 2013;110:12108–13. https://doi.org/10.1073/pnas.1218061110.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rohmer M, Knani M, Simonin P, Sutter B, Sahm H. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J. 1993;295:517–24. https://doi.org/10.1042/bj2950517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rodrı́guez-Concepción M, Boronat A. Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol. 2002;130:1079–89. https://doi.org/10.1104/pp.007138.

    Article  CAS  PubMed  Google Scholar 

  25. Kai G, Xu H, Zhou C, Liao P, Xiao J, Luo X, et al. Metabolic engineering tanshinone biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. Metab Eng. 2011;13:319–27. https://doi.org/10.1016/j.ymben.2011.02.003.

    Article  CAS  PubMed  Google Scholar 

  26. Ma Y, Yuan L, Wu B, Li X, Chen S, Lu S. Genome-wide identification and characterization of novel genes involved in terpenoid biosynthesis in Salvia miltiorrhiza. J Exp Bot. 2012;63:2809–23. https://doi.org/10.1093/jxb/err466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miziorko HM. Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch Biochem Biophys. 2011;505:131–43. https://doi.org/10.1016/j.abb.2010.09.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ge X, Wu J. Tanshinone production and isoprenoid pathways in Salvia miltiorrhiza hairy roots induced by Ag+ and yeast elicitor. Plant Sci. 2005;168:487–91. https://doi.org/10.1016/j.plantsci.2004.09.012.

    Article  CAS  Google Scholar 

  29. Yang D, Du X, Liang X, Han R, Liang Z, Liu Y, et al. Different roles of the mevalonate and methylerythritol phosphate pathways in cell growth and tanshinone production of Salvia miltiorrhiza hairy roots. PLoS ONE. 2012;7:e46797. https://doi.org/10.1371/journal.pone.0046797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dai Z, Cui G, Zhou S-F, Zhang X, Huang L. Cloning and characterization of a novel 3-hydroxy-3-methylglutaryl coenzyme A reductase gene from Salvia miltiorrhiza involved in diterpenoid tanshinone accumulation. J Plant Physiol. 2011;168:148–57. https://doi.org/10.1016/j.jplph.2010.06.008.

    Article  CAS  PubMed  Google Scholar 

  31. Ma X-H, Ma Y, Tang J-F, He Y-L, Liu Y-C, Ma X-J, et al. The biosynthetic pathways of tanshinones and phenolic acids in Salvia miltiorrhiza. Molecules. 2015;20:16235–54. https://doi.org/10.3390/molecules200916235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kirby J, Keasling JD. Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol. 2009;60:335–55. https://doi.org/10.1146/annurev.arplant.043008.091955.

    Article  CAS  PubMed  Google Scholar 

  33. Bae WJ, Choi JB, Kim KS, Ha US, Hong SH, Lee JY, et al. Inhibition of proliferation of prostate cancer cell line DU-145 in vitro and in vivo using Salvia miltiorrhiza Bunge. Chin J Integr Med. 2020;26:533–8. https://doi.org/10.1007/s11655-017-2801-5.

    Article  CAS  PubMed  Google Scholar 

  34. Chen X, Guo J, Bao J, Lu J, Wang Y. The anticancer properties of Salvia miltiorrhiza Bunge (Danshen): a systematic review: the anticancer effects of salvia miltiorrhiza bunge. Med Res Rev. 2014;34:768–94. https://doi.org/10.1002/med.21304.

    Article  CAS  PubMed  Google Scholar 

  35. Wu C-Y, Yang Y-H, Lin Y-Y, Kuan F-C, Lin Y-S, Lin W-Y, et al. Anti-cancer effect of danshen and dihydroisotanshinone I on prostate cancer: targeting the crosstalk between macrophages and cancer cells via inhibition of the STAT3/CCL2 signaling pathway. Oncotarget. 2017;8:40246–63. https://doi.org/10.18632/oncotarget.14958.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Xie J, Liu J, Liu H, Liang S, Lin M, Gu Y, et al. The antitumor effect of tanshinone IIA on anti-proliferation and decreasing VEGF/VEGFR2 expression on the human non-small cell lung cancer A549 cell line. Acta Pharm Sin B. 2015;5:554–63. https://doi.org/10.1016/j.apsb.2015.07.008.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Munagala R, Aqil F, Jeyabalan J, Gupta RC. Tanshinone IIA inhibits viral oncogene expression leading to apoptosis and inhibition of cervical cancer. Cancer Lett. 2015;356:536–46. https://doi.org/10.1016/j.canlet.2014.09.037.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang H-S, Zhang F-J, Li H, Liu Y, Du G-Y, Huang Y-H. Tanshinone IIA inhibits human esophageal cancer cell growth through miR-122-mediated PKM2 down-regulation. Arch Biochem Biophys. 2016;598:50–6. https://doi.org/10.1016/j.abb.2016.03.031.

    Article  CAS  PubMed  Google Scholar 

  39. Chen J, Shi D-Y, Liu S-L, Zhong L. Tanshinone IIA induces growth inhibition and apoptosis in gastric cancer in vitro and in vivo. Oncol Rep. 2012;27:523–8. https://doi.org/10.3892/or.2011.1524.

    Article  CAS  PubMed  Google Scholar 

  40. Su C-C. Tanshinone IIA inhibits gastric carcinoma AGS cells through increasing p-p38, p-JNK and p53 but reducing p-ERK, CDC2 and cyclin B1 expression. Anticancer Res. 2014;34:7097–110.

  41. Gong Y, Li Y, Lu Y, Li L, Abdolmaleky H, Blackburn GL, et al. Bioactive tanshinones in Salvia miltiorrhiza inhibit the growth of prostate cancer cells in vitro and in mice. Int J Cancer. 2011;129:1042–52. https://doi.org/10.1002/ijc.25678.

    Article  CAS  PubMed  Google Scholar 

  42. Lin L-L, Hsia C-R, Hsu C-L, Huang H-C, Juan H-F. Integrating transcriptomics and proteomics to show that tanshinone IIA suppresses cell growth by blocking glucose metabolism in gastric cancer cells. BMC Genom. 2015;16:41. https://doi.org/10.1186/s12864-015-1230-0.

    Article  CAS  Google Scholar 

  43. Wang J-F, Feng J-G, Han J, Zhang B-B, Mao W-M. The molecular mechanisms of tanshinone IIA on the apoptosis and arrest of human esophageal carcinoma cells. BioMed Res Int. 2014;2014:1–9. https://doi.org/10.1155/2014/582730.

    Article  Google Scholar 

  44. Dai Z-K, Qin J-K, Huang J-E, Luo Y, Xu Q, Zhao H-L. Tanshinone IIA activates calcium-dependent apoptosis signaling pathway in human hepatoma cells. J Nat Med 2012;66:192–201. https://doi.org/10.1007/s11418-011-0576-0.

    Article  CAS  PubMed  Google Scholar 

  45. Chiu SC, Huang SY, Chen SP, Su CC, Chiu TL, Pang CY. Tanshinone IIA inhibits human prostate cancer cells growth by induction of endoplasmic reticulum stress in vitro and in vivo. Prostate Cancer Prostatic Dis 2013;16:315–22. https://doi.org/10.1038/pcan.2013.38.

    Article  CAS  PubMed  Google Scholar 

  46. Huang T, Yang X, Ji J, Wang Q, Wang H, Dong Z. Inhibitory effects of tanshinone IIA from Salvia miltiorrhiza Bge on human bladder cancer BIU-87 cells and xenograft in nude mice. Food Sci Technol 2020;40:209–14. https://doi.org/10.1590/fst.38818.

    Article  Google Scholar 

  47. Nie Z-Y, Zhao M-H, Cheng B-Q, Pan R-F, Wang T-R, Qin Y, et al. Tanshinone IIA regulates human AML cell proliferation, cell cycle, and apoptosis through miR-497-5p/AKT3 axis. Cancer Cell Int 2020;20:379. https://doi.org/10.1186/s12935-020-01468-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chiu T-L, Su C-C. Tanshinone IIA induces apoptosis in human lung cancer A549 cells through the induction of reactive oxygen species and decreasing the mitochondrial membrane potential. Int J Mol Med 2010;25:231–6.

    CAS  PubMed  Google Scholar 

  49. Huang S-T, Huang C-C, Huang W-L, Lin T-K, Liao P-L, Wang P-W, et al. Tanshinone IIA induces intrinsic apoptosis in osteosarcoma cells both in vivo and in vitro associated with mitochondrial dysfunction. Sci Rep 2017;7:40382. https://doi.org/10.1038/srep40382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu C, Li J, Wang L, Wu F, Huang L, Xu Y, et al. Analysis of tanshinone IIA induced cellular apoptosis in leukemia cells by genome-wide expression profiling. BMC Complement Altern Med 2012;12:5. https://doi.org/10.1186/1472-6882-12-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cheng C-Y, Su C-C. Tanshinone IIA may inhibit the growth of small cell lung cancer H146 cells by up-regulating the Bax/Bcl-2 ratio and decreasing mitochondrial membrane potential. Mol Med Rep 2010;3:645–50. https://doi.org/10.3892/mmr_00000310.

    Article  CAS  PubMed  Google Scholar 

  52. Chiu T-L, Su CC. Tanshinone IIA increases protein expression levels of PERK, ATF6, IRE1α, CHOP, caspase-3 and caspase-12 in pancreatic cancer BxPC-3 cell-derived xenograft tumors. Mol Med Rep 2017;15:3259–63. https://doi.org/10.3892/mmr.2017.6359.

    Article  CAS  PubMed  Google Scholar 

  53. Su C-C, Chen G-W, Kang J-C, Chan M-H. Growth inhibition and apoptosis induction by tanshinone IIA in human colon adenocarcinoma cells. Planta Med 2008;74:1357–62. https://doi.org/10.1055/s-2008-1081299.

    Article  CAS  Google Scholar 

  54. Chiu S-C, Huang S-Y, Chang S-F, Chen S-P, Chen C-C, Lin T-H, et al. Potential Therapeutic Roles of Tanshinone IIA in Human Bladder Cancer Cells. Int J Mol Sci 2014;15:15622–37. https://doi.org/10.3390/ijms150915622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. He L, Gu K. Tanshinone IIA regulates colorectal cancer apoptosis via attenuation of Parkin‑mediated mitophagy by suppressing AMPK/Skp2 pathways. Mol Med Rep 2018; 18(2):1692-1703. https://doi.org/10.3892/mmr.2018.9087.

    Article  CAS  PubMed  Google Scholar 

  56. Liu Z, Zhu W, Kong X, Chen X, Sun X, Zhang W, et al. Tanshinone IIA inhibits glucose metabolism leading to apoptosis in cervical cancer. Oncol Rep. 2019;42(5):1893–1903. https://doi.org/10.3892/or.2019.7294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jieensinue S, Zhu H, Li G, Dong K, Liang M, Li Y. Tanshinone IIA reduces SW837 colorectal cancer cell viability via the promotion of mitochondrial fission by activating JNK-Mff signaling pathways. BMC Cell Biol. 2018;19:21. https://doi.org/10.1186/s12860-018-0174-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Su C-C, Lin Y-H. Tanshinone IIA inhibits human breast cancer cells through increased Bax to Bcl-xL ratios. Int J Mol Med. 2008;22(3):357–61. https://doi.org/10.3892/ijmm_00000030.

    Article  CAS  PubMed  Google Scholar 

  59. Jung JH, Kwon T-R, Jeong S-J, Kim E-O, Sohn EJ, Yun M, et al. Apoptosis induced by tanshinone IIA and cryptotanshinone is mediated by distinct JAK/STAT3/5 and SHP1/2 signaling in chronic myeloid leukemia K562 cells. Evid Based Complement Alternat Med. 2013;2013:1–10. https://doi.org/10.1155/2013/805639.

    Article  Google Scholar 

  60. Lin C-Y, Chang T-W, Hsieh W-H, Hung M-C, Lin I-H, Lai S-C, et al. Simultaneous induction of apoptosis and necroptosis by Tanshinone IIA in human hepatocellular carcinoma HepG2 cells. Cell Death Discov. 2016;2:16065. https://doi.org/10.1038/cddiscovery.2016.65.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhang X, Zhou Y, Gu Y-E. Tanshinone IIA induces apoptosis of ovarian cancer cells in vitro and in vivo through attenuation of PI3K/AKT/JNK signaling pathways. Oncol Lett. 2019;17:1896–902. https://doi.org/10.3892/ol.2018.9744.

    Article  CAS  PubMed  Google Scholar 

  62. Qiu Y, Li C, Wang Q, Zeng X, Ji P. Tanshinone IIA induces cell death via Beclin-1-dependent autophagy in oral squamous cell carcinoma SCC-9 cell line. Cancer Med. 2018;7:397–407. https://doi.org/10.1002/cam4.1281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yun S-M, Jeong S-J, Kim J-H, Jung JH, Lee H-J, Sohn EJ, et al. Activation of c-Jun N-terminal kinase mediates tanshinone IIA-induced apoptosis in KBM-5 chronic myeloid leukemia cells. Biol Pharm Bull. 2013;36:208–14. https://doi.org/10.1248/bpb.b12-00537.

    Article  CAS  PubMed  Google Scholar 

  64. Li G, Shan C, Liu L, Zhou T, Zhou J, Hu X, et al. Tanshinone IIA inhibits HIF-1α and VEGF expression in breast cancer cells via mTOR/p70S6K/RPS6/4E-BP1 signaling pathway. PLOS ONE 2015;10:e0117440. https://doi.org/10.1371/journal.pone.0117440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sui H, Zhao J, Zhou L, Wen H, Deng W, Li C, et al. Tanshinone IIA inhibits β-catenin/VEGF-mediated angiogenesis by targeting TGF-β1 in normoxic and HIF-1α in hypoxic microenvironments in human colorectal cancer. Cancer Lett. 2017;403:86–97. https://doi.org/10.1016/j.canlet.2017.05.013.

    Article  CAS  PubMed  Google Scholar 

  66. Shan Y, Shen X, Xie Y, Chen J, Shi H, Yu Z, et al. Inhibitory effects of tanshinone II-A on invasion and metastasis of human colon carcinoma cells. Acta Pharmacol Sin. 2009;30:1537–42. https://doi.org/10.1038/aps.2009.139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yu J, Wang X, Li Y, Tang B. Tanshinone IIA suppresses gastric cancer cell proliferation and migration by downregulation of FOXM1. Oncol Rep. 2017;37:1394–400. https://doi.org/10.3892/or.2017.5408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cao Y, Wang S, Li X, Zhang Y, Qiao Y. The anticancer mechanism investigation of Tanshinone IIA by pharmacological clustering in protein network. BMC Syst Biol. 2018;12:90. https://doi.org/10.1186/s12918-018-0606-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Naz I, Merarchi M, Ramchandani S, Khan MR, Malik MN, Sarwar S, et al. An overview of the anti-cancer actions of Tanshinones, derived from Salvia miltiorrhiza (Danshen). Explor Target Anti-Tumor Ther. 2020;1. https://doi.org/10.37349/etat.2020.00010.

  70. Jingwen B, Yaochen L, Guojun Z. Cell cycle regulation and anticancer drug discovery. Cancer Biol Med. 2017;14:348. https://doi.org/10.20892/j.issn.2095-3941.2017.0033

    Article  CAS  Google Scholar 

  71. Liao X, Gao Y, Huang S, Chen Z, Sun L, Liu J, et al. Tanshinone IIA combined with cisplatin synergistically inhibits non‐small‐cell lung cancer in vitro and in vivo via down‐regulating the phosphatidylinositol 3‐kinase/Akt signalling pathway. Phytother Res. 2019;33:2298–309. https://doi.org/10.1002/ptr.6392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wei X, Zhou L, Hu L, Huang Y. Tanshinone IIA arrests cell cycle and induces apoptosis in 786-O human renal cell carcinoma cells. Oncol Lett. 2012;3:1144–8. https://doi.org/10.3892/ol.2012.626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Xie J, Liu J-H, Liu H, Liao X-Z, Chen Y, Lin M-G, et al. Tanshinone IIA combined with adriamycin inhibited malignant biological behaviors of NSCLC A549 cell line in a synergistic way. BMC Cancer 2016;16:899. https://doi.org/10.1186/s12885-016-2921-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pan T-L, Hung Y-C, Wang P-W, Chen S-T, Hsu T-K, Sintupisut N, et al. Functional proteomic and structural insights into molecular targets related to the growth inhibitory effect of tanshinone IIA on HeLa cells. Proteomics 2010;10:914–29. https://doi.org/10.1002/pmic.200900178.

    Article  CAS  PubMed  Google Scholar 

  75. Zhou L, Chan WK, Xu N, Xiao K, Luo H, Luo KQ, et al. Tanshinone IIA, an isolated compound from Salvia miltiorrhiza Bunge, induces apoptosis in HeLa cells through mitotic arrest. Life Sci. 2008;83:394–403. https://doi.org/10.1016/j.lfs.2008.07.011

    Article  CAS  PubMed  Google Scholar 

  76. Xu M, Cao F-L, Li N-Y, Liu Y-Q, Li Y-P, Lv C-L. Tanshinone IIA reverses the malignant phenotype of SGC7901 gastric cancer cells. Asian Pac J Cancer Prev. 2013;14:173–7. https://doi.org/10.7314/APJCP.2013.14.1.173.

    Article  PubMed  Google Scholar 

  77. Wang J, Wang X, Jiang S, Yuan S, Lin P, Zhang J, et al. Growth inhibition and induction of apoptosis and differentiation of tanshinone IIA in human glioma cells. J Neurooncol. 2007;82:11–21. https://doi.org/10.1007/s11060-006-9242-x.

    Article  CAS  PubMed  Google Scholar 

  78. Yan M-Y, Chien S-Y, Kuo S-J, Chen D-R, Su C-C. Tanshinone IIA inhibits BT-20 human breast cancer cell proliferation through increasing caspase 12, GADD153 and phospho-p38 protein expression. Int J Mol Med. 2012;29:855–63. https://doi.org/10.3892/ijmm.2012.908.

    Article  CAS  PubMed  Google Scholar 

  79. Ma Z-L, Zhang B-J, Wang D-T, Li X, Wei J-L, Zhao B-T, et al. Tanshinones suppress AURKA through up-regulation of miR-32 expression in non-small cell lung cancer. Oncotarget 2015;6:20111–20. https://doi.org/10.18632/oncotarget.3933.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zhang Y, Jiang P, Ye M, Kim S-H, Jiang C, Lü J. Tanshinones: sources, pharmacokinetics and anti-cancer activities. Int J Mol Sci. 2012;13:13621–66. https://doi.org/10.3390/ijms131013621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pencik J, Pham HTT, Schmoellerl J, Javaheri T, Schlederer M, Culig Z, et al. JAK-STAT signaling in cancer: from cytokines to non-coding genome. Cytokine 2016;87:26–36. https://doi.org/10.1016/j.cyto.2016.06.017.

    Article  CAS  Google Scholar 

  82. Zhang Y, Guo S, Fang J, Peng B, Zhang Y, Cao T. Tanshinone IIA inhibits cell proliferation and tumor growth by downregulating STAT3 in human gastric cancer. Exp Ther Med 2018. https://doi.org/10.3892/etm.2018.6562.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Brahmkhatri VP, Prasanna C, Atreya HS. Insulin-like growth factor system in cancer: novel targeted therapies. BioMed Res Int. 2015;2015:1–24. https://doi.org/10.1155/2015/538019.

    Article  CAS  Google Scholar 

  84. Fernández MC, Venara M, Nowicki S, Chemes HE, Barontini M, Pennisi PA. IGF-I regulates pheochromocytoma cell proliferation and survival in vitro and in vivo. Endocrinology 2012;153:3724–34. https://doi.org/10.1210/en.2012-1107.

    Article  CAS  Google Scholar 

  85. Lönn S, Inskip PD, Pollak MN, Weinstein SJ, Virtamo J, Albanes D. Glioma risk in relation to serum levels of insulin-like growth factors. Cancer Epidemiol Biomarkers Prev. 2007;16:844–6. https://doi.org/10.1158/1055-9965.EPI-06-1010.

    Article  CAS  Google Scholar 

  86. Wang H, Su X, Fang J, Xin X, Zhao X, Gaur U, et al. Tanshinone IIA attenuates insulin like growth factor 1-induced cell proliferation in PC12 cells through the PI3K/Akt and MEK/ERK pathways. Int J Mol Sci. 2018;19:2719. https://doi.org/10.3390/ijms19092719.

    Article  CAS  Google Scholar 

  87. Baig S, Seevasant I, Mohamad J, Mukheem A, Huri HZ, Kamarul T. Potential of apoptotic pathway-targeted cancer therapeutic research: Where do we stand? Cell Death Dis. 2016;7:e2058. https://doi.org/10.1038/cddis.2015.275.

    Article  Google Scholar 

  88. Zhang Y, Li S, He H, Han Q, Wang B, Zhu Y. Influence of Tanshinone IIA on apoptosis of human esophageal carcinoma Eca-109 cells and its molecular mechanism. Thorac Cancer 2017;8:296–303. https://doi.org/10.1111/1759-7714.12441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ahmad I, Hoque M, Alam SSM, Zughaibi TA, Tabrez S. Curcumin and plumbagin synergistically target the PI3K/Akt/mTOR pathway: a prospective role in cancer treatment. Int J Mol Sci. 2023;24:6651. https://doi.org/10.3390/ijms24076651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lee H-P, Liu Y-C, Chen P-C, Tai H-C, Li T-M, Fong Y-C, et al. Tanshinone IIA inhibits angiogenesis in human endothelial progenitor cells in vitro and in vivo. Oncotarget 2017;8:109217–27. https://doi.org/10.18632/oncotarget.22649.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Shimizu S, Yoshida T, Tsujioka M, Arakawa S. Autophagic cell death and cancer. Int J Mol Sci. 2014;15:3145–53. https://doi.org/10.3390/ijms15023145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen H, Liu RH. Potential mechanisms of action of dietary phytochemicals for cancer prevention by targeting cellular signaling transduction pathways. J Agric Food Chem. 2018;66:3260–76. https://doi.org/10.1021/acs.jafc.7b04975.

    Article  CAS  PubMed  Google Scholar 

  93. Jamil Z, Uddin A, Alam SSM, Samanta A, Altwaijry N, Rauf MA, et al. Analysis of the compositional features and codon usage pattern of genes involved in human autophagy. Cells 2022;11:3203. https://doi.org/10.3390/cells11203203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Usman RM, Razzaq F, Akbar A, Farooqui AA, Iftikhar A, Latif A, et al. Role and mechanism of autophagy‐regulating factors in tumorigenesis and drug resistance. Asia Pac J Clin Oncol. 2021;17:193–208. https://doi.org/10.1111/ajco.13449.

    Article  PubMed  Google Scholar 

  95. Jung CH, Ro S-H, Cao J, Otto NM, Kim D-H. mTOR regulation of autophagy. FEBS Lett. 2010;584:1287–95. https://doi.org/10.1016/j.febslet.2010.01.017.

    Article  CAS  Google Scholar 

  96. Iwamaru A, Kondo Y, Iwado E, Aoki H, Fujiwara K, Yokoyama T, et al. Silencing mammalian target of rapamycin signaling by small interfering RNA enhances rapamycin-induced autophagy in malignant glioma cells. Oncogene 2007;26:1840–51. https://doi.org/10.1038/sj.onc.1209992.

    Article  CAS  PubMed  Google Scholar 

  97. Sohn EJ, Park HT. Natural agents mediated autophagic signal networks in cancer. Cancer Cell Int. 2017;17:110. https://doi.org/10.1186/s12935-017-0486-7.

    Article  CAS  Google Scholar 

  98. Su C-C, Chien S-Y, Kuo S-J, Chen Y-L, Cheng C-Y, Chen D-R. Tanshinone IIA inhibits human breast cancer MDA-MB-231 cells by decreasing LC3-II, Erb-B2 and NF-κBp65. Mol Med Rep. 2012;5:1019–22. https://doi.org/10.3892/mmr.2012.756.

    Article  CAS  Google Scholar 

  99. Yun S-M, Jung JH, Jeong S-J, Sohn EJ, Kim B, Kim S-H. Tanshinone IIA induces autophagic cell death via activation of AMPK and ERK and inhibition of mTOR and p70 S6K in KBM-5 leukemia cells: Tanshinone IIA induces autophagic cell death in KBM-5 cells. Phytother Res. 2014;28:458–64. https://doi.org/10.1002/ptr.5015.

  100. Abuzenadah AM, Al-Sayes F, Mahafujul Alam SS, Hoque M, Karim S, Hussain IMR, et al. Elucidating antiangiogenic potential of Rauwolfia serpentina: VEGFR-2 targeting-based molecular docking study. Evid Based Complement Alternat Med. 2022;2022:1–10. https://doi.org/10.1155/2022/6224666.

    Article  Google Scholar 

  101. Zhang Y, Wei R, Zhu X, Cai L, Jin W, Hu H. Tanshinone IIA induces apoptosis and inhibits the proliferation, migration, and invasion of the osteosarcoma MG-63 cell line in vitro. Anticancer Drugs 2012;23:212–9. https://doi.org/10.1097/CAD.0b013e32834e5592.

    Article  CAS  PubMed  Google Scholar 

  102. Dong W, Zhang Y, Chen X, Jia Y. High-dose Tanshinone IIA suppresses migration and proliferation while promoting apoptosis of astrocytoma cells via notch-1 pathway. Neurochem Res. 2018;43:1855–61. https://doi.org/10.1007/s11064-018-2601-0.

    Article  CAS  PubMed  Google Scholar 

  103. Su C-C. Abstract 3624: Tanshinone IIA could decrease programmed death ligand 1 expression in human breast cancer BT-20 cells. Cancer Res. 2018; 78:3624-3624. https://doi.org/10.1158/1538-7445.AM2018-3624.

    Article  Google Scholar 

  104. Ding W-X, Yin X-M. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem. 2012;393:547–64. https://doi.org/10.1515/hsz-2012-0119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Jin X, Kim S-H, Jeon H-M, Beck S, Sohn Y-W, Yin J, et al. Interferon regulatory factor 7 regulates glioma stem cells via interleukin-6 and Notch signalling. Brain 2012;135:1055–69. https://doi.org/10.1093/brain/aws028.

    Article  PubMed  Google Scholar 

  106. Yang L, Guo H, Dong L, Wang L, Liu C, Wang X. Tanshinone IIA inhibits the growth, attenuates the stemness and induces the apoptosis of human glioma stem cells. Oncol Rep. 2014;32:1303–11. https://doi.org/10.3892/or.2014.3293.

    Article  CAS  Google Scholar 

  107. Lin C, Wang L, Wang H, Yang L, Guo H, Wang X. Tanshinone IIA inhibits breast cancer stem cells growth in vitro and in vivo through attenuation of IL-6/STAT3/NF-kB signaling pathways: Tanshinone IIA Inhibits Breast CSCs Growth. J Cell Biochem 2013;114:2061–70. https://doi.org/10.1002/jcb.24553.

    Article  CAS  PubMed  Google Scholar 

  108. Li P, Li S-P, Yang F-Q, Wang Y-T. Simultaneous determination of four tanshinones insalvia miltiorrhiza by pressurized liquid extraction and capillary electrochromatography. J Sep Sci. 2007;30:900–5. https://doi.org/10.1002/jssc.200600368.

    Article  CAS  PubMed  Google Scholar 

  109. Ong ES, Len SM. Evaluation of pressurized liquid extraction and pressurized hot water extraction for tanshinone I and IIA in Salvia miltiorrhiza using LC and LC-ESI-MS. J Chromatogr Sci. 2004;42:211–6. https://doi.org/10.1093/chromsci/42.4.211.

    Article  CAS  PubMed  Google Scholar 

  110. Pan X, Niu G, Liu H. Microwave-assisted extraction of tanshinones from Salvia miltiorrhiza bunge with analysis by high-performance liquid chromatography. J Chromatogr A 2001;922:371–5. https://doi.org/10.1016/S0021-9673(01)00949-9.

    Article  CAS  PubMed  Google Scholar 

  111. Wang L, Song Y, Cheng Y, Liu X. Orthogonal array design for the optimization of supercritical fluid extraction of tanshinones from Danshen. J Sep Sci. 2008;31:321–8. https://doi.org/10.1002/jssc.200700386.

    Article  CAS  PubMed  Google Scholar 

  112. Ekins S, Mestres J, Testa B. In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling: In silico pharmacology for drug discovery. Br J Pharmacol. 2007;152:9–20. https://doi.org/10.1038/sj.bjp.0707305.

    Article  CAS  Google Scholar 

  113. Li M, Liu H, Zhao Q, Han S, Zhou L, Liu W, et al. Targeting Aurora B kinase with Tanshinone IIA suppresses tumor growth and overcomes radioresistance. Cell Death Dis. 2021;12:152. https://doi.org/10.1038/s41419-021-03434-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Xu X, Zhang Z, Liu L, Che C, Li W. Exploring the antiovarian cancer mechanisms of Salvia miltiorrhiza bunge by network pharmacological analysis and molecular docking. Comput Math. Methods Med. 2022;2022:1–12. https://doi.org/10.1155/2022/7895246.

    Article  Google Scholar 

  115. Chen S-J. A potential target of Tanshinone IIA for acute promyelocytic leukemia revealed by inverse docking and drug repurposing. Asian Pac J Cancer Prev. 2014;15:4301–5. https://doi.org/10.7314/APJCP.2014.15.10.4301.

    Article  PubMed  Google Scholar 

  116. Kim E-O, Kang SE, Im CR, Lee J-H, Ahn KS, Yang WM, et al. Tanshinone IIA induces TRAIL sensitization of human lung cancer cells through selective ER stress induction. Int J Oncol. 2016;48:2205–12. https://doi.org/10.3892/ijo.2016.3441.

    Article  CAS  PubMed  Google Scholar 

  117. Wang R, Luo Z, Zhang H, Wang T. Tanshinone IIA reverses gefitinib-resistance in human non-small-cell lung cancer via regulation of VEGFR/Akt pathway. OncoTargets Ther. 2019;12:9355–65. https://doi.org/10.2147/OTT.S221228.

    Article  Google Scholar 

  118. Bi Z, Wang Y, Zhang W. A comprehensive review of tanshinone IIA and its derivatives in fibrosis treatment. Biomed Pharmacother. 2021;137:111404. https://doi.org/10.1016/j.biopha.2021.111404.

    Article  CAS  PubMed  Google Scholar 

  119. Gupta J, Safdari HA, Hoque M. Nanoparticle mediated cancer immunotherapy. Semin Cancer Biol. 2021;69:307–24. https://doi.org/10.1016/j.semcancer.2020.03.015.

  120. Hoque M, Samanta A, Alam SSM, Zughaibi TA, Kamal MA, Tabrez S. Nanomedicine-based immunotherapy for Alzheimer’s disease. Neurosci Biobehav Rev. 2023;144:104973. https://doi.org/10.1016/j.neubiorev.2022.104973.

Download references

Acknowledgements

The authors gratefully acknowledge the Department of Biological Sciences at Aliah University in Kolkata, India, for providing essential research facilities. SSMA sincerely acknowledges the Council of Scientific and Industrial Research (CSIR), Government of India for financial help in the form of a Junior Research Fellowship (JRF).

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

SSMA, AS, and FU wrote portions of the initial draft of the paper and modified the draft. SSMA, AS, and MH contributed to the figures. SA and MH edited the draft of the paper and made final changes to the final version before submission. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Mehboob Hoque.

Ethics declarations

Conflict of interest

The authors declare that there exists no competing interest.

Ethical approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, S.S.M., Samanta, A., Uddin, F. et al. Tanshinone IIA targeting cell signaling pathways: a plausible paradigm for cancer therapy. Pharmacol. Rep 75, 907–922 (2023). https://doi.org/10.1007/s43440-023-00507-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-023-00507-y

Keywords

Navigation