Skip to main content
Log in

Cannabidiol attenuates generalized tonic–clonic and suppresses limbic seizures in the genetically epilepsy-prone rats (GEPR-3) strain

Pharmacological Reports Aims and scope Submit manuscript

Cite this article

Abstract

Background

Cannabidiol (CBD) has been of rapidly growing interest in the epilepsy research field due to its antiseizure properties in preclinical models and patients with pharmacoresistant epilepsy. However, little is known about CBD effects in genetic models of epilepsies. Here we assessed CBD dose–response effects in the Genetically Epilepsy Prone Rats (GEPR-3) strain, which exhibits two types of epileptic seizures, brainstem-dependent generalized tonic–clonic seizures and limbic seizures.

Methods

GEPR-3 s were submitted to the audiogenic seizure (AGS) protocol. Acute AGS are brainstem-dependent generalized tonic–clonic, while repeated AGS (or audiogenic kindling, AK), an epileptogenic process, leads to increased AGS severity and limbic seizure expression. Therefore, two different dose–response studies were performed, one for generalized tonic–clonic seizures and the other for limbic seizures. CBD time-course effects were assessed 2, 4, and 6 h after drug injection. GEPR-3 s were submitted to within-subject tests, receiving intraperitoneal injections of CBD (1, 10, 50, 100 mg/kg/ml) and vehicle.

Results

CBD dose-dependently attenuated generalized tonic–clonic seizures in GEPR-3 s; CBD 50 and 100 mg/kg reduced brainstem-dependent seizure severity and duration. In fully kindled GEPR-3 s, CBD 10 mg/kg reduced limbic seizure severity and suppressed limbic seizure expression in 75% of animals.

Conclusions

CBD was effective against brainstem and limbic seizures in the GEPR-3 s. These results support the use of CBD treatment for epilepsies by adding new information about the pharmacological efficacy of CBD in suppressing inherited seizure susceptibility in the GEPR-3 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding authors upon reasonable request.

Abbreviations

AK:

Audiogenic kindling

AGS:

Audiogenic seizures

CBD:

Cannabidiol

CB1R:

Cannabinoid receptors type 1

GEPR-3:

Genetically Epilepsy Prone Rats

KM:

Krushinsky–Molodkina

WAR:

Wistar Audiogenic Rat

References

  1. Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH, Elger CE, et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia. 2014;55:475–82. https://doi.org/10.1111/epi.12550.

    Article  Google Scholar 

  2. Kanner AM. Psychiatric comorbidities in new onset epilepsy: should they be always investigated? Seizure. 2017;49:79–82. https://doi.org/10.1016/j.seizure.2017.04.007.

    Article  Google Scholar 

  3. Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G, et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc task force of the ILAE commission on therapeutic strategies: definition of drug resistant epilepsy. Epilepsia. 2010;51:1069–77. https://doi.org/10.1111/j.1528-1167.2009.02397.x.

    Article  CAS  Google Scholar 

  4. Löscher W. Animal models of seizures and epilepsy: past, present, and future role for the discovery of antiseizure drugs. Neurochem Res. 2017;42:1873–88.

    Article  CAS  Google Scholar 

  5. Devinsky O, Cross JH, Laux L, Marsh E, Miller I, Nabbout R, et al. Trial of cannabidiol for drug-resistant seizures in the Dravet Syndrome. N Engl J Med. 2017;376:2011–20. https://doi.org/10.1056/NEJMoa1611618.

    Article  CAS  Google Scholar 

  6. Devinsky O, Cilio MR, Cross H, Fernandez-Ruiz J, French J, Hill C, et al. Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia. 2014;55:791–802. https://doi.org/10.1111/epi.12631.

    Article  CAS  Google Scholar 

  7. Gofshteyn JS, Wilfong A, Devinsky O, Bluvstein J, Charuta J, Ciliberto MA, et al. Cannabidiol as a potential treatment for febrile infection-related epilepsy syndrome (FIRES) in the acute and chronic phases. J Child Neurol. 2017;32:35–40. https://doi.org/10.1177/0883073816669450.

    Article  Google Scholar 

  8. Thiele EA, Marsh ED, French JA, Mazurkiewicz-Beldzinska M, Benbadis SR, Joshi C, et al. Cannabidiol in patients with seizures associated with Lennox–Gastaut syndrome (GWPCARE4): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2018;391:1085–96. https://doi.org/10.1016/S0140-6736(18)30136-3.

    Article  CAS  Google Scholar 

  9. Devinsky O, Verducci C, Thiele EA, Laux LC, Patel AD, Filloux F, et al. Open-label use of highly purified CBD (Epidiolex®) in patients with CDKL5 deficiency disorder and Aicardi, Dup15q, and Doose syndromes. Epilepsy Behav. 2018;86:131–7. https://doi.org/10.1016/j.yebeh.2018.05.013.

    Article  Google Scholar 

  10. Thompson MD, Martin RC, Grayson LP, Ampah SB, Cutter G, Szaflarski JP, et al. Cognitive function and adaptive skills after a one-year trial of cannabidiol (CBD) in a pediatric sample with treatment-resistant epilepsy. Epilepsy Behav. 2020;111: 107299. https://doi.org/10.1016/j.yebeh.2020.107299.

    Article  Google Scholar 

  11. Fallah MS, Dlugosz L, Scott BW, Thompson MD, Burnham WM. Antiseizure effects of the cannabinoids in the amygdala-kindling model. Epilepsia. 2021;62:2274–82. https://doi.org/10.1111/epi.16973.

    Article  CAS  Google Scholar 

  12. Lazarini-Lopes W, Do Val-da Silva RA, da Silva-Júnior RMP, Leite JP, Garcia-Cairasco N. The anticonvulsant effects of cannabidiol in experimental models of epileptic seizures: from behavior and mechanisms to clinical insights. Neurosci Biobehav Rev. 2020;111:166–82. https://doi.org/10.1016/j.neubiorev.2020.01.014.

    Article  CAS  Google Scholar 

  13. Klein BD, Jacobson CA, Metcalf CS, Smith MD, Wilcox KS, Hampson AJ, et al. Evaluation of cannabidiol in animal seizure models by the epilepsy therapy screening program (ETSP). Neurochem Res. 2017;42:1939–48. https://doi.org/10.1007/s11064-017-2287-8.

    Article  CAS  Google Scholar 

  14. Jobe PC, Dailey JW. Genetically epilepsy-prone rats (GEPRs) in drug research. CNS Drug Rev. 2000;6:241–60. https://doi.org/10.1111/j.1527-3458.2000.tb00150.x.

    Article  Google Scholar 

  15. Soper C, Wicker E, Kulick CV, N’Gouemo P, Forcelli PA. Optogenetic activation of superior colliculus neurons suppresses seizures originating in diverse brain networks. Neurobiol Dis. 2016;87:102–15. https://doi.org/10.1016/j.nbd.2015.12.012.

    Article  Google Scholar 

  16. Mishra PK, Dailey JW, Reigel CE, Jobe PC. Audiogenic convulsions in moderate seizure genetically epilepsy-prone rats (GEPR-3s). Epilepsy Res. 1989;3:191–8. https://doi.org/10.1016/0920-1211(89)90023-5.

    Article  CAS  Google Scholar 

  17. Faingold CL, Raisinghani M, N’Gouemo P. Chapter 26 - neuronal networks in epilepsy: comparative audiogenic seizure networks. In: Faingold CL, Blumenfeld H, editors. Neuronal networks in brain function, cns disorders, and therapeutics. San Diego: Academic Press; 2014. p. 349–73. https://doi.org/10.1016/B978-0-12-415804-7.00026-5.

  18. Thomas M, Simms M, N’Gouemo P. Activation of calcium-activated chloride channels suppresses inherited seizure susceptibility in genetically epilepsy-prone rats. Biomedicines. 2022;10:449. https://doi.org/10.3390/biomedicines10020449.

    Article  CAS  Google Scholar 

  19. Racine RJ. Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalogr Clin Neurophysiol. 1972;32:281–94. https://doi.org/10.1016/0013-4694(72)90177-0.

    Article  CAS  Google Scholar 

  20. Naritoku DK, Mecozzi LB, Aiello MT, Faingold CL. Repetition of audiogenic seizures in genetically epilepsy-prone rats induces cortical epileptiform activity and additional seizure behaviors. Exp Neurol. 1992;115:317–24. https://doi.org/10.1016/0014-4886(92)90197-X.

    Article  CAS  Google Scholar 

  21. Raisinghani M, Faingold CL. Identification of the requisite brain sites in the neuronal network subserving generalized clonic audiogenic seizures. Brain Res. 2003;967:113–22. https://doi.org/10.1016/S0006-8993(02)04232-4.

    Article  CAS  Google Scholar 

  22. Cabral-Pereira G, Sánchez-Benito D, Díaz-Rodríguez SM, Gonçalves J, Sancho C, Castellano O, et al. Behavioral and molecular effects induced by cannabidiol and valproate administration in the GASH/Sal model of acute audiogenic seizures. Front Behav Neurosci. 2021. https://doi.org/10.3389/fnbeh.2020.612624.

    Article  Google Scholar 

  23. Lazarini-Lopes W, Do Val-da Silva RA, da Silva-Júnior RMP, Silva-Cardoso GK, Leite-Panissi CRA, Leite JP, et al. Chronic cannabidiol (CBD) administration induces anticonvulsant and antiepileptogenic effects in a genetic model of epilepsy. Epilepsy Behav. 2021;119:107962. https://doi.org/10.1016/j.yebeh.2021.107962.

    Article  Google Scholar 

  24. Deiana S, Watanabe A, Yamasaki Y, Amada N, Arthur M, Fleming S, et al. Plasma and brain pharmacokinetic profile of cannabidiol (CBD), cannabidivarine (CBDV), Δ9-tetrahydrocannabivarin (THCV) and cannabigerol (CBG) in rats and mice following oral and intraperitoneal administration and CBD action on obsessive–compulsive behaviour. Psychopharmacology. 2012;219:859–73. https://doi.org/10.1007/s00213-011-2415-0.

    Article  CAS  Google Scholar 

  25. Do Val-da Silva RA, Peixoto-Santos JE, Kandratavicius L, De Ross JB, Esteves I, De Martinis BS, et al. Protective effects of cannabidiol against seizures and neuronal death in a rat model of mesial temporal lobe epilepsy. Front Pharmacol. 2017. https://doi.org/10.3389/fphar.2017.00131.

    Article  Google Scholar 

  26. Wicker E, Beck VC, Kulick-Soper C, Kulick-Soper CV, Hyder SK, Campos-Rodriguez C, et al. Descending projections from the substantia nigra pars reticulata differentially control seizures. Proc Natl Acad Sci USA. 2019;116:27084–94. https://doi.org/10.1073/pnas.1908176117.

    Article  CAS  Google Scholar 

  27. Kurtz BS, Lehman J, Garlick P, Amberg J, Mishra PK, Dailey JW, et al. Penetrance and expressivity of genes involved in the development of epilepsy in the genetically epilepsy-prone rat (GEPR). J Neurogenet. 2001;15:233–44. https://doi.org/10.3109/01677060109167379.

    Article  CAS  Google Scholar 

  28. Mishra PK, Dailey JW, Reigel CE, Tomsic ML, Jobe PC. Sex-specific distinctions in audiogenic convulsions exhibited by severe seizure genetically epilepsy-prone rats (GEPR-9S) 1. Epilepsy Res. 1988;2:309–16. https://doi.org/10.1016/0920-1211(88)90039-3.

    Article  CAS  Google Scholar 

  29. Jobe PC, Picchioni AL, Chin L. Role of brain norepinephrine in audiogenic seizure in the rat. J Pharmacol Exp Ther. 1973;184:1–10.

    CAS  Google Scholar 

  30. Patel DC, Wallis G, Fujinami RS, Wilcox KS, Smith MD. Cannabidiol reduces seizures following CNS infection with Theiler’s murine encephalomyelitis virus. Epilepsia Open. 2019;4:431–42. https://doi.org/10.1002/epi4.12351.

    Article  Google Scholar 

  31. Dutra Moraes MF, Galvis-Alonso OY, Garcia-Cairasco N. Audiogenic kindling in the Wistar rat: a potential model for recruitment of limbic structures. Epilepsy Res. 2000;39:251–9. https://doi.org/10.1016/S0920-1211(00)00107-8.

    Article  CAS  Google Scholar 

  32. Doretto MC, Fonseca CG, Lôbo RB, Terra VC, Oliveira JAC, Garcia-Cairasco N. Quantitative study of the response to genetic selection of the Wistar audiogenic rat strain (WAR). Behav Genet. 2003;33:33–42.

    Article  CAS  Google Scholar 

  33. Bauer J. Interactions between hormones and epilepsy in female patients. Epilepsia. 2001;42:20–2. https://doi.org/10.1046/j.1528-1157.2001.042suppl.3020.x.

    Article  Google Scholar 

  34. Velíšková J, DeSantis KA. Sex and hormonal influences on seizures and epilepsy. Horm Behav. 2013;63:267–77. https://doi.org/10.1016/j.yhbeh.2012.03.018.

    Article  CAS  Google Scholar 

  35. Gobira PH, Vilela LR, Gonçalves BDC, Santos RPM, de Oliveira AC, Vieira LB, et al. Cannabidiol, a Cannabis sativa constituent, inhibits cocaine-induced seizures in mice: possible role of the mTOR pathway and reduction in glutamate release. Neurotoxicology. 2015;50:116–21. https://doi.org/10.1016/j.neuro.2015.08.007.

    Article  CAS  Google Scholar 

  36. Jones NA, Glyn SE, Akiyama S, Hill TDM, Hill AJ, Weston SE, et al. Cannabidiol exerts anti-convulsant effects in animal models of temporal lobe and partial seizures. Seizure. 2012;21:344–52. https://doi.org/10.1016/j.seizure.2012.03.001.

    Article  Google Scholar 

  37. Vilela LR, Lima IV, Kunsch ÉB, Pinto HPP, de Miranda AS, Vieira ÉLM, et al. Anticonvulsant effect of cannabidiol in the pentylenetetrazole model: pharmacological mechanisms, electroencephalographic profile, and brain cytokine levels. Epilepsy Behav. 2017;75:29–35. https://doi.org/10.1016/j.yebeh.2017.07.014.

    Article  Google Scholar 

  38. Hill AJ, Mercier MS, Hill TDM, Glyn SE, Jones NA, Yamasaki Y, et al. Cannabidivarin is anticonvulsant in mouse and rat. Br J Pharmacol. 2012;167:1629–42. https://doi.org/10.1111/j.1476-5381.2012.02207.x.

    Article  CAS  Google Scholar 

  39. Hill TDM, Cascio M-G, Romano B, Duncan M, Pertwee RG, Williams CM, et al. Cannabidivarin-rich cannabis extracts are anticonvulsant in mouse and rat via a CB1 receptor-independent mechanism. Br J Pharmacol. 2013;170:679–92. https://doi.org/10.1111/bph.12321.

    Article  CAS  Google Scholar 

  40. Roebuck AJ, Greba Q, Onofrychuck T, McElroy DL, Sandini T, Zagzoog A, et al. Dissociable changes in spike and wave discharges following exposure to injected cannabinoids and smoked cannabis in genetic absence epilepsy rats from Strasbourg. Eur J Neurosci. 2020. https://doi.org/10.1111/ejn.15096.

  41. Kaplan JS, Stella N, Catterall WA, Westenbroek RE. Cannabidiol attenuates seizures and social deficits in a mouse model of Dravet syndrome. PNAS. 2017;114:11229–34. https://doi.org/10.1073/pnas.1711351114.

    Article  CAS  Google Scholar 

  42. Patra PH, Serafeimidou-Pouliou E, Bazelot M, Whalley BJ, Williams CM, McNeish AJ. Cannabidiol improves survival and behavioural co-morbidities of Dravet syndrome in mice. Br J Pharmacol. 2020;177:2779–92. https://doi.org/10.1111/bph.15003.

    Article  CAS  Google Scholar 

  43. Khan AA, Shekh-Ahmad T, Khalil A, Walker MC, Ali AB. Cannabidiol exerts antiepileptic effects by restoring hippocampal interneuron functions in a temporal lobe epilepsy model. Br J Pharmacol. 2018;175:2097–115. https://doi.org/10.1111/bph.14202.

    Article  CAS  Google Scholar 

  44. Bisogno T, Hanuš L, De Petrocellis L, Tchilibon S, Ponde DE, Brandi I, et al. Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide: cannabidiol, VR1 receptors and anandamide inactivation. Br J Pharmacol. 2001;134:845–52. https://doi.org/10.1038/sj.bjp.0704327.

    Article  CAS  Google Scholar 

  45. Britch SC, Babalonis S, Walsh SL. Cannabidiol: pharmacology and therapeutic targets. Psychopharmacology. 2021;238:9–28. https://doi.org/10.1007/s00213-020-05712-8.

    Article  CAS  Google Scholar 

  46. Iannotti FA, Hill CL, Leo A, Alhusaini A, Soubrane C, Mazzarella E, et al. Nonpsychotropic plant cannabinoids, cannabidivarin (CBDV) and cannabidiol (CBD), activate and desensitize transient receptor potential vanilloid 1 (TRPV1) channels in vitro: potential for the treatment of neuronal hyperexcitability. ACS Chem Neurosci. 2014;5:1131–41. https://doi.org/10.1021/cn5000524.

    Article  CAS  Google Scholar 

  47. Lutz B. On-demand activation of the endocannabinoid system in the control of neuronal excitability and epileptiform seizures. Biochem Pharmacol. 2004;68:1691–8. https://doi.org/10.1016/j.bcp.2004.07.007.

    Article  CAS  Google Scholar 

  48. Lazarini-Lopes W, Silva-Cardoso GK. Neuroplastic alterations in cannabinoid receptors type 1 (CB1) in animal models of epileptic seizures. Neurosci Biobehav Rev. 2022;137: 104675. https://doi.org/10.1016/j.neubiorev.2022.104675.

    Article  CAS  Google Scholar 

  49. Fuerte-Hortigón A, Gonçalves J, Masa R, Zeballos L, Gómez-Nieto R, López García DE. Distribution of cannabinoid CB1 receptors in the brain in the GASH/Sal model of epilepsy. Front Behav Neurosci. 2021. https://doi.org/10.3389/fnbeh.2021.613798.

    Article  Google Scholar 

  50. Lazarini-Lopes W, Do Val-da Silva RA, da Silva-Júnior RMP, Cunha AOS, Garcia-Cairasco N. Cannabinoids in audiogenic seizures: from neuronal networks to future perspectives for epilepsy treatment. Front Behav Neurosci. 2021. https://doi.org/10.3389/fnbeh.2021.611902.

    Article  Google Scholar 

  51. Lazarini-Lopes W, da Silva-Júnior RMP, Servilha-Menezes G, Do Val-da Silva RA, Garcia-Cairasco N. Cannabinoid receptor type 1 (CB1R) expression in limbic brain structures after acute and chronic seizures in a genetic model of epilepsy. Front Behav Neurosci. 2020;14:602258. https://doi.org/10.3389/fnbeh.2020.602258.

    Article  CAS  Google Scholar 

  52. Santos VR, Hammack R, Wicker E, N’Gouemo P, Forcelli PA. Divergent effects of systemic and intracollicular cb receptor activation against forebrain and hindbrain-evoked seizures in rats. Front Behav Neurosci. 2020;14: 595315. https://doi.org/10.3389/fnbeh.2020.595315.

    Article  CAS  Google Scholar 

  53. Vinogradova LV, van Rijn CM. Long-term disease-modifying effect of the endocannabinoid agonist WIN55,212–2 in a rat model of audiogenic epilepsy. Pharmacol Rep. 2015;67:501–3. https://doi.org/10.1016/j.pharep.2014.12.002.

    Article  CAS  Google Scholar 

  54. Vinogradova LV, Shatskova AB, van Rijn CM. Pro-epileptic effects of the cannabinoid receptor antagonist SR141716 in a model of audiogenic epilepsy. Epilepsy Res. 2011;96:250–6. https://doi.org/10.1016/j.eplepsyres.2011.06.007.

    Article  CAS  Google Scholar 

  55. Lazarini-Lopes W, Silva-Cardoso GK, Leite-Panissi CRA, Garcia-Cairasco N. Increased TRPV1 channels and FosB protein expression are associated with chronic epileptic seizures and anxiogenic-like behaviors in a preclinical model of temporal lobe epilepsy. Biomedicines. 2022;10:416. https://doi.org/10.3390/biomedicines10020416.

    Article  CAS  Google Scholar 

  56. Garcia-Cairasco N, Oliveira JAC, Wakamatsu H, Bueno STB, Guimarães FS. Reduced exploratory activity of audiogenic seizures suceptible Wistar rats. Physiol Behav. 1998;64:671–4. https://doi.org/10.1016/S0031-9384(98)00129-2.

    Article  CAS  Google Scholar 

  57. Aguilar BL, Malkova L, N’Gouemo P, Forcelli PA. Genetically epilepsy-prone rats display anxiety-like behaviors and neuropsychiatric comorbidities of epilepsy. Front Neurol. 2018;9:476. https://doi.org/10.3389/fneur.2018.00476.

    Article  Google Scholar 

  58. Sarkisova KY, Fedotova IB, Surina NM, Nikolaev GM, Perepelkina OV, Kostina ZA, et al. Genetic background contributes to the co-morbidity of anxiety and depression with audiogenic seizure propensity and responses to fluoxetine treatment. Epilepsy Behav. 2017;68:95–102. https://doi.org/10.1016/j.yebeh.2016.12.025.

    Article  Google Scholar 

Download references

Funding

WLL holds Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES Brazil—Finance code 001) and CAPES-Print (Process No 88887.370299/2019–00) grants. The research was supported by R01NS097762 to PAF and R01 AA027660 to PN.

Author information

Authors and Affiliations

Authors

Contributions

WLL, PAF, PN, and NGC designed the study. WLL, CCR, and PN performed experiments. WLL, CCR, PN, and PAF analyzed the data. WLL, PN, CCR, NGC, and PAF wrote the paper.

Corresponding authors

Correspondence to Prosper N’Gouemo or Patrick A. Forcelli.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarini-Lopes, W., Campos-Rodriguez, C., Garcia-Cairasco, N. et al. Cannabidiol attenuates generalized tonic–clonic and suppresses limbic seizures in the genetically epilepsy-prone rats (GEPR-3) strain. Pharmacol. Rep 75, 166–176 (2023). https://doi.org/10.1007/s43440-022-00416-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-022-00416-6

Keywords

Navigation