Skip to main content
Log in

Escitalopram alters local expression of noncanonical stress-related neuropeptides in the rat brain via NPS receptor signaling

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Neuropeptide S (NPS) is a multifunctional regulatory factor that exhibits a potent anxiolytic activity in animal models. However, there are no reports dealing with the potential molecular relationships between the anxiolytic activity of selective serotonin reuptake inhibitors (SSRIs) and NPS signaling, especially in the context of novel stress-related neuropeptides action. The present work therefore focused on gene expression of novel stress neuropeptides in the rat brain after acute treatment with escitalopram and in combination with neuropeptide S receptor (NPSR) blockade.

Methods

Studies were carried out on adult, male Sprague–Dawley rats that were divided into five groups: animals injected with saline (control) and experimental rats treated with escitalopram (at single dose 10 mg/kg daily), escitalopram and SHA-68, a selective NPSR antagonist (at a single dose of 40 mg/kg), SHA-68 alone and corresponding vehicle (solvent SHA-68) control. To measure anxiety-like behavior and locomotor activity the open field test was performed. All individuals were killed under anaesthesia and the whole brain was excised. Total mRNA was isolated from homogenized samples of the amygdala, hippocampus, hypothalamus, thalamus, cerebellum, and brainstem. Real-time PCR was used for estimation of related NPS, NPSR, neuromedin U (NMU), NMU receptor 2 (NMUR2) and nesfatin-1 precursor nucleobindin-2 (NUCB2) gene expression.

Results

Acute escitalopram administration affects the local expression of the examined neuropeptides mRNA in a varied manner depending on brain location. An increase in NPSR and NUCB2 mRNA expression in the hypothalamus and brainstem was abolished by SHA-68 coadministration, while NMU mRNA expression was upregulated after NPSR blockade in the hippocampus and cerebellum.

Conclusions

The pharmacological effects of escitalopram may be connected with local NPSR-related alterations in NPS/NMU/NMUR2 and nesfatin-1 gene expression at the level of selected rat brain regions. A novel alternative mode of SSRI action can be therefore cautiously proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analysed during the following study: Aneta Piwowarczyk-Nowak, Artur Pałasz, Aleksandra Suszka-Świtek, Alessandra Della Vecchia, Aniela Grajoszek, Marek Krzystanek, John J. Worthington. Escitalopram alters local expression of noncanonical stress-related neuropeptides in the rat brain via NPS receptor signaling are available from the corresponding author on reasonable request.

Abbreviations

ACTH:

Adrenocorticotropic hormone

ARC:

Arcuate nucleus

B2M:

Beta-2-microglobulin

CNS:

Central nervous system

CRH/CRF:

Corticotrophin releasing hormone/ factor

DMH:

Dorsomedial hypothalamic nucleus

DMSO:

Dimethyl sulfoxide

Esc:

Escitalopram

EW:

Edinger–Westphal nucleus

ip:

Intraperitoneal

LC:

Locus coeruleus

NAc:

Nucleus accumbens

NMU:

Neuromedin U

NMUR2:

Neuromedin U receptor 2

NPS:

Neuropeptide S

NPSR:

Neuropeptide S receptor

NUCB2:

Nucleobindin 2

OFT:

Open field test

POMC:

Proopiomelanocortin

PVN:

Paraventricular nucleus

SCN:

Suprachiasmatic nucleus

SHA-68:

N-[(4-Fluorophenyl)methyl]tetrahydro-3-oxo-1,1-diphenyl-3H-oxazolo[3,4-a]pyrazine-7(1H)-carboxamide, 3-oxo-1,1-diphenyl-tetrahydro-oxazolo[3,4-a]pyrazine-7-carboxylic acid 4-fluoro-benzylamide, neuropeptide S receptor antagonist

SON:

Supraoptic nucleus

SSRI:

Selective serotonin reuptake inhibitor

TRH:

Thyreotropin-releasing hormone

VMH:

Ventromedial hypothalamus

References

  1. Gupta PR, Prabhavalkar K. Combination therapy with neuropeptides for the treatment of anxiety disorder. Neuropeptides. 2021;86: 102127.

    Article  CAS  PubMed  Google Scholar 

  2. Hökfelt T, Barde S, Xu ZD, Kuteeva E, Rüegg J, Le Maitre E, et al. Neuropeptide and small transmitter coexistence: fundamental studies and relevance to mental illness. Front Neural Circuits. 2018;12:106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Alldredge B. Pathogenic involvement of neuropeptides in anxiety and depression. Neuropeptides. 2010;44(3):215–24.

    Article  CAS  PubMed  Google Scholar 

  4. Rotzinger S, Lovejoy DA, Tan LA. Behavioral effects of neuropeptides in rodent models of depression and anxiety. Peptides. 2010;31(4):736–56.

    Article  CAS  PubMed  Google Scholar 

  5. Reinscheid RK, Ruzza C. Pharmacology, physiology and genetics of the neuropeptide S system. Pharmaceuticals (Basel). 2021;14(5):401.

    Article  CAS  Google Scholar 

  6. Pape HC, Jüngling K, Seidenbecher T, Lesting J, Reinscheid RK. Neuropeptide S: a transmitter system in the brain regulating fear and anxiety. Neuropharmacology. 2010;58(1):29–34.

    Article  CAS  PubMed  Google Scholar 

  7. Reinscheid RK, Xu YL. Neuropeptide S and its receptor: a newly deorphanized G protein-coupled receptor system. Neuroscientist. 2005;11(6):532–8.

    Article  CAS  PubMed  Google Scholar 

  8. Pulkkinen V, Haataja R, Hannelius U, Helve O, Pitkänen OM, Karikoski R, et al. G protein-coupled receptor for asthma susceptibility associates with respiratory distress syndrome. Ann Med. 2006;38:357–66.

    Article  CAS  PubMed  Google Scholar 

  9. Xu YL, Gall CM, Jackson VR, Civelli O, Reinscheid RK. Distribution of neuropeptide S receptor mRNA and neurochemical characteristics of neuropeptide S-expressing neurons in the rat brain. J Comp Neurol. 2007;500(1):84–102.

    Article  CAS  PubMed  Google Scholar 

  10. Clark SD, Duangdao DM, Schulz S, Zhang L, Liu X, Xu YL, Reinscheid RK. Anatomical characterization of the neuropeptide S system in the mouse brain by in situ hybridization and immunohistochemistry. J Comp Neurol. 2011;519(10):1867–93.

    Article  CAS  PubMed  Google Scholar 

  11. Xu YL, Reinscheid RK, Huitron-Resendiz S, Clark SD, Wang Z, et al. Neuropeptide S: a neuropeptide promoting arousal and anxiolytic-like effects. Neuron. 2004;43(4):487–97.

    Article  CAS  PubMed  Google Scholar 

  12. Tobinski AM, Rappeneau V. Role of the neuropeptide S system in emotionality, stress responsiveness and addiction-like behaviours in rodents: relevance to stress-related disorders. Pharmaceuticals (Basel). 2021;14(8):780.

    Article  CAS  Google Scholar 

  13. Beck B, Fernette B, Stricker-Krongrad A. Peptide S is a novel potent inhibitor of voluntary and fast-induced food intake in rats. Biochem Biophys Res Commun. 2005;332(3):859–65.

    Article  CAS  PubMed  Google Scholar 

  14. Cannella N, Economidou D, Kallupi M, Stopponi S, Heiling M, Massi M, et al. Persistent increase of alcohol-seeking evoked by neuropeptide S: an effect mediated by the hypothalamic hypocretin system. Neuropsychopharmacol. 2009;34:2125–34.

    Article  CAS  Google Scholar 

  15. Bengoetxea X, Goedecke L, Remmes J, Blaesse P, Grosch T, Lesting J, et al. Human-specific neuropeptide S receptor variants regulate fear extinction in the basal amygdala of male and female mice depending on threat salience. Biol Psychiatry. 2021;90(3):145–55.

    Article  CAS  PubMed  Google Scholar 

  16. Grund T, Neumann ID. Neuropeptide S induces acute anxiolysis by phospholipase C-dependent signaling within the medial amygdala. Neuropsychopharmacology. 2018;43(5):1156–63.

    Article  CAS  PubMed  Google Scholar 

  17. Jüngling K, Seidenbecher T, Sosulina L, Lesting J, Sangha S, Clark SD. Neuropeptide S-mediated control of fear expression and extinction: role of intercalated GABAergic neurons in the amygdala. Neuron. 2008;59(2):298–310.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Leonard SK, Dwyer JM, Sukoff Rizzo SJ, Platt B, Logue SF, Neal SJ, et al. Pharmacology of neuropeptide S in mice: therapeutic relevance to anxiety disorders. Psychopharmacology. 2008;197(4):601–11.

    Article  CAS  PubMed  Google Scholar 

  19. Si W, Aluisio L, Okamura N, Clark SD, Fraser I, Sutton SW, et al. Neuropeptide S stimulates dopaminergic neurotransmission in the medial prefrontal cortex. J Neurochem. 2010;115(2):475–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Donner J, Haapakoski R, Ezer S, Melén E, Pirkola S, Gratacòs M, et al. Assessment of the neuropeptide S system in anxiety disorders. Biol Psychiatry. 2010;68(5):474–83.

    Article  CAS  PubMed  Google Scholar 

  21. Domschke K, Reif A, Weber H, Richter J, Hohoff C, Ohrmann P, et al. Neuropeptide S receptor gene—converging evidence for a role in panic disorder. Mol Psychiatry. 2011;16(9):938–48.

    Article  CAS  PubMed  Google Scholar 

  22. Ebner K, Rjabokon A, Pape HC, Singewald N. Increased in vivo release of neuropeptide S in the amygdala of freely moving rats after local depolarisation and emotional stress. Amino Acids. 2011;41(4):991–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fendt M, Imobersteg S, Bürki H, McAllister KH, Sailer AW. Intra-amygdala injections of neuropeptide S block fear-potentiated startle. Neurosci Lett. 2010;474(3):154–7.

    Article  CAS  PubMed  Google Scholar 

  24. Adori C, Barde S, Bogdanovic N, Uhlén M, Reinscheid RR, Kovacs GG, et al. Neuropeptide S- and Neuropeptide S receptor-expressing neuron populations in the human pons. Front Neuroanat. 2015;9:126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Teranishi H, Hanada R, Neuromedin U. A key molecule in metabolic disorders. Int J Mol Sci. 2021;22(8):4238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Martinez VG, O’Driscoll L. Neuromedin U: a multifunctional neuropeptide with pleiotropic roles. Clin Chem. 2015;61(3):471–82.

    Article  CAS  PubMed  Google Scholar 

  27. Malendowicz LK, Rucinski M. Neuromedins NMU and NMS: an updated overview of their functions. Front Endocrinol (Lausanne). 2021;12: 713961.

    Article  Google Scholar 

  28. Brighton PJ, Wise A, Dass NB, Willars GB. Paradoxical behavior of neuromedin U in isolated smooth muscle cells and intact tissue. J Pharmacol Exp Ther. 2008;325(1):154–64.

    Article  CAS  PubMed  Google Scholar 

  29. Fujii R, Hosoya M, Fukusumi S, Kawamata Y, Habata Y, Hinuma S, et al. Identification of neuromedin U as the cognate ligand of the orphan G protein-coupled receptor FM-3. J Biol Chem. 2000;275(28):21068–74.

    Article  CAS  PubMed  Google Scholar 

  30. Ballesta J, Carlei F, Bishop AE, Steel JH, Gibson SJ, Fahey M, et al. Occurrence and developmental pattern of neuromedin U-immunoreactive nerves in the gastrointestinal tract and brain of the rat. Neuroscience. 1988;25(3):797–816.

    Article  CAS  PubMed  Google Scholar 

  31. Szekeres PG, Muir AI, Spinage LD, Miller JE, Butler SI, Smith A, et al. Neuromedin U is a potent agonist at the orphan G protein-coupled receptor FM3. J Biol Chem. 2000;275(27):20247–2050.

    Article  CAS  PubMed  Google Scholar 

  32. Howard AD, Wang R, Pong SS, Mellin TN, Strack A, Guan XM, et al. Identification of receptors for neuromedin U and its role in feeding. Nature. 2000;406(6791):70–4.

    Article  CAS  PubMed  Google Scholar 

  33. Hsu SH, Luo CW. Molecular dissection of G protein preference using Gsalpha chimeras reveals novel ligand signaling of GPCRs. Am J Physiol Endocrinol Metab. 2007;293(4):E1021–9.

    Article  CAS  PubMed  Google Scholar 

  34. Shan L, Qiao X, Crona JH, Behan J, Wang S, Laz T, et al. Identification of a novel neuromedin U receptor subtype expressed in the central nervous system. J Biol Chem. 2000;275:39482–6.

    Article  CAS  PubMed  Google Scholar 

  35. Graham ES, Turnbull Y, Fotheringham P, Nilaweera K, Mercer JG, Morgan PJ, et al. Neuromedin U and Neuromedin U receptor-2 expression in the mouse and rat hypothalamus: effects of nutritional status. J Neurochem. 2003;87(5):1165–73.

    Article  CAS  PubMed  Google Scholar 

  36. Gartlon J, Szekeres P, Pullen M, Sarau HM, Aiyar N, Shabon U, et al. Localisation of NMU1R and NMU2R in human and rat central nervous system and effects of neuromedin-U following central administration in rats. Psychopharmacology. 2004;177:1–14.

    Article  CAS  PubMed  Google Scholar 

  37. Hanada R, Nakazato M, Murakami N, Sakihara S, Yoshimatsu H, Toshinai K, et al. A role for neuromedin U in stress response. Biochem Biophys Res Commun. 2001;289(1):225–8.

    Article  CAS  PubMed  Google Scholar 

  38. Tanaka M, Telegdy G. Neurotransmissions of antidepressant-like effects of neuromedin U-23 in mice. Behav Brain Res. 2014;259:196–9.

    Article  CAS  PubMed  Google Scholar 

  39. Telegdy G, Adamik A. Anxiolytic action of neuromedin-U and neurotransmitters involved in mice. Regul Pept. 2013;186:137–40.

    Article  CAS  PubMed  Google Scholar 

  40. Wren AM, Small CJ, Abbott CR, Jethwa PH, Kennedy AR, Murphy KG, et al. Hypothalamic actions of neuromedin U. Endocrinology. 2002;143(11):4227–34.

    Article  CAS  PubMed  Google Scholar 

  41. Zeng H, Gragerov A, Hohmann JG, Pavlova MN, Schimpf BA, Xu H, et al. Neuromedin U receptor 2-deficient mice display differential responses in sensory perception, stress, and feeding. Mol Cell Biol. 2006;26(24):9352–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vallöf D, Kalafateli AL, Jerlhag E. Brain region-specific neuromedin U signalling regulates alcohol-related behav-iours and food intake in rodents. Addict Biol. 2020;25: e12764.

    Article  PubMed  Google Scholar 

  43. Kasper JM, Smith AE, Hommel JD. Cocaine-evoked locomotor activity negatively correlates with the expression of neuromedin U receptor 2 in the nucleus accumbens. Front Behav Neurosci. 2018;12:271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schalla MA, Stengel A. Current understanding of the role of nesfatin-1. J Endocr Soc. 2018;2(10):1188–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pałasz A, Krzystanek M, Worthington J, Czajkowska B, Kostro K, Wiaderkiewicz R, et al. Nesfatin-1, a unique regulatory neuropeptide of the brain. Neuropeptides. 2012;46(3):105–12.

    Article  PubMed  CAS  Google Scholar 

  46. Garcia-Galiano D, Navarro VM, Roa J, Ruiz-Pino F, Sanchez-Garrido MA, Pineda R, et al. The anorexigenic neuropeptide, nesfatin-1, is indispensable for normal puberty onset in the female rat. J Neurosci. 2010;30:7783–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gonzalez R, Kerbel B, Chun A, Unniappan S. Molecular, cellular and physiological evidences for the anorexigenic actions of nesfatin-1 in goldfish. PLoS ONE. 2010;5(12): e15201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rupp SK, Wölk E, Stengel A. Nesfatin-1 receptor: distribution, signaling and increasing evidence for a G protein-coupled receptor—a systematic review. Front Endocrinol (Lausanne). 2021;12: 740174.

    Article  Google Scholar 

  49. Stengel A, Goebel M, Tache Y. Nesfatin-1: a novel inhibitory regulator of food intake and body weight. Obes Rev. 2011;12:261–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shimizu H, Oh-I S, Okada S, Mori M. Nesfatin-1: an overview and future clinical application. Endocr J. 2009;56:537–43.

    Article  CAS  PubMed  Google Scholar 

  51. Foo KS, Brismar H, Broberger C. Distribution and neuropeptide coexistence of nucleobindin-2 mRNA/nesfatin-like immunoreactivity in the rat CNS. Neuroscience. 2008;156:563–79.

    Article  CAS  PubMed  Google Scholar 

  52. Pałasz A, Rojczyk E, Siwiec A, Janas-Kozik M. Nesfatin-1 in the neurochemistry of eating disorders. Psychiatr Pol. 2020;54(2):209–22.

    Article  PubMed  Google Scholar 

  53. Stengel A, Tache Y. Nesfatin-1: role as a possible new potent regulator of food intake. Regul Pept. 2010;9:18–23.

    Article  CAS  Google Scholar 

  54. Weibert E, Hofmann T, Stengel A. Role of nesfatin-1 in anxiety, depression and the response to stress. Psychoneuroendocrinology. 2019;100:58–66.

    Article  CAS  PubMed  Google Scholar 

  55. Ge JF, Xu YY, Qin G, Pan XY, Cheng JQ, Chen FH. Nesfatin-1, a potent anorexic agent, decreases exploration and induces anxiety-like behavior in rats without altering learning or memory. Brain Res. 2015;1629:171–81.

    Article  CAS  PubMed  Google Scholar 

  56. Merali Z, Cayer C, Kent P, Anisman H. Nesfatin-1 increases anxiety- and fear-related behaviors in the rat. Psychopharmacology. 2008;201:115–23.

    Article  CAS  PubMed  Google Scholar 

  57. Goebel M, Stengel A, Wang L, Lambrecht NW, Taché Y. Nesfatin-1 immunoreactivity in rat brain and spinal cord autonomic nuclei. Neurosci Lett. 2009;452:241–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Könczöl K, Bodnar I, Zelena D, Pinter O, Papp RS, Palkovits M, et al. Nesfatin-1/NUCB2 may participate in the activation of the hypothalamic-pituitary-adrenal axis in rats. Neurochem Int. 2010;53:189–97.

    Article  CAS  Google Scholar 

  59. Tanida M, Mori M. Nesfatin-1 stimulates renal sympathetic nerve activity in rats. NeuroReport. 2011;2:309–12.

    Article  CAS  Google Scholar 

  60. Yosten GLC, Samson WK. The anorexigenic and hypertensive effects of nesfatin-1 are reversed by pretreatment with an oxytocin receptor antagonist. Am J Physiol Regul Integr Comp Physiol. 2010;298:R1642–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Okere B, Xu L, Roubos EW, Sonetti D, Kozicz T. Restraint stress alters the secretory activity of neurons co-expressing urocortin-1, cocaine- and amphetamine-regulated transcript peptide and nesfatin-1 in the mouse Edinger-Westphal nucleus. Brain Res. 2010;1317:92–9.

    Article  CAS  PubMed  Google Scholar 

  62. Bonnet MS, Pecchi E, Trouslard J, Jean A, Dallaporta M, Troadec JD. Central nesfatin-1 expressing neurons are sensitive to peripheral imflammatory stimulus. J Neuroinflamm. 2009;6:27.

    Article  CAS  Google Scholar 

  63. Yoshida N, Maejima Y, Sedbazar U, Ando A, Kurita H, Damdindorj B, et al. Stressor-responsive central nesfatin-1 activates corticotropin-releasing hormone, noradrenaline and serotonin neurons and evokes hypothalamic-pituitary-adenal axis. Aging. 2010;2:775–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Owens MJ, Knight DL, Nemeroff CB. Second-generation SSRIs: human monoamine transporter binding profile of escitalopram and R-fluoxetine. Biol Psychiatry. 2001;50:345–50.

    Article  CAS  PubMed  Google Scholar 

  65. Ranjbar S, Pai N, Deng C. The association of antidepressant medication and body weight gain. Online J Health Allied Sci. 2013;12:1–9.

    Google Scholar 

  66. Okamura N, Habay SA, Zeng J, Chamberlin AR, Reinscheid RK. Synthesis and pharmacological in vitro and in vivo profile of 3-oxo-1,1-diphenyl-tetrahydro-oxazolo[3,4-a]pyrazine-7-carboxylic acid 4-fluoro-benzylamide (SHA68), a selective antagonist of the neuropeptide S receptor. J Pharmacol Exp Ther. 2008;325:893–901.

    Article  CAS  PubMed  Google Scholar 

  67. Shukla AK, Reinhart C, Michel H. Dimethylsulphoxide as a tool to increase functional expression of heterologously produced GPCRs in mammalian cells. FEBS Lett. 2006;580:4261–5.

    Article  CAS  PubMed  Google Scholar 

  68. Xia H, Liu L, Reinhart C, Michel H. Heterologous expression of human neuromedin U receptor 1 and its subsequent solubilization and purification. Biochim Biophys Acta. 2008;1778:2203–9.

    Article  CAS  PubMed  Google Scholar 

  69. Talmont F, Mollereau C, Zajac JM. Expression of opioid and anti-opioid receptors in Chinese hamster ovary cells after exposure to dimethyl sulfoxide. Anal Biochem. 2012;420(1):99–100. https://doi.org/10.1016/j.ab.2011.09.001.

    Article  CAS  PubMed  Google Scholar 

  70. Cavaletti G, Oggioni N, Sala F, Pezzoni G, Cavalletti E, Marmiroli P, et al. Effect on the peripheral nervous system of systemically administered dimethylsulfoxide in the rat: a neurophysiological and pathological study. Toxicol Lett. 2000;118(1–2):103–7. https://doi.org/10.1016/s0378-4274(00)00269-1.

    Article  CAS  PubMed  Google Scholar 

  71. Cavas M, Beltrán D, Navarro JF. Behavioural effects of dimethyl sulfoxide (DMSO): changes in sleep architecture in rats. Toxicol Lett. 2005;157(3):221–32.

    Article  CAS  PubMed  Google Scholar 

  72. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8.

    Article  CAS  PubMed  Google Scholar 

  73. Leonard SK, Ring RH. Immunohistochemical localization of the neuropeptide S receptor in the rat central nervous system. Neuroscience. 2011;172:153–63.

    Article  CAS  PubMed  Google Scholar 

  74. Jiang JH, Peng YL, Zhang PJ, Xue HX, He Z, Liang XY, Chang M. The ventromedial hypothalamic nucleus plays an important role in anxiolytic-like effect of neuropeptide S. Neuropeptides. 2018;67:36–44.

    Article  CAS  PubMed  Google Scholar 

  75. Gross CT, Canteras NS. The many paths to fear. Nat Rev Neurosci. 2012;13(9):651–8.

    Article  CAS  PubMed  Google Scholar 

  76. Pringle A, Browning M, Cowen PJ, Harmer CJ. A cognitive neuropsychological model of antidepressant drug action. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(7):1586–92. https://doi.org/10.1016/j.pnpbp.2010.07.022.

    Article  CAS  PubMed  Google Scholar 

  77. Harmer CJ, Goodwin GM, Cowen PJ. Why do antidepressants take so long to work? A cognitive neuropsychological model of anti-depressant drug action. Br J Psychiatry. 2009;195:102–8.

    Article  PubMed  Google Scholar 

  78. Outhred T, Das P, Felmingham KL, Bryant RA, Nathan PJ, Malhi GS, Kemp AH. Impact of acute administration of escitalopram on the processing of emotional and neutral images: a randomized crossover fMRI study of healthy women. J Psychiatry Neurosci. 2014;39(4):267–75. https://doi.org/10.1503/jpn.130118.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Pizzagalli DA. Frontocingulate dysfunction in depression: toward biomarkers of treatment response. Neuropsychopharmacology. 2011;36:183–206.

    Article  PubMed  Google Scholar 

  80. Murphy SE, Norbury R, O’Sullivan U, Cowen PJ, Harmer CJ. Effect of a single dose of citalopram on amygdala response to emotional faces. Br J Psychiatry. 2009;194(6):535–40. https://doi.org/10.1192/bjp.bp.108.056093.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Pałasz A, Rojczyk E. Neuroleptics affect neuropeptide S and NPSR mRNA levels in the rat brain. J Mol Neurosci. 2015;57(3):352–7.

    Article  PubMed  CAS  Google Scholar 

  82. Cannella N, Kallupi M, Ruggeri B, Ciccocioppo R, Ubaldi M. The role of the neuropeptide S system in addiction: focus on its interaction with the CRF and hypocretin/orexin neurotransmission. Prog Neurobiol. 2013;100:48–59.

    Article  CAS  PubMed  Google Scholar 

  83. Ubaldi M, Giordano A, Severi I, Li H, Kallupi M, De Guglielmo G, Ruggeri B, et al. Activation of hypocretin-1/orexin-a neurons projecting to the bed nucleus of the stria terminalis and paraventricular nucleus is critical for reinstatement of alcohol seeking by neuropeptide S. Biol Psychiatry. 2016;79:452–62.

    Article  CAS  PubMed  Google Scholar 

  84. Pałasz A, Bandyszewska M, Rojczyk E, Wiaderkiewicz R. Effect of extended olanzapine administration on POMC and neuropeptide Y mRNA levels in the male rat amygdala and hippocampus. Pharmacol Rep. 2016;68:292–6.

    Article  PubMed  CAS  Google Scholar 

  85. Sattin A, Pekary AE, Blood J. Escitalopram regulates expression of TRH and TRH-like peptides in rat brain and peripheral tissues. Neuroendocrinology. 2008;88:135–46.

    Article  CAS  PubMed  Google Scholar 

  86. Kursungoz C, Ak M, Yanik T. Efects of risperidone treatment on the expression of hypothalamic neuropeptide in appetite regulation in Wistar rats. Brain Res. 2015;1596:146–55.

    Article  CAS  PubMed  Google Scholar 

  87. Barone I, Melani R, Mainardi M, Scabia G, Scali M, Dattilo A, et al. Fluoxetine modulates the activity of hypothalamic POMC neurons via mTOR signaling. Mol Neurobiol. 2018;55:9267–79.

    Article  CAS  PubMed  Google Scholar 

  88. Soga T, Wong DW, Clarke IJ, Parhar IS. Citalopram (antidepressant) administration causes sexual dysfunction in male mice through RF-amide related peptide in the dorsomedial hypothalamus. Neuropharmacology. 2010;59:77–85.

    Article  CAS  PubMed  Google Scholar 

  89. Sasaki-Hamada S, Maeno Y, Yabe M, Ishibashi H. Neuromedin U modulates neuronal excitability in rat hippocampal slices. Neuropeptides. 2021;89: 102168.

    Article  CAS  PubMed  Google Scholar 

  90. Kaisho T, Nagai H, Asakawa T, Suzuki N, Fujita H, Matsumiya K, et al. Effects of peripheral administration of a Neuromedin U receptor 2-selective agonist on food intake and body weight in obese mice. Int J Obes (Lond). 2017;41(12):1790–7.

    Article  CAS  Google Scholar 

  91. Nakahara K, Katayama T, Maruyama K, Ida T, Mori K, Miyazato M, et al. Comparison of feeding suppression by the anorexigenic hormones neuromedin U and neuromedin S in rats. J Endocrinol. 2010;207:185–93.

    Article  CAS  PubMed  Google Scholar 

  92. McCue DL, Kasper JM, Hommel JD. Regulation of motivation for food by neuromedin U in the paraventricular nucleus and the dorsal raphe nucleus. Int J Obes (Lond). 2017;41(1):120–8.

    Article  CAS  Google Scholar 

  93. Benzon C, Johnson S, McCue D, Li D, Green T, Hommel J. Neuromedin U receptor 2 knockdown in the paraventricular nucleus modifies behavioral responses to obesogenic high-fat food and leads to increased body weight. Neuroscience. 2014;258:270–9.

    Article  CAS  PubMed  Google Scholar 

  94. Peng YL, Ha RW, Chang M, Zhang L, Zhang RS, Li W, et al. Central Neuropeptide S inhibits food intake in mice through activation of Neuropeptide S receptor. Peptides. 2010;31:2259–63.

    Article  CAS  PubMed  Google Scholar 

  95. Smith KL, Patterson M, Dhillo WS, Patel SR, Semjonous NM, Gardiner JV, et al. Neuropeptide S stimulates the hypothalamo-pituitary-adrenal axis and inhibits food intake. Endocrinology. 2006;47:3510–8.

    Article  CAS  Google Scholar 

  96. Nakahara K, Akagi A, Shimizu S, Tateno S, Qattali AW, Mori K, et al. Involvement of endogenous neuromedin U and neuromedin S in thermoregulation. Biochem Biophys Res Commun. 2016;470(4):930–5.

    Article  CAS  PubMed  Google Scholar 

  97. Ahnaou A, Drinkenburg WH. Neuromedin U(2) receptor signaling mediates alteration of sleep-wake architecture in rats. Neuropeptides. 2011;45(2):165–74.

    Article  CAS  PubMed  Google Scholar 

  98. Pałasz A, Żarczyński P, Bogus K, Mordecka-Chamera K, Della Vecchia A, Skałbania J, et al. Modulatory effect of olanzapine on SMIM20/phoenixin, NPQ/spexin and NUCB2/nesfatin-1 gene expressions in the rat brainstem. Pharmacol Rep. 2021;73(4):1188–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Wei Y, Li J, Wang H, Wang G. NUCB2/nesfatin-1: Expression and functions in the regulation of emotion and stress. Prog Neuropsychopharmacol Biol Psychiatry. 2018;81:221–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Medical University of Silesia grant for the Department of Histology No. PCN-1-011/K/0/O.

Author information

Authors and Affiliations

Authors

Contributions

APN, AP, ADV: conceptualization, investigation, data curation, writing—original draft. APN, AP, ASS: Methodology, immunohistochemistry, tissue acquisition. ADV, AG: resources. AP, MK, JJW: formal analysis, corrections.

Corresponding author

Correspondence to Artur Pałasz.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piwowarczyk-Nowak, A., Pałasz, A., Suszka-Świtek, A. et al. Escitalopram alters local expression of noncanonical stress-related neuropeptides in the rat brain via NPS receptor signaling. Pharmacol. Rep 74, 637–653 (2022). https://doi.org/10.1007/s43440-022-00374-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-022-00374-z

Keywords

Navigation