Abstract
Aluminium is one of the most widely distributed elements of the Earth’s crust. Its routine use has resulted in excessive human exposure and due to the potential neurotoxic effects has attained a huge interest in recent years. Despite its ubiquitous abundance, aluminium has no crucial biological functions in the human body. Oxidative stress and neuroinflammatory effects are attributed to its neurotoxic manifestations implicated in Alzheimer’s disease. In this review, we have discussed the neuroinflammatory and neurodegenerative events in the brain induced by aluminium exposure. We have highlighted the neurotoxic events caused by aluminium, such as oxidative stress, apoptosis, inflammatory events, calcium dyshomeostasis, Aβ deposition, and neurofibrillary tangle formation in the brain. In addition, the protective measures needed for prevention of aluminium-induced neuronal dysregulations have also been discussed.
Similar content being viewed by others
References
Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014;7:60–72. https://doi.org/10.2478/intox-2014-0009.
Anyanwu BO, Ezejiofor AN, Igweze ZN, Orisakwe OE. Heavy metal mixture exposure and effects in developing nations: an update. Toxics. 2018;6:1–32. https://doi.org/10.3390/toxics6040065.
Igbokwe IO, Igwenagu E, Igbokwe NA. Aluminium toxicosis: a review of toxic actions and effects. Interdiscip Toxicol. 2020;12:45–70. https://doi.org/10.2478/intox-2019-0007.
Kumar V, Gill KD. Oxidative stress and mitochondrial dysfunction in aluminium neurotoxicity and its amelioration: a review. Neurotoxicology. 2014;41:154–66. https://doi.org/10.1016/j.neuro.2014.02.004.
Exley C. Human exposure to aluminium. Environ Sci Process Impacts. 2013;15:1807–16. https://doi.org/10.1039/c3em00374d.
Exley C. The aluminium-amyloid cascade hypothesis and Alzheimer’s disease. Subcell Biochem. 2005;38:225–34. https://doi.org/10.1007/0-387-23226-5_11.
Julka D, Vasishta RK, Gill KD. Distribution of aluminum in different brain regions and body organs of rat. Biol Trace Elem Res. 1996;52:181–92. https://doi.org/10.1007/bf02789460.
Kaur A, Joshi K, Minz RW, Gill KD. Neurofilament phosphorylation and disruption: a possible mechanism of chronic aluminium toxicity in Wistar rats. Toxicology. 2006;219:1–10. https://doi.org/10.1016/j.tox.2005.09.015.
Santibañez M, Bolumar F, García AM. Occupational risk factors in Alzheimer’s disease: a review assessing the quality of published epidemiological studies. Occup Environ Med. 2007;64:723–32. https://doi.org/10.1136/oem.2006.028209.
Solfrizzi V, Colacicco AM, D’Introno A, Capurso C, Del PA, Capurso SA, et al. Macronutrients, aluminium from drinking water and foods, and other metals in cognitive decline and dementia. J Alzheimer’s Dis. 2006;10:303–30. https://doi.org/10.3233/JAD-2006-102-314.
Gupta VB, Anitha S, Hegde ML, Zecca L, Garruto RM, Ravid R, et al. Aluminium in Alzheimer’s disease: are we still at a crossroad? Cell Mol Life Sci. 2005;62:143–58. https://doi.org/10.1007/s00018-004-4317-3.
Exley C, Clarkson E. Aluminium in human brain tissue from donors without neurodegenerative disease: a comparison with Alzheimer’s disease, multiple sclerosis and autism. Sci Rep. 2020;10:1–7. https://doi.org/10.1038/s41598-020-64734-6.
Mcdermott JR, Smith AI, Iqbal K, Wisniewski HM. Brain aluminum in aging and Alzheimer disease. Neurology. 1979;29:809–14. https://doi.org/10.1212/wnl.29.6.809.
Parkinson IS, Ward MK, Kerr DNS. Dialysis encephalopathy, bone disease and anaemia: the aluminium intoxication syndrome during regular haemodialysis. J Clin Pathol. 1981;34:1285–94. https://doi.org/10.1136/jcp.34.11.1285.
Alfrey AC, LeGendre GR, Kaehny WD. The dialysis encephalopathy syndrome. N Engl J Med. 1976;294:184–8. https://doi.org/10.1056/nejm197601222940402.
Klotz K, Weistenhöfer W, Neff F, Hartwig A, Van Thriel C, Drexler H. The health effects of aluminum exposure. Dtsch Arztebl Int. 2017;114:653–9. https://doi.org/10.3238/arztebl.2017.0653.
Rondeau V, Jacqmin-Gadda H, Commenges D, Helmer C, Dartigues JF. Aluminum and silica in drinking water and the risk of Alzheimer’s disease or cognitive decline: findings from 15-year follow-up of the PAQUID cohort. Am J Epidemiol. 2009;169:489–96. https://doi.org/10.1093/aje/kwn348.
Steinhausen C, Kislinger G, Winklhofer C, Beck E, Hohl C, Nolte E. Investigation of the aluminium biokinetics in humans: a 26Al tracer study. Food Chem Toxicol. 2004;42(3):363–71. https://doi.org/10.1016/j.fct.2003.09.010.
Kandimalla R, Vallamkondu J, Corgiat EB, Gill KD. Understanding aspects of aluminum exposure in Alzheimer’s disease development. Brain Pathol. 2016;26(2):139–54. https://doi.org/10.1111/bpa.12333.
Tietz T, Lenzner A, Kolbaum AE, Zellmer S, Riebeling C, Gürtler R, et al. Aggregated aluminium exposure: risk assessment for the general population. Arch Toxicol. 2019;93:3503–21. https://doi.org/10.1007/s00204-019-02599-z.
Novaes RD, Mouro VGS, Gonçalves RV, Mendonça AAS, Santos EC, Fialho MCQ, et al. Aluminum: a potentially toxic metal with dose-dependent effects on cardiac bioaccumulation, mineral distribution, DNA oxidation and microstructural remodeling. Environ Pollut. 2018;242:814–26. https://doi.org/10.1016/j.envpol.2018.07.034.
Krewski D, Yokel RA, Nieboer E, Borchelt D, Cohen J, Kacew S, et al. Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J Toxicol Environ Health B Crit Rev. 2007;10:1–269. https://doi.org/10.1080/10937400701597766.
Yokel RA. Aluminium toxicokinetics: an updated minireview. Pharmacol Toxicol. 2001;88:159–67. https://doi.org/10.1111/j.1600-0773.2001.880401.x.
Nie J. Exposure to aluminum in daily life and Alzheimer’s disease. Adv Exp Med Biol. 2018;1091:99–111. https://doi.org/10.1007/978-981-13-1370-7_6.
Wang L. Entry and deposit of aluminum in the brain. Adv Exp Med Biol. 2018;1091:39–51. https://doi.org/10.1007/978-981-13-1370-7_3.
Kawahara M, Kato-Negishi M. Link between aluminum and the pathogenesis of Alzheimer’s disease: the integration of the aluminum and amyloid cascade hypotheses. Int J Alzheimers Dis. 2011;2011: 276393. https://doi.org/10.4061/2011/276393.
Bharathi SG, Rao KSJ, Stein R. First evidence on induced topological changes in supercoiled DNA by an aluminium d-aspartate complex. J Biol Inorg Chem. 2003;8:823–30. https://doi.org/10.1007/s00775-003-0484-1.
Lin R, Chen X, Li W, Han Y, Liu P, Pi R. Exposure to metal ions regulates mRNA levels of APP and BACE1 in PC12 cells: blockage by curcumin. Neurosci Lett. 2008;440:344–7. https://doi.org/10.1016/j.neulet.2008.05.070.
Taïr K, Kharoubi O, Taïr OA, Hellal N, Benyettou I, Aoues A. Aluminium-induced acute neurotoxicity in rats: treatment with aqueous extract of Arthrophytum (Hammada scoparia). J Acute Dis. 2016;5:470–82. https://doi.org/10.1016/j.joad.2016.08.028.
Kumar V, Bal A, Gill KD. Aluminium-induced oxidative DNA damage recognition and cell-cycle disruption in different regions of rat brain. Toxicology. 2009;264:137–44. https://doi.org/10.1016/j.tox.2009.05.011.
Cao Z, Yang X, Zhang H, Wang H, Huang W, Xu F, et al. Aluminum chloride induces neuroinflammation, loss of neuronal dendritic spine and cognition impairment in developing rat. Chemosphere. 2016;151:289–95. https://doi.org/10.1016/j.chemosphere.2016.02.092.
Olajide OJ, Yawson EO, Gbadamosi IT, Arogundade TT, Lambe E, Obasi K, et al. Ascorbic acid ameliorates behavioural deficits and neuropathological alterations in rat model of Alzheimer’s disease. Environ Toxicol Pharmacol. 2017;50:200–11. https://doi.org/10.1016/j.etap.2017.02.010.
Ahmad Rather M, Justin-Thenmozhi A, Manivasagam T, Saravanababu C, Guillemin GJ, Essa MM. Asiatic acid attenuated aluminum chloride-induced tau pathology, oxidative stress and apoptosis via AKT/GSK-3β signaling pathway in wistar rats. Neurotox Res. 2019;35:955–68. https://doi.org/10.1007/s12640-019-9999-2.
Chakrabarty M, Bhat P, Kumari S, D’Souza A, Bairy KL, Chaturvedi A, et al. Cortico-hippocampal salvage in chronic aluminium induced neurodegeneration by Celastruspaniculatus seed oil: neurobehavioural, biochemical, histological study. J Pharmacol Pharmacother. 2012;3:161–71. https://doi.org/10.4103/0976-500X.95520.
Iglesias-González J, Sánchez-Iglesias S, Beiras-Iglesias A, Méndez-Álvarez E, Soto-Otero R. Effects of aluminium on rat brain mitochondria bioenergetics: an in vitro and in vivo study. Mol Neurobiol. 2017;54:563–70. https://doi.org/10.1007/s12035-015-9650-z.
Prema A, Justin Thenmozhi A, Manivasagam T, Mohamed Essa M, Guillemin GJ. Fenugreek seed powder attenuated aluminum chloride-induced tau pathology, oxidative stress, and inflammation in a rat model of Alzheimer’s disease. J Alzheimer’s Dis. 2017;60:S209–20. https://doi.org/10.3233/JAD-161103.
Prakash D, Gopinath K, Sudhandiran G. Fisetin enhances behavioral performances and attenuates reactive gliosis and inflammation during aluminum chloride-induced neurotoxicity. NeuroMolecular Med. 2013;15:192–208. https://doi.org/10.1007/s12017-012-8210-1.
Wang H, Ye M, Yu L, Wang J, Guo Y, Lei W, et al. Hippocampal neuronal cyclooxygenase-2 downstream signaling imbalance in a rat model of chronic aluminium gluconate administration. Behav Brain Funct. 2015;11:1–12. https://doi.org/10.1186/s12993-015-0054-z.
Khan KA, Kumar N, Nayak PG, Nampoothiri M, Shenoy RR, Krishnadas N, et al. Impact of caffeic acid on aluminium chloride-induced dementia in rats. J Pharm Pharmacol. 2013;65:1745–52. https://doi.org/10.1111/jphp.12126.
Yu H, Zhang J, Ji Q, Yu K, Wang P, Song M, et al. Melatonin alleviates aluminium chloride-induced immunotoxicity by inhibiting oxidative stress and apoptosis associated with the activation of Nrf2 signaling pathway. Ecotoxicol Environ Saf. 2019;173:131–41. https://doi.org/10.1016/j.ecoenv.2019.01.095.
Singh NA, Bhardwaj V, Ravi C, Ramesh N, Mandal AKA, Khan ZA. EGCG nanoparticles attenuate aluminum chloride induced neurobehavioral deficits, beta amyloid and tau pathology in a rat model of Alzheimer’s disease. Front Aging Neurosci. 2018;10:1–13. https://doi.org/10.3389/fnagi.2018.00244.
Fernandes J, Mudgal J, Rao CM, Arora D, Basu Mallik S, Pai KSR, et al. N-acetyl-l-tryptophan, a substance-P receptor antagonist attenuates aluminum-induced spatial memory deficit in rats. Toxicol Mech Methods. 2018;28:328–34. https://doi.org/10.1080/15376516.2017.1411412.
Ekong MB, Ekpo MM, Akpanyung EO, Nwaokonko DU. Neuroprotective effect of Moringa oleifera leaf extract on aluminium-induced temporal cortical degeneration. Metab Brain Dis. 2017;32:1437–47. https://doi.org/10.1007/s11011-017-0011-7.
Bihaqi SW, Sharma M, Singh AP, Tiwari M. Neuroprotective role of Convolvulus pluricaulis on aluminium induced neurotoxicity in rat brain. J Ethnopharmacol. 2009;124:409–15. https://doi.org/10.1016/j.jep.2009.05.038.
Lakshmi BVS, Sudhakar M, Anisha M. Neuroprotective role of hydroalcoholic extract of Vitis vinifera against aluminium-induced oxidative stress in rat brain. Neurotoxicology. 2014;41:73–9. https://doi.org/10.1016/j.neuro.2014.01.003.
Farhat SM, Mahboob A, Ahmed T. Oral exposure to aluminum leads to reduced nicotinic acetylcholine receptor gene expression, severe neurodegeneration and impaired hippocampus dependent learning in mice. Drug Chem Toxicol. 2021;44(3):310–8. https://doi.org/10.1080/01480545.2019.1587452.
Crisponi G, Nurchi VM, Bertolasi V, Remelli M, Faa G. Chelating agents for human diseases related to aluminium overload. Coord Chem Rev. 2012;256:89–104. https://doi.org/10.1016/j.ccr.2011.06.013.
Akiyama H, Hosokawa M, Kametani F, Kondo H, Chiba M, Fukushima M, et al. Long-term oral intake of aluminium or zinc does not accelerate Alzheimer pathology in AβPP and AβPP/tau transgenic mice. Neuropathology. 2012;32:390–7. https://doi.org/10.1111/j.1440-1789.2011.01274.x.
Praticò D, Uryu K, Sung S, Tang S, Trojanowski JQ, Lee VMY. Aluminum modulates brain amyloidosis through oxidative stress in APP transgenic mice. FASEB J. 2002;16:1138–40. https://doi.org/10.1096/fj.02-0012fje.
Bolognin S, Messori L, Drago D, Gabbiani C, Cendron L, Zatta P. Aluminum, copper, iron and zinc differentially alter amyloid-Aβ 1–42 aggregation and toxicity. Int J Biochem Cell Biol. 2011;43:877–85. https://doi.org/10.1016/j.biocel.2011.02.009.
Liu F, Grundke-Iqbal I, Iqbal K, Gong CX. Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur J Neurosci. 2005;22:1942–50. https://doi.org/10.1111/j.1460-9568.2005.04391.x.
Walton JR. An aluminum-based rat model for Alzheimer’s disease exhibits oxidative damage, inhibition of PP2A activity, hyperphosphorylated tau, and granulovacuolar degeneration. J Inorg Biochem. 2007;101:1275–84. https://doi.org/10.1016/j.jinorgbio.2007.06.001.
Wang X, Cheng D, Jiang W, Ma Y. Mechanisms underlying aluminum neurotoxicity related to 14-3-3ζ protein. Toxicol Sci. 2018;163:45–56. https://doi.org/10.1093/toxsci/kfy021.
Maya S, Prakash T, Madhu KD, Goli D. Multifaceted effects of aluminium in neurodegenerative diseases: a review. Biomed Pharmacother. 2016;83:746–54. https://doi.org/10.1016/j.biopha.2016.07.035.
Saiyed SM, Yokel RA. Aluminium content of some foods and food products in the USA, with aluminium food additives. Food Addit Contam. 2005;22:234–44. https://doi.org/10.1080/02652030500073584.
Stevanović ID, Jovanović MD, Čolić M, Jelenković A, Bokonjić D, Ninković M. Nitric oxide synthase inhibitors protect cholinergic neurons against AlCl3 excitotoxicity in the rat brain. Brain Res Bull. 2010;81:641–6. https://doi.org/10.1016/j.brainresbull.2010.01.004.
Yellamma K, Saraswathamma S, Kumari BN. Cholinergic system under aluminium toxicity in rat brain. Toxicol Int. 2010;17:106–12. https://doi.org/10.4103/0971-6580.72682.
Ghribi O, Herman MM, Forbes MS, DeWitt DA, Savory J. GDNF protects against aluminum-induced apoptosis in rabbits by upregulating Bcl-2 and Bcl-XL and inhibiting mitochondrial Bax translocation. Neurobiol Dis. 2001;8:764–73. https://doi.org/10.1006/nbdi.2001.0429.
Vasudevaraju BP, Govindaraju M, Palanisamy AP, Sambamurti K, Rao KSJ. Molecular toxicity of aluminium in relation to neurodegeneration. Indian J Med Res. 2008;128:545–56.
Fu HJ, Hu QS, Lin ZN, Ren TL, Song H, Cai CK, et al. Aluminum-induced apoptosis in cultured cortical neurons and its effect on SAPK/JNK signal transduction pathway. Brain Res. 2003;980:11–23. https://doi.org/10.1016/S0006-8993(03)02833-6.
Maroney AC, Glicksman MA, Basma AN, Walton KM, Knight E, Murphy CA, et al. Motoneuron apoptosis is blocked by CEP-1347 (KT 7515), a novel inhibitor of the JNK signaling pathway. J Neurosci. 1998;18:104–11. https://doi.org/10.1523/jneurosci.18-01-00104.1998.
Muckenthaler MU, Galy B, Hentze MW. Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu Rev Nutr. 2008;28:197–213. https://doi.org/10.1146/annurev.nutr.28.061807.155521.
Crichton RR, Wilmet S, Legssyer R, Ward RJ. Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. J Inorg Biochem. 2002;91:9–18. https://doi.org/10.1016/S0162-0134(02)00461-0.
Oshiro S, Kawahara M, Kuroda Y, Zhang C, Cai Y, Kitajima S, et al. Glial cells contribute more to iron and aluminum accumulation but are more resistant to oxidative stress than neuronal cells. Biochim Biophys Acta Mol Basis Dis. 2000;1502:405–14. https://doi.org/10.1016/S0925-4439(00)00065-X.
Cho HH, Cahill CM, Vanderburg CR, Scherzer CR, Wang B, Huang X, et al. Selective translational control of the Alzheimer amyloid precursor protein transcript by iron regulatory protein-1. J Biol Chem. 2010;285:31217–32. https://doi.org/10.1074/jbc.M110.149161.
Duce JA, Tsatsanis A, Cater MA, James SA, Robb E, Wikhe K, et al. Iron-export ferroxidase activity of β-amyloid precursor protein is Inhibited by zinc in Alzheimer’s disease. Cell. 2010;142:857–67. https://doi.org/10.1016/j.cell.2010.08.014.
Kaneko N, Sugioka T, Sakurai H. Aluminum compounds enhance lipid peroxidation in liposomes: insight into cellular damage caused by oxidative stress. J Inorg Biochem. 2007;101:967–75. https://doi.org/10.1016/j.jinorgbio.2007.03.005.
Blaylock RL. Aluminum induced immunoexcitotoxicity in neurodevelopmental and neurodegenerative disorders. Curr Inorg Chem. 2012;2:46–53. https://doi.org/10.2174/1877944111202010046.
Walton JR. Aluminum disruption of calcium homeostasis and signal transduction resembles change that occurs in aging and Alzheimer’s disease. J Alzheimer’s Dis. 2012;29:255–73. https://doi.org/10.3233/JAD-2011-111712.
Yuan CY, Lee YJ, Hsu GSW. Aluminum overload increases oxidative stress in four functional brain areas of neonatal rats. J Biomed Sci. 2012;19:1–9. https://doi.org/10.1186/1423-0127-19-51.
Jyoti A, Sharma D. Neuroprotective role of Bacopa monniera extract against aluminium-induced oxidative stress in the hippocampus of rat brain. Neurotoxicology. 2006;27:451–7. https://doi.org/10.1016/j.neuro.2005.12.007.
Johri A, Beal MF. Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther. 2012;342:619–30. https://doi.org/10.1124/jpet.112.192138.
Nayak P, Chatterjee AK. Effects of aluminium exposure on brain glutamate and GABA systems: an experimental study in rats. Food Chem Toxicol. 2001;39:1285–9. https://doi.org/10.1016/S0278-6915(01)00077-1.
Blaylock R, Maroon J. Immunoexcitotoxicity as a central mechanism in chronic traumatic encephalopathy—a unifying hypothesis. Surg Neurol Int. 2011;2:107. https://doi.org/10.4103/2152-7806.83391.
Exley C. A molecular mechanism of aluminium-induced Alzheimer’s disease? J Inorg Biochem. 1999;76:133–40. https://doi.org/10.1016/S0162-0134(99)00125-7.
Weng MH, Chen SY, Li ZY, Yen GC. Camellia oil alleviates the progression of Alzheimer’s disease in aluminum chloride-treated rats. Free Radic Biol Med. 2020;152:411–21. https://doi.org/10.1016/j.freeradbiomed.2020.04.004.
Milnerowicz H, Ściskalska M, Dul M. Pro-inflammatory effects of metals in persons and animals exposed to tobacco smoke. J Trace Elem Med Biol. 2015;29:1–10. https://doi.org/10.1016/j.jtemb.2014.04.008.
Lukiw WJ, Percy ME, Kruck TP. Nanomolar aluminum induces pro-inflammatory and pro-apoptotic gene expression in human brain cells in primary culture. J Inorg Biochem. 2005;99:1895–8. https://doi.org/10.1016/j.jinorgbio.2005.04.021.
Yokel RA, O’Callaghan JP. An aluminum-induced increase in GFAP is attenuated by some chelators. Neurotoxicol Teratol. 1998;20:55–60. https://doi.org/10.1016/S0892-0362(97)00069-X.
Kontoghiorghes GJ. Comparative efficacy and toxicity of desferrioxamine, deferiprone and other iron and aluminium chelating drugs. Toxicol Lett. 1995;80:1–18. https://doi.org/10.1016/0378-4274(95)03415-H.
Andersen O. Principles and recent developments in chelation treatment of metal intoxication. Chem Rev. 1999;99:2683–710. https://doi.org/10.1021/cr980453a.
Day JP, Ackrill P. The chemistry of desferrioxamine chelation for aluminum overload in renal dialysis patients. Ther Drug Monit. 1993;15:598–601. https://doi.org/10.1097/00007691-199312000-00026.
Kan WC, Chien CC, Wu CC, Su SB, Hwang JC, Wang HY. Comparison of low-dose deferoxamine versus standard-dose deferoxamine for treatment of aluminium overload among haemodialysis patients. Nephrol Dial Transplant. 2010;25:1604–8. https://doi.org/10.1093/ndt/gfp649.
Savory J, Herman MM, Erasmus RT, Boyd JC, Wills MR. Partial reversal of aluminium-induced neurofibrillary degeneration by desferrioxamine in adult male rabbits. Neuropathol Appl Neurobiol. 1994;20:31–7. https://doi.org/10.1111/j.1365-2990.1994.tb00954.x.
Gómez M, Esparza JL, Domingo JL, Singh PK, Jones MM. Chelation therapy in aluminum-loaded rats: influence of age. Toxicology. 1999;137:161–8. https://doi.org/10.1016/S0300-483X(99)00077-3.
Kruck TP, Cui JG, Percy ME, Lukiw WJ. Molecular shuttle chelation: the use of ascorbate, desferrioxamine and Feralex-G in combination to remove nuclear bound aluminum. Cell Mol Neurobiol. 2004;24:443–59. https://doi.org/10.1023/B:CEMN.0000022773.70722.b2.
Harrison FE. A critical review of vitamin C for the prevention of age-related cognitive decline and alzheimer’s disease. J Alzheimer’s Dis. 2012;29:711–26. https://doi.org/10.3233/JAD-2012-111853.
Yousef MI. Aluminium-induced changes in hemato-biochemical parameters, lipid peroxidation and enzyme activities of male rabbits: protective role of ascorbic acid. Toxicology. 2004;199:47–57. https://doi.org/10.1016/j.tox.2004.02.014.
Nedzvetsky VS, Tuzcu M, Yasar A, Tikhomirov AA, Baydas G. Effects of vitamin e against aluminum neurotoxicity in rats. Biochem (Moscow). 2006;71:239–44. https://doi.org/10.1134/S0006297906030023.
Abubakar MG, Taylor A, Ferns GAA. Regional accumulation of aluminium in the rat brain is affected by dietary vitamin E. J Trace Elem Med Biol. 2004;18:53–9. https://doi.org/10.1016/j.jtemb.2004.02.001.
Lin L, Huang QX, Yang SS, Chu J, Wang JZ, Tian Q. Melatonin in Alzheimer’s disease. Int J Mol Sci. 2013;14:14575–93. https://doi.org/10.3390/ijms140714575.
Albendea CD, Gómez-Trullén EM, Fuentes-Broto L, Miana-Mena FJ, Millán-Plano S, Reyes-Gonzales MC, et al. Melatonin reduces lipid and protein oxidative damage in synaptosomes due to aluminium. J Trace Elem Med Biol. 2007;21:261–8. https://doi.org/10.1016/j.jtemb.2007.04.002.
Jiang T, Zhi XL, Zhang YH, Pan LF, Zhou P. Inhibitory effect of curcumin on the Al(III)-induced Aβ42 aggregation and neurotoxicity in vitro. Biochim Biophys Acta Mol Basis Dis. 2012;1822:1207–15. https://doi.org/10.1016/j.bbadis.2012.04.015.
Sethi P, Jyoti A, Hussain E, Sharma D. Curcumin attenuates aluminium-induced functional neurotoxicity in rats. Pharmacol Biochem Behav. 2009;93:31–9. https://doi.org/10.1016/j.pbb.2009.04.005.
Mahboob A, Farhat SM, Iqbal G, Babar MM, Zaidi NusSS, Nabavi SM, et al. Alpha-lipoic acid-mediated activation of muscarinic receptors improves hippocampus- and amygdala-dependent memory. Brain Res Bull. 2016;122:19–28. https://doi.org/10.1016/j.brainresbull.2016.02.014.
Dos Santos SM, Romeiro CFR, Rodrigues CA, Cerqueira ARL, Monteiro MC. Mitochondrial dysfunction and alpha-lipoic acid: beneficial or harmful in Alzheimer’s disease? Oxid Med Cell Longev. 2019. https://doi.org/10.1155/2019/8409329.
Prakash A, Kumar A. Effect of N-Acetyl cysteine against aluminium-induced cognitive dysfunction and oxidative damage in rats. Basic Clin Pharmacol Toxicol. 2009;105:98–104. https://doi.org/10.1111/j.1742-7843.2009.00404.x.
Belaïd-Nouira Y, Bakhta H, Bouaziz M, Flehi-Slim I, Haouas Z, Ben CH. Study of lipid profile and parieto-temporal lipid peroxidation in AlCl3 mediated neurotoxicity modulatory effect of fenugreek seeds. Lipids Health Dis. 2012;11:1–8. https://doi.org/10.1186/1476-511X-11-16.
Prakash A, Shur B, Kumar A. Naringin protects memory impairment and mitochondrial oxidative damage against aluminum-induced neurotoxicity in rats. Int J Neurosci. 2013;123:636–45. https://doi.org/10.3109/00207454.2013.785542.
Justin-Thenmozhi A, Dhivya Bharathi M, Kiruthika R, Manivasagam T, Borah A, Essa MM. Attenuation of aluminum chloride-induced neuroinflammation and caspase activation through the AKT/GSK-3β pathway by hesperidin in wistar rats. Neurotox Res. 2018;34:463–76. https://doi.org/10.1007/s12640-018-9904-4.
Jun-Qing Y, Bei-Zhong L, Bai-Cheng H, Qi-Qin Z. Protective effects of meloxicam on aluminum overload-induced cerebral damage in mice. Eur J Pharmacol. 2006;547:52–8. https://doi.org/10.1016/j.ejphar.2006.07.031.
Jamil A, Mahboob A, Ahmed T. Ibuprofen targets neuronal pentraxins expresion and improves cognitive function in mouse model of AlCl3-induced neurotoxicity. Exp Ther Med. 2016;11:601–6. https://doi.org/10.3892/etm.2015.2928.
Abd-Elhady RM, Elsheikh AM, Khalifa AE. Anti-Amnestic properties of Ginkgo biloba extract on impaired memory function induced by aluminum in rats. Int J Dev Neurosci. 2013;31:598–607. https://doi.org/10.1016/j.ijdevneu.2013.07.006.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Dey, M., Singh, R.K. Neurotoxic effects of aluminium exposure as a potential risk factor for Alzheimer’s disease. Pharmacol. Rep 74, 439–450 (2022). https://doi.org/10.1007/s43440-022-00353-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s43440-022-00353-4