CfD C. Prevention. Novel coronavirus (2019-nCoV) Situation Summary. Geneva: WHO; 2019.
Google Scholar
WHO. Coronavirus disease 2019 (COVID-19): situation report, 72. Geneva: WHO; 2020.
Google Scholar
Xu X-W, Wu X-X, Jiang X-G, Xu K-J, Ying L-J, Ma C-L, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. BMJ. 2020;368:m792.
Google Scholar
Lam TT-Y, Shum MH-H, Zhu H-C, Tong Y-G, Ni X-B, Liao Y-S, et al. Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature. 2020;583:282–5.
CAS
PubMed
Google Scholar
Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol (Clifton). 2015;1282:1–23.
CAS
Google Scholar
Raj VS, Mou H, Smits SL, Dekkers DH, Müller MA, Dijkman R, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013;495(7440):251–4.
CAS
PubMed
PubMed Central
Google Scholar
Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH, Look AT, et al. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature. 1992;357(6377):420–2.
CAS
PubMed
PubMed Central
Google Scholar
Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell. 2020;181:894–904.
CAS
PubMed
PubMed Central
Google Scholar
Hoffmann M, Kleine-Weber H, Pöhlmann S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell. 2020;78(4):779-84.e5.
CAS
PubMed
PubMed Central
Google Scholar
Coutard B, Valle C, de Lamballerie X, Canard B, Seidah N, Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antivir Res. 2020;176:104742.
CAS
PubMed
Google Scholar
Qian Z, Dominguez SR, Holmes KV. Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation. PLoS ONE. 2013. https://doi.org/10.1371/journal.pone.0076469.
Article
PubMed
PubMed Central
Google Scholar
Millet JK, Whittaker GR. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc Natl Acad Sci. 2014;111(42):15214–9.
CAS
PubMed
PubMed Central
Google Scholar
Han J, Wang Y, Wang S, Chi C. Interaction of Mint3 with Furin regulates the localization of Furin in the trans-Golgi network. J Cell Sci. 2008;121(13):2217–23.
CAS
PubMed
Google Scholar
Evdokimov K, Biswas S, Adrian M, Weber J, Schledzewski K, Winkler M, et al. Proteolytic cleavage of LEDA-1/PIANP by furin-like proprotein convertases precedes its plasma membrane localization. Biochem Biophys Res Commun. 2013;434(1):22–7.
CAS
PubMed
Google Scholar
Wo ZG. Sequence analysis indicates that 2019-ncov virus contains a putative furin cleavage site at the boundary of S1 and S2 domains of spike protein. Preprints. 2020. https://doi.org/10.3121/osf.io/nkcrf.
Article
Google Scholar
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271–80.
CAS
PubMed
PubMed Central
Google Scholar
Papa G, Mallery DL, Albecka A, Welch LG, Cattin-Ortolá J, Luptak J, et al. Furin cleavage of SARS-CoV-2 Spike promotes but is not essential for infection and cell-cell fusion. PLoS Pathog. 2021;17(1):e1009246.
CAS
PubMed
PubMed Central
Google Scholar
Raghav PK, Kalyanaraman K, Kumar D. Human cell receptors: potential drug targets to combat COVID-19. Amino Acids. 2021;53(6):813–42.
CAS
PubMed
PubMed Central
Google Scholar
Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol. 2021;19(7):409–24.
CAS
PubMed
PubMed Central
Google Scholar
Barrett CT, Neal HE, Edmonds K, Moncman CL, Thompson R, Branttie JM, et al. Effect of clinical isolate or cleavage site mutations in the SARS-CoV-2 spike protein on protein stability, cleavage, and cell-cell fusion. J Biol Chem. 2021;297(1):100902.
CAS
PubMed
PubMed Central
Google Scholar
Johnson BA, Xie X, Bailey AL, Kalveram B, Lokugamage KG, Muruato A, et al. Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis. Nature. 2021;591(7849):293–9.
CAS
PubMed
PubMed Central
Google Scholar
Sørensen B, Susrud A, Dalgleish AG. Biovacc-19: a candidate vaccine for Covid-19 (SARS-CoV-2) developed from analysis of its general method of action for infectivity. QRB Discov. 2020;1:e6.
PubMed
PubMed Central
Google Scholar
Thomas G. Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat Rev Mol Cell Biol. 2002;3(10):753–66.
CAS
PubMed
PubMed Central
Google Scholar
Shiryaev SA, Remacle AG, Ratnikov BI, Nelson NA, Savinov AY, Wei G, et al. Targeting host cell furin proprotein convertases as a therapeutic strategy against bacterial toxins and viral pathogens. J Biol Chem. 2007;282(29):20847–53.
CAS
PubMed
Google Scholar
Braun E, Sauter D. Furin-mediated protein processing in infectious diseases and cancer. Clin Transl Immunol. 2019;8(8):e1073.
Google Scholar
Al-Mulla F, Mohammad A, Al Madhoun A, Haddad D, Ali H, Eaaswarkhanth M, et al. ACE2 and FURIN variants are potential predictors of SARS-CoV-2 outcome: a time to implement precision medicine against COVID-19. Heliyon. 2021;7(2):e06133.
PubMed
PubMed Central
Google Scholar
Dubois CM, Blanchette F, Laprise M-H, Leduc R, Grondin F, Seidah NG. Evidence that furin is an authentic transforming growth factor-β1-converting enzyme. Am J Pathol. 2001;158(1):305–16.
CAS
PubMed
PubMed Central
Google Scholar
Oksanen A, Aittomäki S, Jankovic D, Ortutay Z, Pulkkinen K, Hämäläinen S, et al. Proprotein convertase FURIN constrains Th2 differentiation and is critical for host resistance against Toxoplasma gondii. J Immunol. 2014;193(11):5470–9.
CAS
PubMed
Google Scholar
Pesu M, Muul L, Kanno Y, O’Shea JJ. Proprotein convertase furin is preferentially expressed in T helper 1 cells and regulates interferon gamma. Blood. 2006;108(3):983–5.
CAS
PubMed
PubMed Central
Google Scholar
Pesu M, Watford WT, Wei L, Xu L, Fuss I, Strober W, et al. T-cell-expressed proprotein convertase furin is essential for maintenance of peripheral immune tolerance. Nature. 2008;455(7210):246–50.
CAS
PubMed
PubMed Central
Google Scholar
Vähätupa M, Aittomäki S, Martinez Cordova Z, May U, Prince S, Uusitalo-Järvinen H, et al. T-cell-expressed proprotein convertase FURIN inhibits DMBA/TPA-induced skin cancer development. Oncoimmunology. 2016;5(12):e1245266.
PubMed
PubMed Central
Google Scholar
Remacle AG, Shiryaev SA, Oh E-S, Cieplak P, Srinivasan A, Wei G, et al. Substrate cleavage analysis of furin and related proprotein convertases A comparative study. J Biol Chem. 2008;283(30):20897–906.
CAS
PubMed
PubMed Central
Google Scholar
Anderson E, Thomas L, Hayflick J, Thomas G. Inhibition of HIV-1 gp160-dependent membrane fusion by a furin-directed alpha 1-antitrypsin variant. J Biol Chem. 1993;268(33):24887–91.
CAS
PubMed
Google Scholar
Garten W, Hallenberger S, Ortmann D, Schäfer W, Vey M, Angliker H, et al. Processing of viral glycoproteins by the subtilisin-like endoprotease furin and its inhibition by specific peptidylchloroalkylketones. Biochimie. 1994;76(3–4):217–25.
CAS
PubMed
Google Scholar
Bruno BJ, Miller GD, Lim CS. Basics and recent advances in peptide and protein drug delivery. Ther Deliv. 2013;4(11):1443–67.
CAS
PubMed
Google Scholar
Ramos-Molina B, Lick AN, Shirazi AN, Oh D, Tiwari R, El-Sayed NS, et al. Cationic cell-penetrating peptides are potent furin inhibitors. PLoS ONE. 2015. https://doi.org/10.1371/journal.pone.0130417.
Article
PubMed
PubMed Central
Google Scholar
Lam V, van T, Ivanova T, Hardes K, Heindl MR, Morty RE, Böttcher-Friebertshäuser E, et al. Design, synthesis, and characterization of macrocyclic inhibitors of the proprotein convertase furin. ChemMedChem. 2019;14(6):673–85.
Google Scholar
Imran M, Saleemi MK, Chen Z, Wang X, Zhou D, Li Y, et al. Decanoyl-Arg-Val-Lys-Arg-Chloromethylketone: an antiviral compound that acts against flaviviruses through the inhibition of furin-mediated prM cleavage. Viruses. 2019;11(11):1011.
CAS
PubMed Central
Google Scholar
Becker GL, Sielaff F, Than ME, Lindberg I, Routhier S, Day R, et al. Potent inhibitors of furin and furin-like proprotein convertases containing decarboxylated P1 arginine mimetics. J Med Chem. 2010;53(3):1067–75.
CAS
PubMed
PubMed Central
Google Scholar
Bestle D, Heindl MR, Limburg H, Lam V, van T, Pilgram O, Moulton H, et al. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance. 2020. https://doi.org/10.2650/lsa.202000786.
Article
PubMed
PubMed Central
Google Scholar
Dufour EK, Denault J-B, Bissonnette L, Hopkins PC, Lavigne P, Leduc R. The contribution of arginine residues within the P6–P1 region of α1-Antitrypsin to its reaction with furin. J Biol Chem. 2001;276(42):38971–9.
CAS
PubMed
Google Scholar
Jean F, Stella K, Thomas L, Liu G, Xiang Y, Reason AJ, et al. α1-Antitrypsin Portland, a bioengineered serpin highly selective for furin: application as an antipathogenic agent. Proc Natl Acad Sci. 1998;95(13):7293–8.
CAS
PubMed
PubMed Central
Google Scholar
Jiao G-S, Cregar L, Wang J, Millis SZ, Tang C, O’Malley S, et al. Synthetic small molecule furin inhibitors derived from 2, 5-dideoxystreptamine. Proc Natl Acad Sci. 2006;103(52):19707–12.
CAS
PubMed
PubMed Central
Google Scholar
Dahms SO, Jiao G-S, Than ME. Structural studies revealed active site distortions of human furin by a small molecule inhibitor. ACS Chem Biol. 2017;12(5):1211–6.
CAS
PubMed
Google Scholar
Dahms SO, Haider T, Klebe G, Steinmetzer T, Brandstetter H. OFF-state-specific inhibition of the proprotein convertase furin. ACS Chem Biol. 2021;16(9):1692–700.
CAS
PubMed
PubMed Central
Google Scholar
Basak A, Banik UK, Basak S, Seidah NG, Li S (2006) Evaluation of anti-proprotein convertase activity of diterpene andrographolid derived products. In: Regulation of carcinogenesis, angiogenesis and metastasis by the proprotein convertases (PCs): Springer, Berlin, p 137–154
Lalou C, Basak A, Mishra P, Mohanta B, Banik R, Dinda B, et al. Inhibition of tumor cells proliferation and migration by the flavonoid furin inhibitor isolated from Oroxylum indicum. Curr Med Chem. 2013;20(4):583–91.
CAS
PubMed
Google Scholar
Peng M, Watanabe S, Chan KWK, He Q, Zhao Y, Zhang Z, et al. Luteolin restricts dengue virus replication through inhibition of the proprotein convertase furin. Antiviral Res. 2017;143:176–85.
CAS
PubMed
Google Scholar
Haanen J, Carbonnel F, Robert C, Kerr K, Peters S, Larkin J, et al. Management of toxicities from immunotherapy: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(suppl 4):119–42.
Google Scholar
Janahi IA, Rehman A, Baloch NU-A (2018) Corticosteroids and their use in respiratory disorders. In: Ali Gamal Al-kaf (ed), p 47. https://doi.org/10.5772/intechopen.72147
Habtemariam S, Nabavi SF, Banach M, Berindan-Neagoe I, Sarkar K, Sil PC, et al. Should we try SARS-CoV-2 helicase inhibitors for COVID-19 therapy? Arch Med Res. 2020;51(7):733–5.
CAS
PubMed
PubMed Central
Google Scholar
Banach M, Penson PE, Fras Z, Vrablik M, Pella D, Reiner Ž, et al. Brief recommendations on the management of adult patients with familial hypercholesterolemia during the COVID-19 pandemic. Pharmacol Res. 2020;158:104891.
CAS
PubMed
PubMed Central
Google Scholar
Katsiki N, Banach M, Mikhailidis DP. Lipid-lowering therapy and renin–angiotensin–aldosterone system inhibitors in the era of the COVID-19 pandemic. Arch Med Sci. 2020;16(2):485–9.
CAS
PubMed
PubMed Central
Google Scholar
Reiner Ž, Hatamipour M, Banach M, Pirro M, Al-Rasadi K, Jamialahmadi T, et al. Statins and the Covid-19 main protease: in silico evidence on direct interaction. Arch Med Sci. 2020;16(2):490–6.
CAS
PubMed
PubMed Central
Google Scholar
Zahedipour F, Hosseini SA, Sathyapalan T, Majeed M, Jamialahmadi T, Al-Rasadi K, et al. Potential effects of curcumin in the treatment of COVID-19 infection. Phytother Res. 2020;34(11):2911–20.
CAS
PubMed
Google Scholar