Skip to main content
Log in

Decreased efficacy of the ketamine and scopolamine-induced sustained antidepressant-like effects in rats receiving metformin

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Metformin is the most widely used drug for treating type 2 diabetes mellitus (DM), which frequently co-occurs with depressive disorders. Thus, patients with depression are likely to receive metformin. Metformin activates AMP-activated kinase (AMPK), which inhibits mechanistic target of rapamycin complex 1 (mTORC1) signaling. mTORC1 activation is essential for the antidepressant effects of ketamine and scopolamine. Thus, we hypothesized that metformin may attenuate ketamine- or scopolamine-induced antidepressant efficacies by blocking their mTORC1 activation.

Methods

We assessed the acute and sustained antidepressant-like actions of ketamine and scopolamine in male Sprague–Dawley rats subjected to the forced swim test with or without metformin pretreatment. The expressions of AMPK, mTORC1, and brain-derived neurotrophic factor (BDNF) in their prefrontal cortex were assessed.

Results

Metformin (50 mg/kg) attenuated the sustained, but not acute, antidepressant-like effects of ketamine (10 mg/kg) and scopolamine (25 μg/kg). Although metformin reduced mTORC1 downstream activated P70S6K, it did not significantly alter mTORser2448 activation and even increased BDNF expression. Notably, ketamine, scopolamine, and metformin all exerted significant antidepressant-like actions, as evidenced by increased AMPK phosphorylation and BDNF expression.

Conclusions

Metformin-induced attenuation of sustained antidepressant-like effects are not directly dependent on AMPK-deactivated mTORC1. Our results indicate the complexity of interactions between AMPK, BDNF, and mTORC1. Further research, including mechanistic studies, is warranted to comprehensively evaluate the application of metformin in patients receiving mTORC1-based antidepressants.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AMPK:

AMP-activated kinase

ANOVA:

Analysis of variance

BDNF:

Brain-derived neurotrophic factor

DM:

Diabetes mellitus

FST:

Forced swim test

Ip :

Intraperitoneal

mTOR:

Mechanistic target of rapamycin

mTORC1:

MTOR complex 1

mTORC2:

MTOR complex 2

NMDAR:

N-Methyl-d-aspartate receptor

OFT:

Open-field test

P70S6K:

P70S6 kinase

PFC:

Prefrontal cortex

SE:

Standard error

References

  1. Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell. 2010;40:310–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kim SG, Buel GR, Blenis J. Nutrient regulation of the mTOR complex 1 signaling pathway. Mol Cells. 2013;35:463–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12:21–35.

    CAS  PubMed  Google Scholar 

  4. Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017;168:960–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Shaw RJ, Lamia KA, Vasquez D, Koo S-H, Bardeesy N, DePinho RA, et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science. 2005;310:1642–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lam TG, Jeong YS, Kim SA, Ahn SG. New metformin derivative HL 156A prevents oral cancer progression by inhibiting the insulin-like growth factor/AKT/mammalian target of rapamycin pathways. Cancer Sci. 2018;109:699–709.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim JH, Lee KJ, Seo Y, Kwon J-H, Yoon JP, Kang JY, et al. Effects of metformin on colorectal cancer stem cells depend on alterations in glutamine metabolism. Sci Rep. 2018;8:409.

    PubMed  PubMed Central  Google Scholar 

  8. Bednar F, Simeone DM. Metformin and cancer stem cells: old drug, new targets. Cancer Prev Res (Phila). 2012;5:351–4.

    CAS  Google Scholar 

  9. Joshi T, Singh AK, Haratipour P, Sah AN, Pandey AK, Naseri R, et al. Targeting AMPK signaling pathway by natural products for treatment of diabetes mellitus and its complications. J Cell Physiol. 2019;234:17212–31.

    CAS  PubMed  Google Scholar 

  10. Hoeffer CA, Klann E. mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci. 2010;33:67–75.

    CAS  PubMed  Google Scholar 

  11. Costa-Mattioli M, Monteggia LM. mTOR complexes in neurodevelopmental and neuropsychiatric disorders. Nat Neurosci. 2013;16:1537–43.

    CAS  PubMed  Google Scholar 

  12. Koike H, Chaki S. Requirement of AMPA receptor stimulation for the sustained antidepressant activity of ketamine and LY341495 during the forced swim test in rats. Behav Brain Res. 2014;271:111–5.

    CAS  PubMed  Google Scholar 

  13. Voleti B, Navarria A, Liu RJ, Banasr M, Li N, Terwilliger R, et al. Scopolamine rapidly increases mammalian target of rapamycin complex 1 signaling, synaptogenesis, and antidepressant behavioral responses. Biol Psychiatry. 2013;74:742–9.

    CAS  PubMed  Google Scholar 

  14. Palucha-Poniewiera A, Szewczyk B, Pilc A. Activation of the mTOR signaling pathway in the antidepressant-like activity of the mGlu5 antagonist MTEP and the mGlu7 agonist AMN082 in the FST in rats. Neuropharmacology. 2014;82:59–68.

    CAS  PubMed  Google Scholar 

  15. Dwyer JM, Lepack AE, Duman RS. mTOR activation is required for the antidepressant effects of mGluR(2)/(3) blockade. Int J Neuropsychopharmacol. 2012;15:429–34.

    CAS  PubMed  Google Scholar 

  16. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010;329:959–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry. 2006;59:1116–27.

    CAS  PubMed  Google Scholar 

  18. Du J, Suzuki K, Wei Y, Wang Y, Blumenthal R, Chen Z, et al. The anticonvulsants lamotrigine, riluzole, and valproate differentially regulate AMPA receptor membrane localization: relationship to clinical effects in mood disorders. Neuropsychopharmacology. 2007;32:793–802.

    CAS  PubMed  Google Scholar 

  19. Reus GZ, Stringari RB, Ribeiro KF, Ferraro AK, Vitto MF, Cesconetto P, et al. Ketamine plus imipramine treatment induces antidepressant-like behavior and increases CREB and BDNF protein levels and PKA and PKC phosphorylation in rat brain. Behav Brain Res. 2011;221:166–71.

    CAS  PubMed  Google Scholar 

  20. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47:351–4.

    CAS  PubMed  Google Scholar 

  21. Furey ML, Drevets WC. Antidepressant efficacy of the antimuscarinic drug scopolamine: a randomized, placebo-controlled clinical trial. Arch Gen Psychiatry. 2006;63:1121–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Organization WH. Diabetes–Factsheet. 2012. Available from: World Health Organization. 2016. http://www.who.int/mediacentre/factsheets/fs312/en. Accessed 14 Sep 2015. 2016.

  23. Knol MJ, Twisk JW, Beekman AT, Heine RJ, Snoek FJ, Pouwer F. Depression as a risk factor for the onset of type 2 diabetes mellitus. A meta-analysis. Diabetologia. 2006;49:837–45.

    CAS  PubMed  Google Scholar 

  24. Roy T, Lloyd CE. Epidemiology of depression and diabetes: a systematic review. J Affect Disord. 2012;142(Suppl):S8-21.

    PubMed  Google Scholar 

  25. Hardie DG. Role of AMP-activated protein kinase in the metabolic syndrome and in heart disease. FEBS Lett. 2008;582:81–9.

    CAS  PubMed  Google Scholar 

  26. Halimi S. Metformin: 50 years old, fit as a fiddle, and indispensable for its pivotal role in type 2 diabetes management. Diabetes Metab. 2006;32:555–6.

    CAS  PubMed  Google Scholar 

  27. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108:1167–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Can A, Dao DT, Arad M, Terrillion CE, Piantadosi SC, Gould TD. The mouse forced swim test. J Vis Exp. 2012;59:e3638.

    Google Scholar 

  29. Yankelevitch-Yahav R, Franko M, Huly A, Doron R. The forced swim test as a model of depressive-like behavior. J Vis Exp. 2015. https://doi.org/10.3791/52587.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Feyissa DD, Aher YD, Engidawork E, Hoger H, Lubec G, Korz V. Individual differences in male rats in a behavioral test battery: a multivariate statistical approach. Front Behav Neurosci. 2017;11:26.

    PubMed  PubMed Central  Google Scholar 

  31. Huang C-C, Tsai M-H, Wu Y-C, Chen K-T, Chuang H-W, Chen Y, et al. Activity dependent mammalian target of rapamycin pathway and brain derived neurotrophic factor release is required for the rapid antidepressant effects of puerarin. Am J Chin Med. 2018. https://doi.org/10.1142/S0192415X18500787.

    Article  PubMed  Google Scholar 

  32. Jiang T, Yu JT, Zhu XC, Wang HF, Tan MS, Cao L, et al. Acute metformin preconditioning confers neuroprotection against focal cerebral ischaemia by pre-activation of AMPK-dependent autophagy. Br J Pharmacol. 2014;171:3146–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature. 2011;475:91–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ghosal S, Bang E, Yue W, Hare BD, Lepack AE, Girgenti MJ, et al. Activity-dependent brain-derived neurotrophic factor release is required for the rapid antidepressant actions of scopolamine. Biol Psychiatry. 2018;83:29–37.

    CAS  PubMed  Google Scholar 

  35. González A, Hall MN, Lin SC, Hardie DG. AMPK and TOR: the Yin and Yang of cellular nutrient sensing and growth control. Cell Metab. 2020;31:472–92.

    PubMed  Google Scholar 

  36. Patil S, Jain P, Ghumatkar P, Tambe R, Sathaye S. Neuroprotective effect of metformin in MPTP-induced Parkinson’s disease in mice. Neuroscience. 2014;277:747–54.

    CAS  PubMed  Google Scholar 

  37. Katila N, Bhurtel S, Shadfar S, Srivastav S, Neupane S, Ojha U, et al. Metformin lowers alpha-synuclein phosphorylation and upregulates neurotrophic factor in the MPTP mouse model of Parkinson’s disease. Neuropharmacology. 2017;125:396–407.

    CAS  PubMed  Google Scholar 

  38. Yoo DY, Kim W, Nam SM, Yoo KY, Lee CH, Choi JH, et al. Reduced cell proliferation and neuroblast differentiation in the dentate gyrus of high fat diet-fed mice are ameliorated by metformin and glimepiride treatment. Neurochem Res. 2011;36:2401–8.

    CAS  PubMed  Google Scholar 

  39. Xu SX, Zhou ZQ, Li XM, Ji MH, Zhang GF, Yang JJ. The activation of adenosine monophosphate-activated protein kinase in rat hippocampus contributes to the rapid antidepressant effect of ketamine. Behav Brain Res. 2013;253:305–9.

    CAS  PubMed  Google Scholar 

  40. Weckmann K, Deery MJ, Howard JA, Feret R, Asara JM, Dethloff F, et al. Ketamine’s antidepressant effect is mediated by energy metabolism and antioxidant defense system. Sci Rep. 2017;7:15788.

    PubMed  PubMed Central  Google Scholar 

  41. Hundal RS, Inzucchi SE. Metformin. Drugs. 2003;63:1879–94.

    CAS  PubMed  Google Scholar 

  42. Dwyer JM, Duman RS. Activation of mammalian target of rapamycin and synaptogenesis: role in the actions of rapid-acting antidepressants. Biol Psychiatry. 2013;73:1189–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Renner UD, Oertel R, Kirch W. Pharmacokinetics and pharmacodynamics in clinical use of scopolamine. Ther Drug Monit. 2005;27:655–65.

    CAS  PubMed  Google Scholar 

  44. Chai X, Chu H, Yang X, Meng Y, Shi P, Gou S. Metformin increases sensitivity of pancreatic cancer cells to gemcitabine by reducing CD133+ cell populations and suppressing ERK/P70S6K signaling. Sci Rep. 2015;5:14404.

    PubMed  PubMed Central  Google Scholar 

  45. Liu W, Liu J, Huang Z, Cui Z, Li L, Liu W, et al. Possible role of GLP-1 in antidepressant effects of metformin and exercise in CUMS mice. J Affect Disord. 2019;246:486–97.

    CAS  PubMed  Google Scholar 

  46. Fang W, Zhang J, Hong L, Huang W, Dai X, Ye Q, et al. Metformin ameliorates stress-induced depression-like behaviors via enhancing the expression of BDNF by activating AMPK/CREB-mediated histone acetylation. J Affect Disord. 2020;260:302–13.

    CAS  PubMed  Google Scholar 

  47. Ai H, Fang W, Hu H, Hu X, Lu W. Antidiabetic drug metformin ameliorates depressive-like behavior in mice with chronic restraint stress via activation of AMP-activated protein kinase. Aging Dis. 2020;11:31–43.

    PubMed  PubMed Central  Google Scholar 

  48. Guo M, Mi J, Jiang QM, Xu JM, Tang YY, Tian G, et al. Metformin may produce antidepressant effects through improvement of cognitive function among depressed patients with diabetes mellitus. Clin Exp Pharmacol Physiol. 2014;41:650–6.

    CAS  PubMed  Google Scholar 

  49. Ackermann RT, Edelstein SL, Narayan KM, Zhang P, Engelgau MM, Herman WH, et al. Changes in health state utilities with changes in body mass in the Diabetes Prevention Program. Obesity (Silver Spring). 2009;17:2176–81.

    Google Scholar 

  50. Hu Y, Xing H, Dong X, Lu W, Xiao X, Gao L, et al. Pioglitazone is an effective treatment for patients with post-stroke depression combined with type 2 diabetes mellitus. Exp Ther Med. 2015;10:1109–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kashani L, Omidvar T, Farazmand B, Modabbernia A, Ramzanzadeh F, Tehraninejad ES, et al. Does pioglitazone improve depression through insulin-sensitization? Results of a randomized double-blind metformin-controlled trial in patients with polycystic ovarian syndrome and comorbid depression. Psychoneuroendocrinology. 2013;38:767–76.

    CAS  PubMed  Google Scholar 

  52. Krysiak R, Drosdzol-Cop A, Skrzypulec-Plinta V, Okopien B. Sexual functioning and depressive symptoms in women with diabetes and prediabetes receiving metformin therapy: a pilot study. Exp Clin Endocrinol Diabetes. 2017;125:42–8.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Technology, Taiwan (MOST 106-2314-B-039-029-MY3, MOST 109-2314-B-039-040, MOST 109-2320-B-039-046, and MOST 110-2320-B-039-037), China Medical University Hospital, Taiwan (DMR-107-094, DMR-108-092), China Medical University, Taiwan (CMU110-MF-87), and Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nantou, Taiwan (TTPC-110018).

Author information

Authors and Affiliations

Authors

Contributions

H-WC, I-HW, and C-CH contributed to the study design. H-WC, I-HW, C-TL, and C-CH all contributed to the study implementation. C-CH contributed to the statistical analysis of the data. H-WC, I-HW, and C-CH all contributed to the writing of the manuscript. All authors have approved this final manuscript.

Corresponding authors

Correspondence to I.-Hua Wei or Chih-Chia Huang.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuang, HW., Wei, IH., Li, CT. et al. Decreased efficacy of the ketamine and scopolamine-induced sustained antidepressant-like effects in rats receiving metformin. Pharmacol. Rep 74, 340–352 (2022). https://doi.org/10.1007/s43440-021-00342-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-021-00342-z

Keywords

Navigation