Skip to main content

Advertisement

Log in

Tannic acid enhances cisplatin effect on cell proliferation and apoptosis of human osteosarcoma cell line (U2OS)

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

The increase in cases of chemoresistance of cisplatin for osteosarcoma treatment has called for the need to establish a new treatment regime. Tannic acid (TA) possesses a potent antiproliferative effect against various cancers. Therefore, this study investigated the effect of TA combined with cisplatin on human osteosarcoma cell lines (U2OS).

Methods

MTT assay was used to determine the half-maximal inhibitory concentration (IC50), while the combination index (CI) value was utilized to analyze the interaction within each combination. The antiproliferative effect of the treatment was evaluated by trypan blue exclusion assay. The morphological changes of cells were observed under a phase-contrast inverted microscope. The nuclear morphology and percentage of apoptosis cells were evaluated by using the Hoechst 33258 staining and annexin V/PI assay, respectively.

Results

The U2OS cells showed cytotoxic effect when treated with TA and cisplatin, with IC50 at 4.47 µg/mL and 16.25 µg/mL, respectively. The TA demonstrated no significant inhibition effect on the normal human fetal osteoblast cells (hFOB 1.19); yet, interestingly, a potent proliferative effect was indicated. Synergistic interaction was triggered when TA was combined with cisplatin at percentage ratios of 90:10 and 85:15. Meanwhile, antagonistic interaction was induced in the combination at percentage ratios of 75:25 and 50:50. On the other hand, a significant antiproliferative effect with prominent morphological alteration was detected in the cells treated with a combination of TA and cisplatin at the percentage ratio of 90:10. Additionally, combination-treated cells demonstrated the highest percentage of apoptosis cells, with distinct chromosomal condensation, nuclear fragmentation, reduction of nuclear volume, and notable apoptotic body.

Conclusion

Therefore, there is a high potential for the inclusion of TA in the cisplatin-based chemotherapeutic regimen of osteosarcoma.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CI:

Combination index

CO2 :

Carbon dioxide

Cells/mL:

Cells per milliliter

FITC:

Fluorescein isothiocyanate

FACS:

Fluorescence-activated cell sorting

hFOB 1.19:

Human fetal osteoblast cells

IC50 :

Half-maximal inhibitory concentration

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

mg/mL:

Milligram per milliliter

µg/mL:

Microgram per milliliter

OD:

Optical density

PI assay:

Propidium iodide assay

ROS:

Reactive oxygen species

Saos-2:

Sarcoma osteogenic-2

TA:

Tannic acid

U2OS:

Human osteosarcoma cells

UV:

Ultraviolet

References

  1. Liao YX, Zhou CH, Zeng H, Zuo DQ, Wang ZY, Yin F, et al. The role of the CXCL12-CXCR4/CXCR7 axis in the progression and metastasis of bone sarcomas (review). Int J Mol Med. 2013;32(6):1239–46. https://doi.org/10.3892/ijmm.2013.1521.

    Article  CAS  PubMed  Google Scholar 

  2. Eyre R, Feltbower RG, James PW, Blakey K, Mubwandarikwa E, Forman D, et al. The epidemiology of bone cancer in 0–39 year olds in Northern England, 1981–2002. BMC Cancer. 2010;10(1):357. https://doi.org/10.1186/1471-2407-10-357.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Spector LG, Ritter K, Demerath EW, Sklar C, Ross JA, Krailo M, et al. Abstract 2532: pediatric osteosarcoma patients are taller than average from birth to age twelve: A report from the children’s oncology group. In: epidemiology; AACR 104th annual meeting 2013. Washington DC, 2013. p. 2532–2532. https://doi.org/10.1158/1538-7445.AM2013-2532

  4. Li C, Cai J, Ge F, Wang G. TGM2 Knockdown reverses cisplatin chemoresistance in osteosarcoma. Int J Mol Med. 2018;42:1799–808. https://doi.org/10.3892/ijmm.2018.3753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kasiram MZ, Hapidin H, Abdullah H, Ahmad A, Sulong S. Combination therapy of cisplatin and other agents for osteosarcoma: a review. Curr Cancer Ther Rev. 2021;17(2):137–47. https://doi.org/10.2174/1573394716999201016160946.

    Article  CAS  Google Scholar 

  6. Mohanty S, Aghighi M, Yerneni K, Theruvath JL, Daldrup-Link HE. Improving the efficacy of osteosarcoma therapy: combining drugs that turn cancer cell ‘don’t eat me’ signals off and ‘eat me’ signals on. Mol Oncol. 2019;13(10):2049–61. https://doi.org/10.1002/1878-0261.12556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fagioli F, Biasin-Mereuta OM, Muraro M, Luksch R, Ferrari S, Aglietta M, et al. Poor prognosis osteosarcoma: new therapeutic approach. Bone Marrow Transplant. 2008;41(2):131–4. https://doi.org/10.1038/bmt.2008.71.

    Article  Google Scholar 

  8. Mirabello L, Troisi RJ. Savage SA Osteosarcoma incidence and survival rates from 1973 to 2004. Cancer. 2009;115(7):1531–43. https://doi.org/10.1002/cncr.24121.

    Article  PubMed  Google Scholar 

  9. Duchman KR, Gao Y, Miller BJ. Prognostic factors for survival in patients with high-grade osteosarcoma using the surveillance, epidemiology, and end results (SEER) program database. Cancer Epidemiol. 2015;39(4):593–9. https://doi.org/10.1016/j.canep.2015.05.001.

    Article  PubMed  Google Scholar 

  10. Chen L, Jiang K, Jiang H, Wei P. MiR-155 mediates drug resistance in osteosarcoma cells via inducing autophagy. Exp Ther Med. 2014;8(2):527–32. https://doi.org/10.3892/etm.2014.1752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019;8:527–32. https://doi.org/10.20517/cdr.2019.10.

    Article  Google Scholar 

  12. Sebastian KS, Thampan RV. Differential effects of soybean and fenugreek extracts on the growth of MCF-7 cells. Chem Biol Interact. 2007;170(2):135–43. https://doi.org/10.1016/j.cbi.2007.07.011.

    Article  CAS  PubMed  Google Scholar 

  13. Abdel-Daim MM, Aly SM, Abo-el-Sooud K, Giorgi M, Ursoniu S. Role of natural products in ameliorating drugs and chemicals toxicity. Evidence-Based Comple Altern Med. 2016;2016:1–2. https://doi.org/10.1155/2016/7879406.

    Article  Google Scholar 

  14. Albulescu M. Phytochemicals in antitumor herbs and herbal formulas. In: Rao V, editor. Phytochemicals - isolation characterisation and role in human health. InTech; 2015.

    Google Scholar 

  15. Gülçin İ, Huyut Z, Elmastaş M, Aboul-Enein HY. Radical scavenging and antioxidant activity of tannic acid. Arab J Chem. 2010;3(1):43–53. https://doi.org/10.1016/j.arabjc.2009.12.008.

    Article  CAS  Google Scholar 

  16. Lou W, Chen Y, Ma H, Liang G, Liu B. Antioxidant and α-amylase inhibitory activities of tannic acid. J Food Sci Technol. 2018;55(9):3640–6. https://doi.org/10.1007/s13197-018-3292-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nagesh PKB, Chowdhury P, Hatami E, Jain S, Dan N, Kashyap VK, et al. Tannic acid inhibits lipid metabolism and induce ROS in prostate cancer cells. Sci Rep [Internet]. 2020;10(1):980. https://doi.org/10.1038/s41598-020-57932-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Darvin P, Joung YH, Kang DY, Sp N, Byun HJ, Hwang TS, et al. Tannic acid inhibits EGFR/STAT1/3 and enhances p38/STAT1 signalling axis in breast cancer cells. J Cell Mol Med. 2017;21(4):720–34. https://doi.org/10.1111/jcmm.13015.

    Article  CAS  PubMed  Google Scholar 

  19. Kim SJ, Kim HS, Seo YR. Understanding of ROS-inducing strategy in anticancer therapy. Oxid Med Cell Longev. 2019;2019:1–12. https://doi.org/10.1155/2019/5381692.

    Article  CAS  Google Scholar 

  20. Singh K, Bhori M, Kasu YA, Bhat G, Marar T. Antioxidants as precision weapons in war against cancer chemotherapy induced toxicity – Exploring the armoury of obscurity. Saudi Pharm J. 2018;26(2):177–90. https://doi.org/10.1016/j.jsps.2017.12.013.

    Article  PubMed  Google Scholar 

  21. Liu B, Liu J, Chen J, Zhu D, Zhou H, Wang X. Study on anticancer activity of Caulis spatholobi extract on human osteosarcoma Saos-2 cells. African J Tradit Complement Altern Med. 2013. https://doi.org/10.4314/ajtcam.v10i5.6.

    Article  Google Scholar 

  22. Abe K, Yamamoto N, Hayashi K, Takeuchi A, Tsuchiya H. Caffeine citrate enhanced cisplatin antitumor effects in osteosarcoma and fibrosarcoma in vitro and in vivo. BMC Cancer. 2019;19(1):689. https://doi.org/10.1186/s12885-019-5891-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yong L, Ma Y, Zhu B, Liu X, Wang P, Liang C, et al. Oleandrin synergizes with cisplatin in human osteosarcoma cells by enhancing cell apoptosis through activation of the P38 MAPK signaling pathway. Cancer Chemother Pharmacol. 2018;82(6):1009–20. https://doi.org/10.1007/s00280-018-3692-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li Y, Zhang J, Ma D, Zhang L, Si M, Yin H, et al. Curcumin inhibits proliferation and invasion of osteosarcoma cells through inactivation of Notch-1 signaling. FEBS J. 2012;279(12):2247–59. https://doi.org/10.1111/j.1742-4658.2012.08607.x.

    Article  CAS  PubMed  Google Scholar 

  25. Tsakalozou E, Eckman AM, Bae Y. Combination effects of docetaxel and doxorubicin in hormone-refractory prostate cancer cells. Biochem Res Int. 2012;2012:1–10. https://doi.org/10.1155/2012/832059.

    Article  CAS  Google Scholar 

  26. Chou T-C. Preclinical versus clinical drug combination studies. Leuk Lymphoma. 2008;49(11):2059–80. https://doi.org/10.1080/10428190802353591.

    Article  PubMed  Google Scholar 

  27. Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006;58(3):621–81. https://doi.org/10.1124/pr.58.3.10.

    Article  CAS  PubMed  Google Scholar 

  28. Booth BW, Inskeep BD, Shah H, Park JP, Hay EJ, Burg KJL. Tannic acid preferentially targets estrogen receptor-positive breast cancer. Int J Breast Cancer. 2013;2013:1–9. https://doi.org/10.1155/2013/369609.

    Article  CAS  Google Scholar 

  29. Nam S, Smith DM, Dou QPP, Dou QPP. Tannic acid potently inhibits tumor cell proteasome activity, increases P27 and Bax expression, and induces G1 arrest and apoptosis. Cancer Epidemiol Biomarkers Prev. 2001;10(10):1083–8.

    CAS  PubMed  Google Scholar 

  30. Liu R, Fu C, Sun J, Wang X, Geng S, Wang X, et al. A new perspective for osteosarcoma therapy: proteasome inhibition by MLN9708/2238 successfully induces apoptosis and cell cycle arrest and attenuates the invasion ability of osteosarcoma cells in vitro. Cell Physiol Biochem. 2017;41(2):451–65. https://doi.org/10.1159/000456598.

    Article  CAS  PubMed  Google Scholar 

  31. Ma Y, Zhu B, Liu X, Yu H, Yong L, Liu X, et al. Inhibition of oleandrin on the proliferation and invasion of osteosarcoma cells in vitro by suppressing Wnt/β-Catenin signaling pathway. J Exp Clin Cancer Res. 2015;34(1):115. https://doi.org/10.1186/s13046-015-0232-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maran A, Yaszemski M, Kohut A, Voronov A. Curcumin and osteosarcoma: can invertible polymeric micelles help? Materials (Basel). 2016;9(7):520. https://doi.org/10.3390/ma9070520.

    Article  CAS  Google Scholar 

  33. Valavanidis A, Vlachogianni T. Plant polyphenols Studies in natural products chemistry. Elsevier; 2013. p. 269–95.

    Google Scholar 

  34. Hapidin H, Romli NAA, Abdullah H. Proliferation study and microscopy evaluation on the effects of tannic acid in human fetal osteoblast cell line (HFOB 1.19). Microsc Res Tech. 2019;82:1928–40. https://doi.org/10.1002/jemt.23361.

    Article  CAS  PubMed  Google Scholar 

  35. Young DR, Virolainen P, Inoue N, Frassica FJ, Chao EYS. The short-term effects of cisplatin chemotherapy on bone turnover. J Bone Miner Res. 2009;12(11):1874–82. https://doi.org/10.1359/jbmr.1997.12.11.1874.

    Article  Google Scholar 

  36. Yuan S, Chen H. Mathematical rules for synergistic, additive, and antagonistic effects of multi-drug combinations and their application in research and development of combinatorial drugs and special medical food combinations. Food Sci Hum Wellness. 2019;8(2):136–41. https://doi.org/10.1016/j.fshw.2019.01.003.

    Article  Google Scholar 

  37. Cokol M, Chua HN, Tasan M, Mutlu B, Weinstein ZB, Suzuki Y, et al. Systematic exploration of synergistic drug pairs. Mol Syst Biol. 2011;7(1):544. https://doi.org/10.1038/msb.2011.71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chountoulesi M, Naziris N, Pippa N, Demetzos C. The significance of drug-to-lipid ratio to the development of optimized liposomal formulation. J Liposome Res. 2018;28(3):249–58. https://doi.org/10.1080/08982104.2017.1343836.

    Article  CAS  PubMed  Google Scholar 

  39. Mokhtari RB, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, et al. Combination therapy in combating cancer. Oncotarget. 2017;8(23):38022–43. https://doi.org/10.18632/oncotarget.16723.

    Article  PubMed Central  Google Scholar 

  40. Panahi Y, Saadat A, Beiraghdar F, Hosseini-Nouzari SM, Jalalian HR, Sahebkar A. Antioxidant effects of bioavailability-enhanced curcuminoids in patients with solid tumors: a randomized double-blind placebo-controlled trial. J Funct Foods. 2014;6:615–22. https://doi.org/10.1016/j.jff.2013.12.008.

    Article  CAS  Google Scholar 

  41. Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, et al. Molecular mechanisms of cisplatin resistance. Oncogene. 2012;31(15):1869–83. https://doi.org/10.1038/onc.2011.384.

    Article  CAS  PubMed  Google Scholar 

  42. Cascorbi I. Drug Interactions. Dtsch Arztebl Int. 2012;109(3334):546–55. https://doi.org/10.3238/arztebl.2012.0546.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Broadhead ML, Clark JCM, Myers DE, Dass CR, Choong PFM. The molecular pathogenesis of osteosarcoma: a review. Sarcoma. 2011;2011:1–12. https://doi.org/10.1155/2011/959248/.

    Article  Google Scholar 

  44. Huang T, Gong W, Li X, Zou C, Jiang G, Li X, et al. Enhancement of osteosarcoma cell sensitivity to cisplatin using paclitaxel in the presence of hyperthermia. Int J Hyperth. 2013;29(3):248–55. https://doi.org/10.3109/02656736.2013.775511.

    Article  CAS  Google Scholar 

  45. Bortner CD, Cidlowski JA. Cell Shrinkage and monovalent cation fluxes: role in apoptosis. Arch Biochem Biophys. 2007;462(2):176–88. https://doi.org/10.1016/j.abb.2007.01.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Charras GT, Coughlin M, Mitchison TJ, Mahadevan L. Life and times of a cellular bleb. Biophys J. 2008;94(5):1836–53. https://doi.org/10.1529/biophysj.107.113605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wyllie AH, Morris RG, Smith AL, Dunlop D. Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis. J Pathol. 1984;142(1):67–77. https://doi.org/10.1002/path.1711420112.

    Article  CAS  PubMed  Google Scholar 

  48. Wickman G, Julian L, Olson MF. How apoptotic cells aid in the removal of their own cold dead bodies. Cell Death Differ. 2012;19(5):735–42. https://doi.org/10.1038/cdd.2012.25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Amini-Sarteshnizi N, Zahri S, Jafari-Ghahfarokhi H, Hafshejani FK, Teimori H. Morphological changes of apoptosis and cytotoxic effects induced by Caffeic acid phenethyl ester in AGS human gastric cancer cell line. J Herb Med Pharmacol. 2014;3(2):77–82.

    Google Scholar 

  50. Uhler C, Shivashankar GV. Nuclear mechanopathology and cancer diagnosis. Trends in Cancer. 2018;4(4):320–31. https://doi.org/10.1016/j.trecan.2018.02.009.

    Article  CAS  PubMed  Google Scholar 

  51. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, et al. Classification of cell death: recommendations of the nomenclature committee on cell death 2009. Cell Death Differ. 2009;16(1):3–11. https://doi.org/10.1038/cdd.2008.150.

    Article  CAS  PubMed  Google Scholar 

  52. Kiraz Y, Adan A, Yandim MK, Baran Y. Major apoptotic mechanisms and genes involved in apoptosis. Tumor Biol. 2016;37(7):8471–86. https://doi.org/10.1007/s13277-016-5035-9.

    Article  CAS  Google Scholar 

  53. Pfeffer CM, Singh AT. Apoptosis: a target for anticancer therapy. Int J Mol Sci. 2018;9(2):448. https://doi.org/10.3390/ijms19020448.

    Article  CAS  Google Scholar 

  54. Labi V, Erlacher M. How cell death shapes cancer. Cell Death Dis. 2015;6(3):1675–1675. https://doi.org/10.1038/cddis.2015.20.

    Article  CAS  Google Scholar 

  55. D’Archivio M, Santangelo C, Scazzocchio B, Varì R, Filesi C, Masella R, et al. Modulatory effects of polyphenols on apoptosis induction: relevance for cancer prevention. Int J Mol Sci. 2008;9(3):213–28. https://doi.org/10.3390/ijms9030213.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sharma K, Kumar V, Kaur J, Tanwar B, Goyal A, Sharma R, et al. Health effects, sources, utilization and safety of tannins: a critical review. Toxin Rev. 2019. https://doi.org/10.1080/15569543.2019.1662813.

    Article  Google Scholar 

  57. Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta - Mol Cell Res. 2016;1863(12):2977–92. https://doi.org/10.1016/j.bbamcr.2016.09.012.

    Article  CAS  Google Scholar 

  58. Khalo IV, Konokhova AI, Orlova DY, Trusov KV, Yurkin MA, Bartova E, et al. Nuclear apoptotic volume decrease in individual cells: confocal microscopy imaging and kinetic modeling. J Theor Biol. 2018;454:60–9. https://doi.org/10.1016/j.jtbi.2018.05.034.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express: special thanks to the Universiti Sains Malaysia (USM) for providing the fund under the Research University Grant (RUI) (1001/PPSK/8012318); sincere appreciation also to the Craniofacial Laboratory, School of Dental Sciences, and Biomedicine Laboratory, School of Health Sciences USM for providing the research facility to complete this study; special thanks also to Associate Professor Dr Wan Muhamad Amir Wan Ahmad from School of Dental Sciences USM for providing assistance in conducting statistical analysis of this study.

Funding

This study was supported by Research University Grant (RUI) (1001/PPSK/8012318) Universiti Sains Malaysia.

Author information

Authors and Affiliations

Authors

Contributions

Study conception or design: HH and HA; data processing, collection, perform experiment: MZK and NMH; analysis and interpretation of results: MZK and NMH; draft manuscript preparation, visualization: MZK; critical revision of the paper: HH, HA, AA and SS; supervision, funding acquisition: HH; final approval of the version to be published: MZK, HH, HA, NMH, AA, and SS.

Corresponding author

Correspondence to Hermizi Hapidin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasiram, M.Z., Hapidin, H., Abdullah, H. et al. Tannic acid enhances cisplatin effect on cell proliferation and apoptosis of human osteosarcoma cell line (U2OS). Pharmacol. Rep 74, 175–188 (2022). https://doi.org/10.1007/s43440-021-00330-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-021-00330-3

Keywords

Navigation