Skip to main content

Advertisement

Log in

FNF-12, a novel benzylidene-chromanone derivative, attenuates inflammatory response in in vitro and in vivo asthma models mediated by M2-related Th2 cytokines via MAPK and NF-kB signaling

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background and aim

This study evaluates a novel benzylidene-chromanone derivative, FNF-12, for efficacy in in vitro and in vivo asthma models.

Methods

Rat basophilic leukemia (RBL-2H3) and acute monocytic leukemia (THP-1)-derived M2 macrophages were used. Human whole blood-derived neutrophils and basophils were employed. Flow cytometry was used for studying key signalling proteins. Platelet activation factor (PAF)-induced asthma model in guinea pigs was used for in vivo studies.

Results

The chemical structure of FNF-12 was confirmed with proton-nuclear mass resonance (NMR) and mass spectroscopy. FNF-12 controlled degranulation in RBL-2H3 cells with an IC50 value of 123.7 nM and inhibited TNF-α release from these cells in a dose-responsive way. The compound effectively controlled the migration and elastase release in activated neutrophils. IC50 value in the FcεRI-basophil activation assay was found to be 205 nM. FNF-12 controlled the release of lipopolysaccharide (LPS)-induced interleukin-10, I-309/CCL1 and MDC/CCL22 in THP-1 derived M2 macrophages. The compound suppressed LPS-induced mitogen activated protein kinase (MAPK)-p-p38 and nuclear factor kappa B(NF-kB)-p-p65 expression in these cells. A dose-dependent decrease in the accumulation of total leucocytes, eosinophils, neutrophils and macrophages was observed in PAF-induced animal models.

Conclusion

FNF-12 was able to control the inflammatory responses in in vitro and in vivo asthma models, which may be driven by controlling M2-related Th2 cytokines via MAPK and NF-kB signaling.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ACD solution:

Citrate–dextrose solution

Avidin–HRP:

Avidin–horseradish peroxidase

BAL:

Bronchoalveolar lavage

DMSO:

Dimethylsulphoxide

DNP–BSA:

2,4-Dinitrophenol–bovine serum albumin

ELISA:

Enzyme-linked immunosorbent assay

EMEM:

Eagle's minimum essential medium

fMLP:

N-Formyl-methionyl-leucyl-phenylalanine

HBSS:

Hank’s balanced salt solution

HWB:

Human whole blood

IgE:

Immunoglobulin E

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinase

MPO:

Myeloperoxidase

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide

NF-kB:

Nuclear factor kappa B

NMR:

Nuclear mass resonance

PAF:

Platelet activation factor

PBS:

Phosphate-buffered saline

PE:

Phycoerythrin

PIPES:

Ethanesulphonic acid

RBL-2H3:

Rat basophilic leukemia

THP-1:

Acute monocytic leukaemia

TNF-α:

Tumor necrosis factor-α

References

  1. Mizgerd JP. Lung infection—a public health priority. PLoS Med. 2006;3:e76.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Asher MI, Montefort S, Björkstén B, Lai CK, Strachan DP, Weiland SK, et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC phases one and three repeat multicountry cross-sectional surveys. Lancet. 2006;368:733–43.

    Article  PubMed  Google Scholar 

  3. Spannhake EW, Reddy SP, Jacoby DB, Yu XY, Saatian B, Tian J. Synergism between rhinovirus infection and oxidant pollutant exposure enhances airway epithelial cell cytokine production. Environ Health Perspect. 2002;110:665–70.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Edwards MR, Bartlett NW, Clarke D, Birrell M, Belvisi M, Johnston SL. Targeting the NF-kappaB pathway in asthma and chronic obstructive pulmonary disease. Pharmacol Ther. 2009;121:1–13.

    Article  CAS  PubMed  Google Scholar 

  5. Wenzel SE. Asthma: defining of the persistent adult phenotypes. Lancet. 2006;368:804–13.

    Article  CAS  PubMed  Google Scholar 

  6. Green RM, Custovic A, Sanderson G, Hunter J, Johnston SL, Woodcock A. Synergism between allergens and viruses and risk of hospital admission with asthma: case–control study. BMJ. 2002;324:763.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Athari SS. Targeting cell signaling in allergic asthma. Signal Transduct Target Ther. 2019;4:45.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhu L, Chen X, Chong L, Kong L, Wen S, Zhang H, et al. Adiponectin alleviates exacerbation of airway inflammation and oxidative stress in obesity-related asthma mice partly through AMPK signaling pathway. Int Immunopharmacol. 2019;67:396–407.

    Article  CAS  PubMed  Google Scholar 

  9. Catz SD, Johnson JL. Transcriptional regulation of bcl-2 by nuclear factor kappa B and its significance in prostate cancer. Oncogene. 2001;20:7342–51.

    Article  CAS  PubMed  Google Scholar 

  10. Ajuwon KM, Spurlock ME. Adiponectin inhibits LPS-induced NF-kappaB activation and IL-6 production and increases PPARgamma2 expression in adipocytes. Am J Physiol Regul Integr Comp Physiol. 2005;288:R1220–5.

    Article  CAS  PubMed  Google Scholar 

  11. Qiu YY, Wu Y, Lin MJ, Bian T, Xiao YL, Qin C. LncRNA-MEG3 functions as a competing endogenous RNA to regulate Treg/Th17 balance in patients with asthma by targeting microRNA-17/ RORγt. Biomedicine & pharmacotherapy (Biomedecine & pharmacotherapie). 2019;111:386–94.

    Article  CAS  Google Scholar 

  12. Shieh YH, Huang HM, Ching-Chiung W, Lee CC, Fan CK, Lee YL. Corrigendum to “Zerumbone enhances the Th1 response and ameliorates ovalbumin-induced Th2 responses and airway inflammation in mice” [Int. Immunopharmacol. 24 (2015) 383-391]. Int Immunopharmacol. 2017;50:371.

    Article  CAS  PubMed  Google Scholar 

  13. Yuan F, Liu R, Hu M, Rong X, Bai L, Xu L, et al. JAX2, an ethanol extract of Hyssopus cuspidatus Boriss, can prevent bronchial asthma by inhibiting MAPK/NF-κB inflammatory signaling. Phytomed Int J phytother phytopharmacol. 2019;57:305–14.

    CAS  Google Scholar 

  14. Takao K, Yamashita M, Yashiro A, Sugita Y. Synthesis and biological evaluation of 3-benzylidene-4-chromanone derivatives as free radical scavengers and α-glucosidase inhibitors. Chem Pharm Bull. 2016;64:1203–7.

    Article  CAS  Google Scholar 

  15. Livingstone R. Naturally occurring oxygen ring compounds. Nature. 1963;200:509.

    Article  Google Scholar 

  16. Kabbe H-J, Widdig A. Synthesis and reactions of 4-chromanones. Angew Chem Int Ed Engl. 1982;21:247–56.

    Article  Google Scholar 

  17. Dera A, Rajagopalan P. Thymoquinone attenuates phosphorylation of AKT to inhibit kidney cancer cell proliferation. J Food Biochem. 2019;43:e12793.

    Article  PubMed  Google Scholar 

  18. Naal RM, Tabb J, Holowka D, Baird B. In situ measurement of degranulation as a biosensor based on RBL-2H3 mast cells. Biosens Bioelectron. 2004;20:791–6.

    Article  CAS  PubMed  Google Scholar 

  19. Maqbool M, Vidyadaran S, George E, Ramasamy R. Optimisation of laboratory procedures for isolating human peripheral blood derived neutrophils. Med J Malays. 2011;66:296–9.

    CAS  Google Scholar 

  20. Craciun I, Fenner AM, Kerns RJ. N-Arylacyl O-sulfonated aminoglycosides as novel inhibitors of human neutrophil elastase, cathepsin G and proteinase 3. Glycobiology. 2016;26:701–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dera A, Rajagopalan P, Ahmed I, Alfhili M, Alsughayyir J, Chandramoorthy HC. Thymoquinone attenuates IgE-mediated allergic response via pi3k-Akt-NFκB pathway and upregulation of the Nrf2-HO1 axis. J Food Biochem. 2020;44:e13216.

    Article  CAS  PubMed  Google Scholar 

  22. Chanput W, Mes JJ, Savelkoul HF, Wichers HJ. Characterization of polarized THP-1 macrophages and polarizing ability of LPS and food compounds. Food Funct. 2013;4:266–76.

    Article  CAS  PubMed  Google Scholar 

  23. Raju BC, Tiwari AK, Kumar JA, Ali AZ, Agawane SB, Saidachary G, et al. alpha-Glucosidase inhibitory antihyperglycemic activity of substituted chromenone derivatives. Bioorg Med Chem. 2010;18:358–65.

    Article  CAS  PubMed  Google Scholar 

  24. Das U, Lorand T, Dimmock SG, Perjesi P, Dimmock JR. 3-benzylidene-4-chromanones: a novel cluster of anti-tubercular agents. J Enzyme Inhib Med Chem. 2015;30:259–63.

    Article  CAS  PubMed  Google Scholar 

  25. Takao K, Yamashita M, Yashiro A, Sugita Y. Synthesis and biological evaluation of 3-benzylidene-4-chromanone derivatives as free radical scavengers and α-glucosidase inhibitors. Chem Pharm Bull (Tokyo). 2016;64:1203–7.

    Article  CAS  Google Scholar 

  26. Noushini S, Alipour E, Emami S, Safavi M, Ardestani SK, Gohari AR, et al. Synthesis and cytotoxic properties of novel (E)-3-benzylidene-7-methoxychroman-4-one derivatives. Daru J Fac Pharm Tehran Univ Med Sci. 2013;21:31.

    Article  CAS  Google Scholar 

  27. Méndez-Enríquez E, Hallgren J. Mast cells and their progenitors in allergic asthma. Front Immunol. 2019;10:821.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cruse G, Bradding P. Mast cells in airway diseases and interstitial lung disease. Eur J Pharmacol. 2016;778:125–38.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang H, Wang J, Wang L, Zhan M, Li S, Fang Z, et al. Induction of mast cell accumulation by chymase via an enzymatic activity- and intercellular adhesion molecule-1-dependent mechanism. Br J Pharmacol. 2018;175:678–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Radermecker C, Louis R, Bureau F, Marichal T. Role of neutrophils in allergic asthma. Curr Opin Immunol. 2018;54:28–34.

    Article  CAS  PubMed  Google Scholar 

  31. Radermecker C, Sabatel C, Vanwinge C, Ruscitti C, Maréchal P, Perin F, et al. Locally instructed CXCR4(hi) neutrophils trigger environment-driven allergic asthma through the release of neutrophil extracellular traps. Nat Immunol. 2019;20:1444–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oliveira SH, Canetti C, Ribeiro RA, Cunha FQ. Neutrophil migration induced by IL-1beta depends upon LTB4 released by macrophages and upon TNF-alpha and IL-1beta released by mast cells. Inflammation. 2008;31:36–46.

    Article  CAS  PubMed  Google Scholar 

  33. Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3:23–35.

    Article  CAS  PubMed  Google Scholar 

  34. Melgert BN, ten Hacken NH, Rutgers B, Timens W, Postma DS, Hylkema MN. More alternative activation of macrophages in lungs of asthmatic patients. J Allergy Clin Immunol. 2011;127:831–3.

    Article  PubMed  Google Scholar 

  35. Lin YC, Huang MY, Lee MS, Hsieh CC, Kuo HF, Kuo CH, et al. Effects of montelukast on M2-related cytokine and chemokine in M2 macrophages. J Microbiol Immunol Infect. 2018;51:18–26.

    Article  CAS  PubMed  Google Scholar 

  36. Wu AY, Chik SC, Chan AW, Li Z, Tsang KW, Li W. Anti-inflammatory effects of high-dose montelukast in an animal model of acute asthma. Clin Exp Allergy. 2003;33:359–66.

    Article  CAS  PubMed  Google Scholar 

  37. Schuliga M. NF-kappaB signaling in chronic inflammatory airway disease. Biomolecules. 2015;5:1266–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Park EK, Jung HS, Yang HI, Yoo MC, Kim C, Kim KS. Optimized THP-1 differentiation is required for the detection of responses to weak stimuli. Inflamm Res. 2007;56:45–50.

    Article  CAS  PubMed  Google Scholar 

  39. Gagliardo R, Chanez P, Profita M, Bonanno A, Albano GD, Montalbano AM, et al. IκB kinase-driven nuclear factor-κB activation in patients with asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2011;128(635–45):e1-2.

    Google Scholar 

  40. Brown V, Elborn JS, Bradley J, Ennis M. Dysregulated apoptosis and NFkappaB expression in COPD subjects. Respir Res. 2009;10:24.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tahan F, Jazrawi E, Moodley T, Rovati GE, Adcock IM. Montelukast inhibits tumour necrosis factor-alpha-mediated interleukin-8 expression through inhibition of nuclear factor-kappaB p65-associated histone acetyltransferase activity. Clin Exp Allergy. 2008;38:805–11.

    Article  CAS  PubMed  Google Scholar 

  42. Li YT, He B, Wang YZ, Wang J. Effects of intratracheal administration of nuclear factor-kappaB decoy oligodeoxynucleotides on long-term cigarette smoke-induced lung inflammation and pathology in mice. Respir Res. 2009;10:79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rajendrasozhan S, Hwang JW, Yao H, Kishore N, Rahman I. Anti-inflammatory effect of a selective IkappaB kinase-beta inhibitor in rat lung in response to LPS and cigarette smoke. Pulm Pharmacol Ther. 2010;23:172–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dong C, Davis RJ, Flavell RA. MAP kinases in the immune response. Annu Rev Immunol. 2002;20:55–72.

    Article  CAS  PubMed  Google Scholar 

  45. Wong CK, Wang CB, Ip WK, Tian YP, Lam CW. Role of p38 MAPK and NF-kB for chemokine release in coculture of human eosinophils and bronchial epithelial cells. Clin Exp Immunol. 2005;139:90–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Barnes PJ. Kinases as novel therapeutic targets in asthma and chronic obstructive pulmonary disease. Pharmacol Rev. 2016;68:788–815.

    Article  CAS  PubMed  Google Scholar 

  47. Saccani S, Pantano S, Natoli G. p38-Dependent marking of inflammatory genes for increased NF-kappa B recruitment. Nat Immunol. 2002;3:69–75.

    Article  CAS  PubMed  Google Scholar 

  48. Kasperska-Zajac A, Brzoza Z, Rogala B. Platelet-activating factor (PAF): a review of its role in asthma and clinical efficacy of PAF antagonists in the disease therapy. Recent Pat Inflamm Allergy Drug Discov. 2008;2:72–6.

    Article  CAS  PubMed  Google Scholar 

  49. Tsukioka K, Matsuzaki M, Nakamata M, Kayahara H, Nakagawa T. Increased plasma level of platelet-activating factor (PAF) and decreased serum PAF acetylhydrolase (PAFAH) activity in adults with bronchial asthma. J Investig Allergol Clin Immunol. 1996;6:22–9.

    CAS  PubMed  Google Scholar 

  50. Kuijpers TW, van den Berg JM, Tool AT, Roos D. The impact of platelet-activating factor (PAF)-like mediators on the functional activity of neutrophils: anti-inflammatory effects of human PAF-acetylhydrolase. Clin Exp Immunol. 2001;123:412–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stafforini DM. PAF acetylhydrolase gene polymorphisms and asthma severity. Pharmacogenomics. 2001;2:163–75.

    Article  CAS  PubMed  Google Scholar 

  52. Sanjar S, Aoki S, Boubekeur K, Burrows L, Colditz I, Chapman I, et al. Inhibition of PAF-induced eosinophil accumulation in pulmonary airways of guinea pigs by anti-asthma drugs. Jpn J Pharmacol. 1989;51:167–72.

    Article  CAS  PubMed  Google Scholar 

  53. Bruijnzeel PL, Rihs S, Virchow JC Jr, Warringa RA, Moser R, Walker C. Early activation or “priming” of eosinophils in asthma. Schweizerische medizinische Wochenschrift. 1992;122:298–301.

    CAS  PubMed  Google Scholar 

  54. Ilmarinen P, Kankaanranta H. Eosinophil apoptosis as a therapeutic target in allergic asthma. Basic Clin Pharmacol Toxicol. 2014;114:109–17.

    Article  CAS  PubMed  Google Scholar 

  55. Yang L, Cohn L, Zhang DH, Homer R, Ray A, Ray P. Essential role of nuclear factor kappaB in the induction of eosinophilia in allergic airway inflammation. J Exp Med. 1998;188:1739–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Donovan CE, Mark DA, He HZ, Liou HC, Kobzik L, Wang Y, et al. NF-kappa B/Rel transcription factors: c-Rel promotes airway hyperresponsiveness and allergic pulmonary inflammation. J Immunol (Baltimore, Md: 1950). 1999;163:6827–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to SMARTBIO LABS, Chennai, Tamil Nadu, India, for the help rendered in this study.

Funding

The authors extend their thanks to the Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia, for funding this work through Grant number RGP. 1/265/42.

Author information

Authors and Affiliations

Authors

Contributions

MA—funding, experimental, data curing. MAS—data analysis, statistical analysis, experimental. MYA—experimental, manuscript preparation. NB—data analysis, revision of manuscript. SR—experimental, data analysis, reference management. PR—conceptional design, data analysis, manuscript finalization, supervision.

Corresponding author

Correspondence to Prasanna Rajagopalan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest related to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abohassan, M., Al Shahrani, M., Alshahrani, M.Y. et al. FNF-12, a novel benzylidene-chromanone derivative, attenuates inflammatory response in in vitro and in vivo asthma models mediated by M2-related Th2 cytokines via MAPK and NF-kB signaling. Pharmacol. Rep 74, 96–110 (2022). https://doi.org/10.1007/s43440-021-00325-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-021-00325-0

Keywords

Navigation