Skip to main content

Advertisement

Log in

A review of the effects of ticagrelor on adenosine concentration and its clinical significance

  • Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Ticagrelor is an oral antiplatelet drug that can reversibly bind to the platelet P2Y12 receptor. Ticagrelor is metabolized mainly by CYP3A4 and produces a rapid blood concentration-dependent platelet inhibitory effect. Unlike other P2Y12 receptor antagonists, many clinical features of ticagrelor are not related to P2Y12 receptor antagonism.

Purpose

This review aims to gather existing literature on the clinical effects of ticagrelor after inhibiting adenosine uptake.

Methodology

The current study reviewed literature related to the effects of ticagrelor on adenosine metabolism. The review also examined the drug's biological effects and clinical characteristics to see how it could be used in a clinical setting.

Results

Many studies have shown that ticagrelor can inhibit equilibrative nucleoside transporter 1 (ENT1). This inhibition leads to intracellular adenosine uptake, increased adenosine half-life and plasma concentration levels and an enhanced adenosine-mediated biological effect.

Conclusions

Based on the studies reviewed, it was found that ticagrelor essentially inhibits adenosine absorption of adenosine into cells through ENT1, which increases the concentration in the blood and subsequently increases the protection of the heart muscle by adenosine. It also prevents platelet aggregation, and extends the biological effects of coronary arteries. Moreover, it leads to a lower mortality rate in acute coronary syndrome (ACS) patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright© 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved

Fig. 2

Similar content being viewed by others

Abbreviations

ACS:

Acute coronary syndrome

ADP:

Adenosine diphosphate

AMI:

Acute myocardial infarction

AMP:

Adenosine monophosphate

APC:

Adenosine plasma concentration

CAD:

Coronary artery disease

cAMP:

Cyclic adenosine monophosphate

ENT1:

Equilibrative nucleoside transporter 1

FAAK:

Fluorescent adenosine assay kits

HPLC:

High-performance liquid chromatography

LV:

Left ventricular

MI:

Myocardial infarction

NSTEMI:

Non-ST-segment elevation myocardial infarction

PCI:

Percutaneous coronary intervention

TIMI:

Thrombolysis in myocardial infarction

tPA:

Tissue plasminogen activator

References

  1. Huber K, Hamad B, Kirkpatrick P. Ticagrelor. Nat Rev Drug Discov. 2011;10(4):255–6.

    Article  CAS  PubMed  Google Scholar 

  2. Wallentin L, Becker RC, Budaj A, Cannon CP, Emanuelsson H, Held C, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2009;361(11):1045–57.

    Article  CAS  PubMed  Google Scholar 

  3. Catteneo M, Schulz R, Nylander S. Adenosine-mediated effects of ticagrelor. J Am Coll Cardiol. 2014;63:2503–9.

    Article  Google Scholar 

  4. Akkaif MA, Daud NAA, Sha’aban A, Ng ML, Abdul Kader MAS, Noor DAM, et al. The role of genetic polymorphism and other factors on clopidogrel resistance (CR) in an Asian population with coronary heart disease (CHD). Molecules. 2021;26(7):1987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yoon HY, Lee N, Seong JM, Gwak HS. Efficacy and safety of clopidogrel versus prasugrel and ticagrelor for coronary artery disease treatment in patients with CYP2C19 LoF alleles: a systemic review and meta-analysis. Br J Clin Pharmacol. 2020;86(8):1489–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Biswas M, Kali MSK, Biswas TK, Ibrahim B. Risk of major adverse cardiovascular events of CYP2C19 loss-of-function genotype guided prasugrel/ticagrelor vs clopidogrel therapy for acute coronary syndrome patients undergoing percutaneous coronary intervention: a meta-analysis. Platelets. 2021;32(5):591–600.

    Article  CAS  PubMed  Google Scholar 

  7. Dobesh PP, Oestreich JH. Ticagrelor: pharmacokinetics, pharmacodynamics, clinical efficacy, and safety. Pharmacother J Hum Pharmacol Drug Ther. 2014;34(10):1077–90.

    Article  CAS  Google Scholar 

  8. Jeong Y-H, Tantry US, Gurbel PA. Temporal variability of platelet reactivity phenotype: another barrier to personalized antiplatelet strategy guided by platelet function testing. Korean Circ J. 2019;49(11):1062.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schilling U, Dingemanse J, Ufer M. Pharmacokinetics and pharmacodynamics of approved and investigational P2Y12 receptor antagonists. Clin Pharmacokinet. 2020;59(5):545–566.

  10. Moulias A, Xanthopoulou I, Alexopoulos D. Pleiotropic effects of platelet P2Y12 receptor inhibitors: fact or fiction? Curr Pharm Des. 2014;20(28):4597–604.

    Article  CAS  PubMed  Google Scholar 

  11. Cattaneo M, Schulz R, Nylander S. Adenosine-mediated effects of ticagrelor: evidence and potential clinical relevance. J Am Coll Cardiol. 2014;63(23):2503–9.

    Article  CAS  PubMed  Google Scholar 

  12. Fredholm B. Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ. 2007;14(7):1315–23.

    Article  CAS  PubMed  Google Scholar 

  13. Armstrong D, Summers C, Ewart L, Nylander S, Sidaway JE, van Giezen J. Characterization of the adenosine pharmacology of ticagrelor reveals therapeutically relevant inhibition of equilibrative nucleoside transporter 1. J Cardiovasc Pharmacol Ther. 2014;19(2):209–19.

    Article  CAS  PubMed  Google Scholar 

  14. Kubisa MJ, Jezewski MP, Gasecka A, Siller-Matula JM, Postuła M. Ticagrelor–toward more efficient platelet inhibition and beyond. Ther Clin Risk Manag. 2018;14:129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wittfeldt A, Emanuelsson H, Brandrup-Wognsen G, Van Giezen J, Jonasson J, Nylander S, et al. Ticagrelor enhances adenosine-induced coronary vasodilatory responses in humans. J Am Coll Cardiol. 2013;61(7):723–7.

    Article  CAS  PubMed  Google Scholar 

  16. Nicholson CK, Lambert JP, Molkentin JD, Sadoshima J, Calvert JW. Thioredoxin 1 is essential for sodium sulfide-mediated cardioprotection in the setting of heart failure. Arterioscler Thromb Vasc Biol. 2013;33(4):744–51.

    Article  CAS  PubMed  Google Scholar 

  17. Garcia-Dorado D, Otaegui I, Rodriguez Palomares J, Evangelista A, Pineda V, Ruiz Salmeron R, et al. Primary results of the PROMISE trial: myocardial protection with intracoronary adenosine given before reperfusion in patients with STEMI. Eur Heart J. 2013;34(suppl_1):3736–3736.

  18. Minner SA, Simone P, Chung BB, Shah AP. Successful reversal of bradycardia and dyspnea with aminophylline after ticagrelor load. J Pharm Pract. 2018;31(1):112–4.

    Article  PubMed  Google Scholar 

  19. Torngren K, Öhman J, Salmi H, Larsson J, Erlinge D. Ticagrelor improves peripheral arterial function in patients with a previous acute coronary syndrome. Cardiology. 2013;124(4):252–8.

    Article  CAS  PubMed  Google Scholar 

  20. Mangiacapra F, Panaioli E, Colaiori I, Ricottini E, Lauria Pantano A, Pozzilli P, et al. Clopidogrel versus ticagrelor for antiplatelet maintenance in diabetic patients treated with percutaneous coronary intervention: results of the CLOTILDIA study (Clopidogrel High Dose Versus Ticagrelor for Antiplatelet Maintenance in Diabetic Patients). Circulation. 2016;134(11):835–7.

    Article  PubMed  Google Scholar 

  21. Fromonot J, Dignat-Georges F, Rossi P, Mottola G, Kipson N, Ruf J, et al. Ticagrelor improves peripheral arterial function in acute coronary syndrome patients: relationship with adenosine plasma level. J Am Coll Cardiol. 2016;67(16):1967–8.

    Article  CAS  PubMed  Google Scholar 

  22. Xanthopoulou I, Vogiatzi C, Bampouri T, Chasapi A, Bei I, Davlouros P, et al. Lack of evidence for deterioration in endothelial function following ticagrelor treatment cessation. Curr Vasc Pharmacol. 2016;14(5):487–91.

    Article  CAS  PubMed  Google Scholar 

  23. Alemayehu M, Kim RB, Lavi R, Gong I, D’Alfonso S, Mansell SE, et al. Effect of ticagrelor versus clopidogrel on vascular reactivity. J Am Coll Cardiol. 2017;69(17):2246–8.

    Article  CAS  PubMed  Google Scholar 

  24. Campo G, Dalla Sega FV, Pavasini R, Aquila G, Gallo F, Fortini F, et al. Biological effects of ticagrelor over clopidogrel in patients with stable coronary artery disease and chronic obstructive pulmonary disease. Thromb Haemost. 2017;117(6):1208.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jeong HS, Hong SJ, Cho S-A, Kim J-H, Cho JY, Lee SH, et al. Comparison of ticagrelor versus prasugrel for inflammation, vascular function, and circulating endothelial progenitor cells in diabetic patients with non–ST-segment elevation acute coronary syndrome requiring coronary stenting: a prospective, randomized, crossover trial. JACC Cardiovasc Interv. 2017;10(16):1646–58.

    Article  PubMed  Google Scholar 

  26. Ariotti S, van Leeuwen M, Brugaletta S, Leonardi S, Akkerhuis KM, Rimoldi SF, et al. Effects of ticagrelor, prasugrel, or clopidogrel at steady state on endothelial function. J Am Coll Cardiol. 2018;71(11):1289–91.

    Article  PubMed  Google Scholar 

  27. Xanthopoulou I, Bei I, Bampouri T, Barampoutis N, Moulias A, Davlouros P, et al. Absence of differential effect of ticagrelor versus prasugrel maintenance dose on endothelial function in patients with stable coronary artery disease. Hellenic J Cardiol. 2018;59(6):338–43.

    Article  PubMed  Google Scholar 

  28. Vieceli Dalla Sega F, Fortini F, Aquila G, Pavasini R, Biscaglia S, Bernucci D, et al. Ticagrelor improves endothelial function by decreasing circulating epidermal growth factor (EGF). Front Physiol. 2018;9:337.

    Article  PubMed  PubMed Central  Google Scholar 

  29. He M, Li D, Zhang Y, Sun D, Liu G, Pan Y, et al. Effects of different doses of ticagrelor on platelet aggregation and endothelial function in diabetic patients with stable coronary artery disease. Platelets. 2019;30(6):752–61.

    Article  CAS  PubMed  Google Scholar 

  30. Lim S, Choo EH, Kim CJ, Choi IJ, Lee KY, Hwang B-H, et al. Ticagrelor does not improve endothelial dysfunction in stable survivors of acute coronary syndrome. J Cardiovasc Pharmacol Ther. 2019;24(5):442–9.

    Article  CAS  PubMed  Google Scholar 

  31. Aquila G, Vieceli Dalla Sega F, Marracino L, Pavasini R, Cardelli LS, Piredda A, et al. Ticagrelor increases SIRT1 and HES1 mRNA levels in peripheral blood cells from patients with stable coronary artery disease and chronic obstructive pulmonary disease. Int J Mol Sci. 2020;21(5):1576.

    Article  CAS  PubMed Central  Google Scholar 

  32. Schnorbus B, Daiber A, Jurk K, Warnke S, Koenig J, Lackner KJ, et al. Effects of clopidogrel vs. prasugrel vs. ticagrelor on endothelial function, inflammatory parameters, and platelet function in patients with acute coronary syndrome undergoing coronary artery stenting: a randomized, blinded, parallel study. Eur Heart J. 2020;41(33):3144–52.

    Article  CAS  PubMed  Google Scholar 

  33. van der Hoeven NW, Janssens GN, Everaars H, Nap A, Lemkes JS, de Waard GA, et al. Platelet inhibition, endothelial function, and clinical outcome in patients presenting with ST-segment–elevation myocardial infarction randomized to ticagrelor versus prasugrel maintenance therapy: long-term follow-up of the REDUCE-MVI trial. J Am Heart Assoc. 2020;9(5):e014411.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Choi WG, Kim GC, Lee CH, Kim HY, Kim DW. The effect of antiplatelet drug on coronary endothelial and microvascular function: comparison with ticagrelor and clopidogrel. Korean J Intern Med. 2021;36(2):352.

    Article  CAS  PubMed  Google Scholar 

  35. Verouhis D, Ekström M, Settergren M, Sörensson P, Pernow J, Saleh N. Ticagrelor does not protect against endothelial ischemia-reperfusion injury in patients with coronary artery disease. J Cardiovasc Pharmacol Ther. 2021;26(3):253–9.

    Article  CAS  PubMed  Google Scholar 

  36. Bonello L, Laine M, Kipson N, Mancini J, Helal O, Fromonot J, et al. Ticagrelor increases adenosine plasma concentration in patients with an acute coronary syndrome. J Am Coll Cardiol. 2014;63(9):872–7.

    Article  CAS  PubMed  Google Scholar 

  37. Li X, Wang Q, Xue Y, Chen J, Lv Q. Ticagrelor compared with clopidogrel increased adenosine and cyclic adenosine monophosphate plasma concentration in acute coronary syndrome patients. Basic Clin Pharmacol Toxicol. 2017;120(6):610–4.

    Article  CAS  PubMed  Google Scholar 

  38. Orme RC, Parker WA, Thomas MR, Judge HM, Baster K, Sumaya W, et al. Study of two dose regimens of ticagrelor compared with clopidogrel in patients undergoing percutaneous coronary intervention for stable coronary artery disease. Circulation. 2018;138(13):1290–300.

    Article  CAS  PubMed Central  Google Scholar 

  39. Ariotti S, Ortega-Paz L, van Leeuwen M, Brugaletta S, Leonardi S, Akkerhuis KM, et al. Effects of ticagrelor, prasugrel, or clopidogrel on endothelial function and other vascular biomarkers: a randomized crossover study. JACC Cardiovasc Interv. 2018;11(16):1576–86.

    Article  PubMed  Google Scholar 

  40. Nanhwan MK, Ling S, Kodakandla M, Nylander S, Ye Y, Birnbaum Y. Chronic treatment with ticagrelor limits myocardial infarct size: an adenosine and cyclooxygenase-2-dependent effect. Arterioscler Thromb Vasc Biol. 2014;34(9):2078–85.

    Article  CAS  PubMed  Google Scholar 

  41. Birnbaum Y, Birnbaum GD, Birnbaum I, Nylander S, Ye Y. Ticagrelor and rosuvastatin have additive cardioprotective effects via adenosine. Cardiovasc Drugs Ther. 2016;30(6):539–50.

    Article  CAS  PubMed  Google Scholar 

  42. Li X, Xue Y, Wu H. A case of atrioventricular block potentially associated with right coronary artery lesion and ticagrelor therapy mediated by the increasing adenosine plasma concentration. Case Rep Vasc Med. 2018;9385017.

  43. Ow KW, Parker WA, Porter MM, Hanson J, Judge HM, Briffa NP, et al. Offset of ticagrelor prior to coronary artery bypass graft surgery for acute coronary syndromes: effects on platelet function and cellular adenosine uptake. Platelets. 2020;31(7):945–51.

    Article  CAS  PubMed  Google Scholar 

  44. Ramakers B, Pickkers P, Deussen A, Rongen G, van der Hoeven J, Smits P, et al. Measurement of the endogenous adenosine concentration in humans in vivo: methodological considerations. Curr Drug Metab. 2008;9(8):679–85.

    Article  CAS  PubMed  Google Scholar 

  45. Löfgren L, Pehrsson S, Hägglund G, Tjellström H, Nylander S. Accurate measurement of endogenous adenosine in human blood. PloS One. 2018;13(10):e0205707.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Öhman J, Kudira R, Albinsson S, Olde B, Erlinge D. Ticagrelor induces adenosine triphosphate release from human red blood cells. Biochem Biophys Res Commun. 2012;418(4):754–8.

    Article  PubMed  Google Scholar 

  47. Li P, Gu Y, Yang Y, Chen L, Liu J, Gao L, et al. Low-dose ticagrelor yields an antiplatelet efficacy similar to that of standard-dose ticagrelor in healthy subjects: an open-label randomized controlled trial. Sci Rep. 2016;6(1):1–8.

    Google Scholar 

  48. van den Berg T, El Messaoudi S, Rongen GA, van den Broek PH, Bilos A, Donders A, et al. Ticagrelor does not inhibit adenosine transport at relevant concentrations: a randomized cross-over study in healthy subjects in vivo. PLoS ONE. 2015;10(10):e0137560.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Curtis AB, Belardinelli L, Woodard DA, Brown CS, Conti JB. Induction of atrioventricular node reentrant tachycardia with adenosine: differential effect of adenosine on fast and slow atrioventricular node pathways. J Am Coll Cardiol. 1997;30(7):1778–84.

    Article  CAS  PubMed  Google Scholar 

  50. Freilich A, Tepper D. Adenosine and its cardiovascular effects. Am Heart J. 1992;123(5):1324–8.

    Article  CAS  PubMed  Google Scholar 

  51. Martynyuk AE, Morey TE, Belardinelli L, Dennis DM. Hyperkalemia enhances the effect of adenosine on IK, ADO in rabbit isolated AV nodal myocytes and on AV nodal conduction in guinea pig isolated heart. Circulation. 1999;99(2):312–8.

    Article  CAS  PubMed  Google Scholar 

  52. Singh M, Shah T, Khosla K, Singh P, Molnar J, Khosla S, et al. Safety and efficacy of intracoronary adenosine administration in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention: a meta-analysis of randomized controlled trials. Ther Adv Cardiovasc Dis. 2012;6(3):101–14.

    Article  PubMed  Google Scholar 

  53. Zhang H, Tian N-I, Hu Z-Y, Feng W, Liang C, Zhang Y-J, et al. Three hours continuous injection of adenosine improved left ventricular function and infarct size in patients with ST-segment elevation myocardial infarction. Chin Med J. 2012;125(10):1713–9.

    CAS  PubMed  Google Scholar 

  54. El-Sayed Metwally AE-R, El-Tahan M, Mokarrab M, Bassiony T, El-Shorbagy M. Impact of intracoronary adenosine administration during primary percutaneous coronary intervention. Al-Azhar Med J. 2020;49(3):1101–12.

  55. Johnston-Cox HA, Yang D, Ravid K. Physiological implications of adenosine receptor-mediated platelet aggregation. J Cell Physiol. 2011;226(1):46–51.

    Article  CAS  PubMed  Google Scholar 

  56. Yang D, Chen H, Koupenova M, Carroll S, Eliades A, Freedman J, et al. A new role for the A2b adenosine receptor in regulating platelet function. J Thromb Haemost. 2010;8(4):817–27.

    Article  PubMed  Google Scholar 

  57. Wolska N, Rozalski M. Blood platelet adenosine receptors as potential targets for anti-platelet therapy. Int J Mol Sci. 2019;20(21):5475.

    Article  CAS  PubMed Central  Google Scholar 

  58. Burki NK, Lee L-Y. Blockade of airway sensory nerves and dyspnea in humans. Pulm Pharmacol Ther. 2010;23(4):279–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Burki NK, Alam M, Lee L-Y. The pulmonary effects of intravenous adenosine in asthmatic subjects. Respir Res. 2006;7(1):1–7.

    Article  Google Scholar 

  60. Reynolds SM, Docherty R, Robbins J, Spina D, Page CP. Adenosine induces a cholinergic tracheal reflex contraction in guinea pigs in vivo via an adenosine A1 receptor-dependent mechanism. J Appl Physiol. 2008;105(1):187–96.

    Article  CAS  PubMed  Google Scholar 

  61. Chuaychoo B, Lee MG, Kollarik M, Pullmann R Jr, Undem BJ. Evidence for both adenosine A1 and A2A receptors activating single vagal sensory C-fibres in guinea pig lungs. J Physiol. 2006;575(2):481–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gu Q, Ruan T, Hong J-L, Burki N, Lee L-Y. Airway hyperresponsiveness: from molecules to bedside selected contribution: hypersensitivity of pulmonary C fibers induced by adenosine in anesthetized rats. J Appl Physiol. 2003;95:1315–24.

    Article  CAS  PubMed  Google Scholar 

  63. Hong JL, Ho CY, Kwong K, Lee LY. Activation of pulmonary C fibres by adenosine in anaesthetized rats: role of adenosine A1 receptors. J Physiol. 1998;508(1):109–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mazzone SB, Undem BJ. Vagal afferent innervation of the airways in health and disease. Physiol Rev. 2016;96(3):975–1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Headrick JP, Lasley RD. Adenosine receptors and reperfusion injury of the heart. Adenosine receptors in health and disease. Berlin: Springer; 2009. p. 189–214.

    Book  Google Scholar 

  66. Headrick JP, Ashton KJ, Rose’Meyer RB, Peart JN. Cardiovascular adenosine receptors: expression, actions and interactions. Pharmacol Ther. 2013;140(1):92–111.

    Article  CAS  PubMed  Google Scholar 

  67. Moser G, Schrader J, Deussen A. Turnover of adenosine in plasma of human and dog blood. Am J Physiol Cell Physiol. 1989;256(4):C799–806.

    Article  CAS  Google Scholar 

  68. Van Giezen J, Sidaway J, Glaves P, Kirk I, Björkman J-A. Ticagrelor inhibits adenosine uptake in vitro and enhances adenosine-mediated hyperemia responses in a canine model. J Cardiovasc Pharmacol Ther. 2012;17(2):164–72.

    Article  PubMed  Google Scholar 

  69. Nylander S, Femia E, Scavone M, Berntsson P, Asztély AK, Nelander K, et al. Ticagrelor inhibits human platelet aggregation via adenosine in addition to P2Y12 antagonism. J Thromb Haemost. 2013;11(10):1867–76.

    Article  CAS  PubMed  Google Scholar 

  70. Cattaneo M, Schulz R, Nylander S. Adenosine-mediated effects of ticagrelor. J Am Coll Cardiol. 2014;63(23):2503–9.

    Article  CAS  PubMed  Google Scholar 

  71. Li P, Gu Y, Yang Y, Chen L, Liu J, Gao L, et al. Low-dose ticagrelor yields an antiplatelet efficacy similar to that of standard-dose ticagrelor in healthy subjects: an open-label randomized controlled trial. Sci Rep. 2016;6:31838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Alexopoulos D, Moulias A, Koutsogiannis N, Xanthopoulou I, Kakkavas A, Mavronasiou E, et al. Differential effect of ticagrelor versus prasugrel on coronary blood flow velocity in patients with Non-ST-elevation acute coronary syndrome undergoing percutaneous coronary intervention: an exploratory study. Circ Cardiovasc Interv. 2013;6(3):277–83.

    Article  CAS  PubMed  Google Scholar 

  73. Wang K, Zhou X, Huang Y, Khalil M, Wiktor D, Van Giezen J, et al. Adjunctive treatment with ticagrelor, but not clopidogrel, added to tPA enables sustained coronary artery recanalisation with recovery of myocardium perfusion in a canine coronary thrombosis model. Thromb Haemost. 2010;104(09):609–917.

    Article  CAS  PubMed  Google Scholar 

  74. Venetsanos D, Träff E, Erlinge D, Hagström E, Nilsson J, Desta L, et al. Prasugrel versus ticagrelor in patients with myocardial infarction undergoing percutaneous coronary intervention. Heart. 2021;107(14):1145–1151.

  75. Schüpke S, Neumann F-J, Menichelli M, Mayer K, Bernlochner I, Wöhrle J, et al. Ticagrelor or prasugrel in patients with acute coronary syndromes. N Engl J Med. 2019;381(16):1524–34.

    Article  PubMed  Google Scholar 

  76. Orban M, Kleeberger J, Ouarrak T, Freund A, Feistritzer H-J, Fuernau G, et al. Clopidogrel vs. prasugrel vs. ticagrelor in patients with acute myocardial infarction complicated by cardiogenic shock: a pooled IABP-SHOCK II and CULPRIT-SHOCK trial sub-analysis. Clin Res Cardiol. 2021:1–11.

  77. Mahaffey KW, Wojdyla DM, Carroll K, Becker RC, Storey RF, Angiolillo DJ, et al. Ticagrelor compared with clopidogrel by geographic region in the Platelet Inhibition and Patient Outcomes (PLATO) trial. Circulation. 2011;124(5):544–54.

    Article  CAS  PubMed  Google Scholar 

  78. Suthahar N, Meijers WC, Silljé HH, de Boer RA. From inflammation to fibrosis—molecular and cellular mechanisms of myocardial tissue remodelling and perspectives on differential treatment opportunities. Curr Heart Fail Rep. 2017;14(4):235–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Volders PG, Willems IE, Cleutjens JP, Aren J-W, Havenith MG, Daemen MJ. Interstitial collagen is increased in the non-infarcted human myocardium after myocardial infarction. J Mol Cell Cardiol. 1993;25(11):1317–23.

    Article  CAS  PubMed  Google Scholar 

  80. Park Y, Tantry US, Koh J-S, Ahn J-H, Kang MG, Kim KH, et al. Novel role of platelet reactivity in adverse left ventricular remodelling after ST-segment elevation myocardial infarction: the REMODELING trial. Thromb Haemost. 2017;117(05):911–22.

    Article  PubMed  Google Scholar 

  81. Park Y, Koh JS, Lee J-H, Park J-H, Shin E-S, Oh JH, et al. Effect of ticagrelor on left ventricular remodeling in patients with ST-segment elevation myocardial infarction (HEALING-AMI). Cardiovasc Interv. 2020;13(19):2220–34.

    Google Scholar 

  82. Tantry US, Jeong Y-H, Gurbel PA. More evidence for non-P2Y12-mediated effects of ticagrelor. American College of Cardiology Foundation Washington, DC; 2017.

  83. Akkaif MA, Sha’aban A, Daud NAA, Ng ML, Ibrahim B. Investigate the strategy of using pharmacogenetics and pharmacometabonomics to the personalization of ticagrelor antiplatelet therapy. Syst Rev Pharm. 2020;11(9):1100–7.

    CAS  Google Scholar 

  84. You SC, Rho Y, Bikdeli B, Kim J, Siapos A, Weaver J, et al. Association of ticagrelor vs clopidogrel with net adverse clinical events in patients with acute coronary syndrome undergoing percutaneous coronary intervention. JAMA. 2020;324(16):1640–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang N, Xu W, Li O, Zhang B. The risk of dyspnea in patients treated with third-generation P2Y 12 inhibitors compared with clopidogrel: a meta-analysis of randomized controlled trials. BMC Cardiovasc Disord. 2020;20(1):1–8.

    Article  Google Scholar 

  86. Storey RF, Bliden KP, Patil SB, Karunakaran A, Ecob R, Butler K, et al. Incidence of dyspnea and assessment of cardiac and pulmonary function in patients with stable coronary artery disease receiving ticagrelor, clopidogrel, or placebo in the ONSET/OFFSET study. J Am Coll Cardiol. 2010;56(3):185–93.

    Article  CAS  PubMed  Google Scholar 

  87. Husted S, Emanuelsson H, Heptinstall S, Sandset PM, Wickens M, Peters G. Pharmacodynamics, pharmacokinetics, and safety of the oral reversible P2Y12 antagonist AZD6140 with aspirin in patients with atherosclerosis: a double-blind comparison to clopidogrel with aspirin. Eur Heart J. 2006;27(9):1038–47.

    Article  CAS  PubMed  Google Scholar 

  88. Cannon CP, Husted S, Harrington RA, Scirica BM, Emanuelsson H, Peters G, et al. Safety, tolerability, and initial efficacy of AZD6140, the first reversible oral adenosine diphosphate receptor antagonist, compared with clopidogrel, in patients with non-ST-segment elevation acute coronary syndrome: primary results of the DISPERSE-2 trial. J Am Coll Cardiol. 2007;50(19):1844–51.

    Article  CAS  PubMed  Google Scholar 

  89. Goto S, Huang C-H, Park S-J, Emanuelsson H, Kimura T. Ticagrelor vs clopidogrel in Japanese, Korean and Taiwanese patients with acute coronary syndrome-randomized, double-blind, phase III PHILO study. Circ J. 2015;79(11):2452–60.

    Article  PubMed  Google Scholar 

  90. Zhang Y, Zhao Y, Pang M, Wu Y, Zhuang K, Zhang H, et al. High-dose clopidogrel versus ticagrelor for treatment of acute coronary syndromes after percutaneous coronary intervention in CYP2C19 intermediate or poor metabolizers: a prospective, randomized, open-label, single-centre trial. Acta Cardiol. 2016;71(3):309–16.

    Article  CAS  PubMed  Google Scholar 

  91. Hiatt WR, Fowkes FGR, Heizer G, Berger JS, Baumgartner I, Held P, et al. Ticagrelor versus clopidogrel in symptomatic peripheral artery disease. N Engl J Med. 2017;376:32–40.

    Article  CAS  PubMed  Google Scholar 

  92. Berwanger O, Nicolau JC, Carvalho AC, Jiang L, Goodman SG, Nicholls SJ, et al. Ticagrelor vs clopidogrel after fibrinolytic therapy in patients with ST-elevation myocardial infarction: a randomized clinical trial. JAMA Cardiol. 2018;3(5):391–9.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Berwanger O, Lopes RD, Moia DD, Fonseca FA, Jiang L, Goodman SG, et al. Ticagrelor versus clopidogrel in patients with STEMI treated with fibrinolysis: TREAT trial. J Am Coll Cardiol. 2019;73(22):2819–28.

    Article  CAS  PubMed  Google Scholar 

  94. Burki NK, Dale WJ, Lee L-Y. Intravenous adenosine and dyspnea in humans. J Appl Physiol. 2005;98(1):180–5.

    Article  CAS  PubMed  Google Scholar 

  95. Ortega-Paz L, Brugaletta S, Ariotti S, Akkerhuis KM, Karagiannis A, Windecker S, et al. Adenosine and ticagrelor plasma levels in patients with and without ticagrelor-related dyspnea. Circulation. 2018;138(6):646–8.

    Article  CAS  PubMed  Google Scholar 

  96. Cattaneo M, Faioni EM. Why does ticagrelor induce dyspnea? Thromb Haemost. 2012;108(12):1031–6.

    Article  PubMed  Google Scholar 

  97. Furtado RH, Venkateswaran RV, Nicolau JC, Gurmu Y, Bhatt DL, Storey RF, et al. Caffeinated beverage intake, dyspnea with ticagrelor, and cardiovascular outcomes: insights from the PEGASUS-TIMI 54 trial. J Am Heart Assoc. 2020;9(10):e015785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lindholm D, Storey RF, Christersson C, Halvorsen S, Grove EL, Braun OÖ, et al. Design and rationale of TROCADERO: a trial of caffeine to alleviate dyspnea related to ticagrelor. Am Heart J. 2015;170(3):465–70.

    Article  CAS  PubMed  Google Scholar 

  99. Lindholm D, James S, Andersson J, Braun OO, Heller S, Henriksson P, et al. Caffeine and incidence of dyspnea in patients treated with ticagrelor. Am Heart J. 2018;200:141–3.

    Article  PubMed  Google Scholar 

  100. Scirica BM, Cannon CP, Emanuelsson H, Michelson EL, Harrington RA, Husted S, et al. The incidence of bradyarrhythmias and clinical bradyarrhythmic events in patients with acute coronary syndromes treated with ticagrelor or clopidogrel in the PLATO (Platelet Inhibition and Patient Outcomes) trial: results of the continuous electrocardiographic assessment substudy. J Am Coll Cardiol. 2011;57(19):1908–16.

    Article  CAS  PubMed  Google Scholar 

  101. Baker NC, Nadour W, Friehling M. Clinically significant ticagrelor induced conduction abnormalities following percutaneous coronary intervention. Int J Cardiol. 2016;214:21–2.

    Article  PubMed  Google Scholar 

  102. Zhang N, Chen K-Y, Zhao J, Xu G, Li G, Liu T. Another side effect of ticagrelor: atrial fibrillation. Int J Cardiol. 2016;212:242–4.

    Article  PubMed  Google Scholar 

  103. Waldmann V, Laredo M, Nigam A, Khairy P. Cyclical sinus bradycardia and atrioventricular block induced by ticagrelor. Heart Rhythm Case Rep. 2018;4(11):527.

    Google Scholar 

  104. Butler K, Teng R. Evaluation and characterization of the effects of ticagrelor on serum and urinary uric acid in healthy volunteers. Clin Pharmacol Ther. 2012;91(2):264–71.

    Article  CAS  PubMed  Google Scholar 

  105. Bonaca MP, Bhatt DL, Cohen M, Steg PG, Storey RF, Jensen EC, et al. Long-term use of ticagrelor in patients with prior myocardial infarction. N Engl J Med. 2015;372(19):1791–800.

    Article  PubMed  Google Scholar 

  106. Teng R, Oliver S, Hayes MA, Butler K. Absorption, distribution, metabolism, and excretion of ticagrelor in healthy subjects. Drug Metab Dispos. 2010;38(9):1514–21.

    Article  CAS  PubMed  Google Scholar 

  107. Zhang N, Zhang Z, Yang Y, Xu Y, Li G, Liu T. Ticagrelor-related gout: an underestimated side effect. Int J Cardiol. 2015;192:11–3.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baharudin Ibrahim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkaif, M.A., Ng, M.L., SK Abdul Kader, M.A. et al. A review of the effects of ticagrelor on adenosine concentration and its clinical significance. Pharmacol. Rep 73, 1551–1564 (2021). https://doi.org/10.1007/s43440-021-00309-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-021-00309-0

Keywords

Navigation