Abstract
Background
Ticagrelor is an oral antiplatelet drug that can reversibly bind to the platelet P2Y12 receptor. Ticagrelor is metabolized mainly by CYP3A4 and produces a rapid blood concentration-dependent platelet inhibitory effect. Unlike other P2Y12 receptor antagonists, many clinical features of ticagrelor are not related to P2Y12 receptor antagonism.
Purpose
This review aims to gather existing literature on the clinical effects of ticagrelor after inhibiting adenosine uptake.
Methodology
The current study reviewed literature related to the effects of ticagrelor on adenosine metabolism. The review also examined the drug's biological effects and clinical characteristics to see how it could be used in a clinical setting.
Results
Many studies have shown that ticagrelor can inhibit equilibrative nucleoside transporter 1 (ENT1). This inhibition leads to intracellular adenosine uptake, increased adenosine half-life and plasma concentration levels and an enhanced adenosine-mediated biological effect.
Conclusions
Based on the studies reviewed, it was found that ticagrelor essentially inhibits adenosine absorption of adenosine into cells through ENT1, which increases the concentration in the blood and subsequently increases the protection of the heart muscle by adenosine. It also prevents platelet aggregation, and extends the biological effects of coronary arteries. Moreover, it leads to a lower mortality rate in acute coronary syndrome (ACS) patients.
Similar content being viewed by others
Abbreviations
- ACS:
-
Acute coronary syndrome
- ADP:
-
Adenosine diphosphate
- AMI:
-
Acute myocardial infarction
- AMP:
-
Adenosine monophosphate
- APC:
-
Adenosine plasma concentration
- CAD:
-
Coronary artery disease
- cAMP:
-
Cyclic adenosine monophosphate
- ENT1:
-
Equilibrative nucleoside transporter 1
- FAAK:
-
Fluorescent adenosine assay kits
- HPLC:
-
High-performance liquid chromatography
- LV:
-
Left ventricular
- MI:
-
Myocardial infarction
- NSTEMI:
-
Non-ST-segment elevation myocardial infarction
- PCI:
-
Percutaneous coronary intervention
- TIMI:
-
Thrombolysis in myocardial infarction
- tPA:
-
Tissue plasminogen activator
References
Huber K, Hamad B, Kirkpatrick P. Ticagrelor. Nat Rev Drug Discov. 2011;10(4):255–6.
Wallentin L, Becker RC, Budaj A, Cannon CP, Emanuelsson H, Held C, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2009;361(11):1045–57.
Catteneo M, Schulz R, Nylander S. Adenosine-mediated effects of ticagrelor. J Am Coll Cardiol. 2014;63:2503–9.
Akkaif MA, Daud NAA, Sha’aban A, Ng ML, Abdul Kader MAS, Noor DAM, et al. The role of genetic polymorphism and other factors on clopidogrel resistance (CR) in an Asian population with coronary heart disease (CHD). Molecules. 2021;26(7):1987.
Yoon HY, Lee N, Seong JM, Gwak HS. Efficacy and safety of clopidogrel versus prasugrel and ticagrelor for coronary artery disease treatment in patients with CYP2C19 LoF alleles: a systemic review and meta-analysis. Br J Clin Pharmacol. 2020;86(8):1489–98.
Biswas M, Kali MSK, Biswas TK, Ibrahim B. Risk of major adverse cardiovascular events of CYP2C19 loss-of-function genotype guided prasugrel/ticagrelor vs clopidogrel therapy for acute coronary syndrome patients undergoing percutaneous coronary intervention: a meta-analysis. Platelets. 2021;32(5):591–600.
Dobesh PP, Oestreich JH. Ticagrelor: pharmacokinetics, pharmacodynamics, clinical efficacy, and safety. Pharmacother J Hum Pharmacol Drug Ther. 2014;34(10):1077–90.
Jeong Y-H, Tantry US, Gurbel PA. Temporal variability of platelet reactivity phenotype: another barrier to personalized antiplatelet strategy guided by platelet function testing. Korean Circ J. 2019;49(11):1062.
Schilling U, Dingemanse J, Ufer M. Pharmacokinetics and pharmacodynamics of approved and investigational P2Y12 receptor antagonists. Clin Pharmacokinet. 2020;59(5):545–566.
Moulias A, Xanthopoulou I, Alexopoulos D. Pleiotropic effects of platelet P2Y12 receptor inhibitors: fact or fiction? Curr Pharm Des. 2014;20(28):4597–604.
Cattaneo M, Schulz R, Nylander S. Adenosine-mediated effects of ticagrelor: evidence and potential clinical relevance. J Am Coll Cardiol. 2014;63(23):2503–9.
Fredholm B. Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ. 2007;14(7):1315–23.
Armstrong D, Summers C, Ewart L, Nylander S, Sidaway JE, van Giezen J. Characterization of the adenosine pharmacology of ticagrelor reveals therapeutically relevant inhibition of equilibrative nucleoside transporter 1. J Cardiovasc Pharmacol Ther. 2014;19(2):209–19.
Kubisa MJ, Jezewski MP, Gasecka A, Siller-Matula JM, Postuła M. Ticagrelor–toward more efficient platelet inhibition and beyond. Ther Clin Risk Manag. 2018;14:129.
Wittfeldt A, Emanuelsson H, Brandrup-Wognsen G, Van Giezen J, Jonasson J, Nylander S, et al. Ticagrelor enhances adenosine-induced coronary vasodilatory responses in humans. J Am Coll Cardiol. 2013;61(7):723–7.
Nicholson CK, Lambert JP, Molkentin JD, Sadoshima J, Calvert JW. Thioredoxin 1 is essential for sodium sulfide-mediated cardioprotection in the setting of heart failure. Arterioscler Thromb Vasc Biol. 2013;33(4):744–51.
Garcia-Dorado D, Otaegui I, Rodriguez Palomares J, Evangelista A, Pineda V, Ruiz Salmeron R, et al. Primary results of the PROMISE trial: myocardial protection with intracoronary adenosine given before reperfusion in patients with STEMI. Eur Heart J. 2013;34(suppl_1):3736–3736.
Minner SA, Simone P, Chung BB, Shah AP. Successful reversal of bradycardia and dyspnea with aminophylline after ticagrelor load. J Pharm Pract. 2018;31(1):112–4.
Torngren K, Öhman J, Salmi H, Larsson J, Erlinge D. Ticagrelor improves peripheral arterial function in patients with a previous acute coronary syndrome. Cardiology. 2013;124(4):252–8.
Mangiacapra F, Panaioli E, Colaiori I, Ricottini E, Lauria Pantano A, Pozzilli P, et al. Clopidogrel versus ticagrelor for antiplatelet maintenance in diabetic patients treated with percutaneous coronary intervention: results of the CLOTILDIA study (Clopidogrel High Dose Versus Ticagrelor for Antiplatelet Maintenance in Diabetic Patients). Circulation. 2016;134(11):835–7.
Fromonot J, Dignat-Georges F, Rossi P, Mottola G, Kipson N, Ruf J, et al. Ticagrelor improves peripheral arterial function in acute coronary syndrome patients: relationship with adenosine plasma level. J Am Coll Cardiol. 2016;67(16):1967–8.
Xanthopoulou I, Vogiatzi C, Bampouri T, Chasapi A, Bei I, Davlouros P, et al. Lack of evidence for deterioration in endothelial function following ticagrelor treatment cessation. Curr Vasc Pharmacol. 2016;14(5):487–91.
Alemayehu M, Kim RB, Lavi R, Gong I, D’Alfonso S, Mansell SE, et al. Effect of ticagrelor versus clopidogrel on vascular reactivity. J Am Coll Cardiol. 2017;69(17):2246–8.
Campo G, Dalla Sega FV, Pavasini R, Aquila G, Gallo F, Fortini F, et al. Biological effects of ticagrelor over clopidogrel in patients with stable coronary artery disease and chronic obstructive pulmonary disease. Thromb Haemost. 2017;117(6):1208.
Jeong HS, Hong SJ, Cho S-A, Kim J-H, Cho JY, Lee SH, et al. Comparison of ticagrelor versus prasugrel for inflammation, vascular function, and circulating endothelial progenitor cells in diabetic patients with non–ST-segment elevation acute coronary syndrome requiring coronary stenting: a prospective, randomized, crossover trial. JACC Cardiovasc Interv. 2017;10(16):1646–58.
Ariotti S, van Leeuwen M, Brugaletta S, Leonardi S, Akkerhuis KM, Rimoldi SF, et al. Effects of ticagrelor, prasugrel, or clopidogrel at steady state on endothelial function. J Am Coll Cardiol. 2018;71(11):1289–91.
Xanthopoulou I, Bei I, Bampouri T, Barampoutis N, Moulias A, Davlouros P, et al. Absence of differential effect of ticagrelor versus prasugrel maintenance dose on endothelial function in patients with stable coronary artery disease. Hellenic J Cardiol. 2018;59(6):338–43.
Vieceli Dalla Sega F, Fortini F, Aquila G, Pavasini R, Biscaglia S, Bernucci D, et al. Ticagrelor improves endothelial function by decreasing circulating epidermal growth factor (EGF). Front Physiol. 2018;9:337.
He M, Li D, Zhang Y, Sun D, Liu G, Pan Y, et al. Effects of different doses of ticagrelor on platelet aggregation and endothelial function in diabetic patients with stable coronary artery disease. Platelets. 2019;30(6):752–61.
Lim S, Choo EH, Kim CJ, Choi IJ, Lee KY, Hwang B-H, et al. Ticagrelor does not improve endothelial dysfunction in stable survivors of acute coronary syndrome. J Cardiovasc Pharmacol Ther. 2019;24(5):442–9.
Aquila G, Vieceli Dalla Sega F, Marracino L, Pavasini R, Cardelli LS, Piredda A, et al. Ticagrelor increases SIRT1 and HES1 mRNA levels in peripheral blood cells from patients with stable coronary artery disease and chronic obstructive pulmonary disease. Int J Mol Sci. 2020;21(5):1576.
Schnorbus B, Daiber A, Jurk K, Warnke S, Koenig J, Lackner KJ, et al. Effects of clopidogrel vs. prasugrel vs. ticagrelor on endothelial function, inflammatory parameters, and platelet function in patients with acute coronary syndrome undergoing coronary artery stenting: a randomized, blinded, parallel study. Eur Heart J. 2020;41(33):3144–52.
van der Hoeven NW, Janssens GN, Everaars H, Nap A, Lemkes JS, de Waard GA, et al. Platelet inhibition, endothelial function, and clinical outcome in patients presenting with ST-segment–elevation myocardial infarction randomized to ticagrelor versus prasugrel maintenance therapy: long-term follow-up of the REDUCE-MVI trial. J Am Heart Assoc. 2020;9(5):e014411.
Choi WG, Kim GC, Lee CH, Kim HY, Kim DW. The effect of antiplatelet drug on coronary endothelial and microvascular function: comparison with ticagrelor and clopidogrel. Korean J Intern Med. 2021;36(2):352.
Verouhis D, Ekström M, Settergren M, Sörensson P, Pernow J, Saleh N. Ticagrelor does not protect against endothelial ischemia-reperfusion injury in patients with coronary artery disease. J Cardiovasc Pharmacol Ther. 2021;26(3):253–9.
Bonello L, Laine M, Kipson N, Mancini J, Helal O, Fromonot J, et al. Ticagrelor increases adenosine plasma concentration in patients with an acute coronary syndrome. J Am Coll Cardiol. 2014;63(9):872–7.
Li X, Wang Q, Xue Y, Chen J, Lv Q. Ticagrelor compared with clopidogrel increased adenosine and cyclic adenosine monophosphate plasma concentration in acute coronary syndrome patients. Basic Clin Pharmacol Toxicol. 2017;120(6):610–4.
Orme RC, Parker WA, Thomas MR, Judge HM, Baster K, Sumaya W, et al. Study of two dose regimens of ticagrelor compared with clopidogrel in patients undergoing percutaneous coronary intervention for stable coronary artery disease. Circulation. 2018;138(13):1290–300.
Ariotti S, Ortega-Paz L, van Leeuwen M, Brugaletta S, Leonardi S, Akkerhuis KM, et al. Effects of ticagrelor, prasugrel, or clopidogrel on endothelial function and other vascular biomarkers: a randomized crossover study. JACC Cardiovasc Interv. 2018;11(16):1576–86.
Nanhwan MK, Ling S, Kodakandla M, Nylander S, Ye Y, Birnbaum Y. Chronic treatment with ticagrelor limits myocardial infarct size: an adenosine and cyclooxygenase-2-dependent effect. Arterioscler Thromb Vasc Biol. 2014;34(9):2078–85.
Birnbaum Y, Birnbaum GD, Birnbaum I, Nylander S, Ye Y. Ticagrelor and rosuvastatin have additive cardioprotective effects via adenosine. Cardiovasc Drugs Ther. 2016;30(6):539–50.
Li X, Xue Y, Wu H. A case of atrioventricular block potentially associated with right coronary artery lesion and ticagrelor therapy mediated by the increasing adenosine plasma concentration. Case Rep Vasc Med. 2018;9385017.
Ow KW, Parker WA, Porter MM, Hanson J, Judge HM, Briffa NP, et al. Offset of ticagrelor prior to coronary artery bypass graft surgery for acute coronary syndromes: effects on platelet function and cellular adenosine uptake. Platelets. 2020;31(7):945–51.
Ramakers B, Pickkers P, Deussen A, Rongen G, van der Hoeven J, Smits P, et al. Measurement of the endogenous adenosine concentration in humans in vivo: methodological considerations. Curr Drug Metab. 2008;9(8):679–85.
Löfgren L, Pehrsson S, Hägglund G, Tjellström H, Nylander S. Accurate measurement of endogenous adenosine in human blood. PloS One. 2018;13(10):e0205707.
Öhman J, Kudira R, Albinsson S, Olde B, Erlinge D. Ticagrelor induces adenosine triphosphate release from human red blood cells. Biochem Biophys Res Commun. 2012;418(4):754–8.
Li P, Gu Y, Yang Y, Chen L, Liu J, Gao L, et al. Low-dose ticagrelor yields an antiplatelet efficacy similar to that of standard-dose ticagrelor in healthy subjects: an open-label randomized controlled trial. Sci Rep. 2016;6(1):1–8.
van den Berg T, El Messaoudi S, Rongen GA, van den Broek PH, Bilos A, Donders A, et al. Ticagrelor does not inhibit adenosine transport at relevant concentrations: a randomized cross-over study in healthy subjects in vivo. PLoS ONE. 2015;10(10):e0137560.
Curtis AB, Belardinelli L, Woodard DA, Brown CS, Conti JB. Induction of atrioventricular node reentrant tachycardia with adenosine: differential effect of adenosine on fast and slow atrioventricular node pathways. J Am Coll Cardiol. 1997;30(7):1778–84.
Freilich A, Tepper D. Adenosine and its cardiovascular effects. Am Heart J. 1992;123(5):1324–8.
Martynyuk AE, Morey TE, Belardinelli L, Dennis DM. Hyperkalemia enhances the effect of adenosine on IK, ADO in rabbit isolated AV nodal myocytes and on AV nodal conduction in guinea pig isolated heart. Circulation. 1999;99(2):312–8.
Singh M, Shah T, Khosla K, Singh P, Molnar J, Khosla S, et al. Safety and efficacy of intracoronary adenosine administration in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention: a meta-analysis of randomized controlled trials. Ther Adv Cardiovasc Dis. 2012;6(3):101–14.
Zhang H, Tian N-I, Hu Z-Y, Feng W, Liang C, Zhang Y-J, et al. Three hours continuous injection of adenosine improved left ventricular function and infarct size in patients with ST-segment elevation myocardial infarction. Chin Med J. 2012;125(10):1713–9.
El-Sayed Metwally AE-R, El-Tahan M, Mokarrab M, Bassiony T, El-Shorbagy M. Impact of intracoronary adenosine administration during primary percutaneous coronary intervention. Al-Azhar Med J. 2020;49(3):1101–12.
Johnston-Cox HA, Yang D, Ravid K. Physiological implications of adenosine receptor-mediated platelet aggregation. J Cell Physiol. 2011;226(1):46–51.
Yang D, Chen H, Koupenova M, Carroll S, Eliades A, Freedman J, et al. A new role for the A2b adenosine receptor in regulating platelet function. J Thromb Haemost. 2010;8(4):817–27.
Wolska N, Rozalski M. Blood platelet adenosine receptors as potential targets for anti-platelet therapy. Int J Mol Sci. 2019;20(21):5475.
Burki NK, Lee L-Y. Blockade of airway sensory nerves and dyspnea in humans. Pulm Pharmacol Ther. 2010;23(4):279–82.
Burki NK, Alam M, Lee L-Y. The pulmonary effects of intravenous adenosine in asthmatic subjects. Respir Res. 2006;7(1):1–7.
Reynolds SM, Docherty R, Robbins J, Spina D, Page CP. Adenosine induces a cholinergic tracheal reflex contraction in guinea pigs in vivo via an adenosine A1 receptor-dependent mechanism. J Appl Physiol. 2008;105(1):187–96.
Chuaychoo B, Lee MG, Kollarik M, Pullmann R Jr, Undem BJ. Evidence for both adenosine A1 and A2A receptors activating single vagal sensory C-fibres in guinea pig lungs. J Physiol. 2006;575(2):481–90.
Gu Q, Ruan T, Hong J-L, Burki N, Lee L-Y. Airway hyperresponsiveness: from molecules to bedside selected contribution: hypersensitivity of pulmonary C fibers induced by adenosine in anesthetized rats. J Appl Physiol. 2003;95:1315–24.
Hong JL, Ho CY, Kwong K, Lee LY. Activation of pulmonary C fibres by adenosine in anaesthetized rats: role of adenosine A1 receptors. J Physiol. 1998;508(1):109–18.
Mazzone SB, Undem BJ. Vagal afferent innervation of the airways in health and disease. Physiol Rev. 2016;96(3):975–1024.
Headrick JP, Lasley RD. Adenosine receptors and reperfusion injury of the heart. Adenosine receptors in health and disease. Berlin: Springer; 2009. p. 189–214.
Headrick JP, Ashton KJ, Rose’Meyer RB, Peart JN. Cardiovascular adenosine receptors: expression, actions and interactions. Pharmacol Ther. 2013;140(1):92–111.
Moser G, Schrader J, Deussen A. Turnover of adenosine in plasma of human and dog blood. Am J Physiol Cell Physiol. 1989;256(4):C799–806.
Van Giezen J, Sidaway J, Glaves P, Kirk I, Björkman J-A. Ticagrelor inhibits adenosine uptake in vitro and enhances adenosine-mediated hyperemia responses in a canine model. J Cardiovasc Pharmacol Ther. 2012;17(2):164–72.
Nylander S, Femia E, Scavone M, Berntsson P, Asztély AK, Nelander K, et al. Ticagrelor inhibits human platelet aggregation via adenosine in addition to P2Y12 antagonism. J Thromb Haemost. 2013;11(10):1867–76.
Cattaneo M, Schulz R, Nylander S. Adenosine-mediated effects of ticagrelor. J Am Coll Cardiol. 2014;63(23):2503–9.
Li P, Gu Y, Yang Y, Chen L, Liu J, Gao L, et al. Low-dose ticagrelor yields an antiplatelet efficacy similar to that of standard-dose ticagrelor in healthy subjects: an open-label randomized controlled trial. Sci Rep. 2016;6:31838.
Alexopoulos D, Moulias A, Koutsogiannis N, Xanthopoulou I, Kakkavas A, Mavronasiou E, et al. Differential effect of ticagrelor versus prasugrel on coronary blood flow velocity in patients with Non-ST-elevation acute coronary syndrome undergoing percutaneous coronary intervention: an exploratory study. Circ Cardiovasc Interv. 2013;6(3):277–83.
Wang K, Zhou X, Huang Y, Khalil M, Wiktor D, Van Giezen J, et al. Adjunctive treatment with ticagrelor, but not clopidogrel, added to tPA enables sustained coronary artery recanalisation with recovery of myocardium perfusion in a canine coronary thrombosis model. Thromb Haemost. 2010;104(09):609–917.
Venetsanos D, Träff E, Erlinge D, Hagström E, Nilsson J, Desta L, et al. Prasugrel versus ticagrelor in patients with myocardial infarction undergoing percutaneous coronary intervention. Heart. 2021;107(14):1145–1151.
Schüpke S, Neumann F-J, Menichelli M, Mayer K, Bernlochner I, Wöhrle J, et al. Ticagrelor or prasugrel in patients with acute coronary syndromes. N Engl J Med. 2019;381(16):1524–34.
Orban M, Kleeberger J, Ouarrak T, Freund A, Feistritzer H-J, Fuernau G, et al. Clopidogrel vs. prasugrel vs. ticagrelor in patients with acute myocardial infarction complicated by cardiogenic shock: a pooled IABP-SHOCK II and CULPRIT-SHOCK trial sub-analysis. Clin Res Cardiol. 2021:1–11.
Mahaffey KW, Wojdyla DM, Carroll K, Becker RC, Storey RF, Angiolillo DJ, et al. Ticagrelor compared with clopidogrel by geographic region in the Platelet Inhibition and Patient Outcomes (PLATO) trial. Circulation. 2011;124(5):544–54.
Suthahar N, Meijers WC, Silljé HH, de Boer RA. From inflammation to fibrosis—molecular and cellular mechanisms of myocardial tissue remodelling and perspectives on differential treatment opportunities. Curr Heart Fail Rep. 2017;14(4):235–50.
Volders PG, Willems IE, Cleutjens JP, Aren J-W, Havenith MG, Daemen MJ. Interstitial collagen is increased in the non-infarcted human myocardium after myocardial infarction. J Mol Cell Cardiol. 1993;25(11):1317–23.
Park Y, Tantry US, Koh J-S, Ahn J-H, Kang MG, Kim KH, et al. Novel role of platelet reactivity in adverse left ventricular remodelling after ST-segment elevation myocardial infarction: the REMODELING trial. Thromb Haemost. 2017;117(05):911–22.
Park Y, Koh JS, Lee J-H, Park J-H, Shin E-S, Oh JH, et al. Effect of ticagrelor on left ventricular remodeling in patients with ST-segment elevation myocardial infarction (HEALING-AMI). Cardiovasc Interv. 2020;13(19):2220–34.
Tantry US, Jeong Y-H, Gurbel PA. More evidence for non-P2Y12-mediated effects of ticagrelor. American College of Cardiology Foundation Washington, DC; 2017.
Akkaif MA, Sha’aban A, Daud NAA, Ng ML, Ibrahim B. Investigate the strategy of using pharmacogenetics and pharmacometabonomics to the personalization of ticagrelor antiplatelet therapy. Syst Rev Pharm. 2020;11(9):1100–7.
You SC, Rho Y, Bikdeli B, Kim J, Siapos A, Weaver J, et al. Association of ticagrelor vs clopidogrel with net adverse clinical events in patients with acute coronary syndrome undergoing percutaneous coronary intervention. JAMA. 2020;324(16):1640–50.
Zhang N, Xu W, Li O, Zhang B. The risk of dyspnea in patients treated with third-generation P2Y 12 inhibitors compared with clopidogrel: a meta-analysis of randomized controlled trials. BMC Cardiovasc Disord. 2020;20(1):1–8.
Storey RF, Bliden KP, Patil SB, Karunakaran A, Ecob R, Butler K, et al. Incidence of dyspnea and assessment of cardiac and pulmonary function in patients with stable coronary artery disease receiving ticagrelor, clopidogrel, or placebo in the ONSET/OFFSET study. J Am Coll Cardiol. 2010;56(3):185–93.
Husted S, Emanuelsson H, Heptinstall S, Sandset PM, Wickens M, Peters G. Pharmacodynamics, pharmacokinetics, and safety of the oral reversible P2Y12 antagonist AZD6140 with aspirin in patients with atherosclerosis: a double-blind comparison to clopidogrel with aspirin. Eur Heart J. 2006;27(9):1038–47.
Cannon CP, Husted S, Harrington RA, Scirica BM, Emanuelsson H, Peters G, et al. Safety, tolerability, and initial efficacy of AZD6140, the first reversible oral adenosine diphosphate receptor antagonist, compared with clopidogrel, in patients with non-ST-segment elevation acute coronary syndrome: primary results of the DISPERSE-2 trial. J Am Coll Cardiol. 2007;50(19):1844–51.
Goto S, Huang C-H, Park S-J, Emanuelsson H, Kimura T. Ticagrelor vs clopidogrel in Japanese, Korean and Taiwanese patients with acute coronary syndrome-randomized, double-blind, phase III PHILO study. Circ J. 2015;79(11):2452–60.
Zhang Y, Zhao Y, Pang M, Wu Y, Zhuang K, Zhang H, et al. High-dose clopidogrel versus ticagrelor for treatment of acute coronary syndromes after percutaneous coronary intervention in CYP2C19 intermediate or poor metabolizers: a prospective, randomized, open-label, single-centre trial. Acta Cardiol. 2016;71(3):309–16.
Hiatt WR, Fowkes FGR, Heizer G, Berger JS, Baumgartner I, Held P, et al. Ticagrelor versus clopidogrel in symptomatic peripheral artery disease. N Engl J Med. 2017;376:32–40.
Berwanger O, Nicolau JC, Carvalho AC, Jiang L, Goodman SG, Nicholls SJ, et al. Ticagrelor vs clopidogrel after fibrinolytic therapy in patients with ST-elevation myocardial infarction: a randomized clinical trial. JAMA Cardiol. 2018;3(5):391–9.
Berwanger O, Lopes RD, Moia DD, Fonseca FA, Jiang L, Goodman SG, et al. Ticagrelor versus clopidogrel in patients with STEMI treated with fibrinolysis: TREAT trial. J Am Coll Cardiol. 2019;73(22):2819–28.
Burki NK, Dale WJ, Lee L-Y. Intravenous adenosine and dyspnea in humans. J Appl Physiol. 2005;98(1):180–5.
Ortega-Paz L, Brugaletta S, Ariotti S, Akkerhuis KM, Karagiannis A, Windecker S, et al. Adenosine and ticagrelor plasma levels in patients with and without ticagrelor-related dyspnea. Circulation. 2018;138(6):646–8.
Cattaneo M, Faioni EM. Why does ticagrelor induce dyspnea? Thromb Haemost. 2012;108(12):1031–6.
Furtado RH, Venkateswaran RV, Nicolau JC, Gurmu Y, Bhatt DL, Storey RF, et al. Caffeinated beverage intake, dyspnea with ticagrelor, and cardiovascular outcomes: insights from the PEGASUS-TIMI 54 trial. J Am Heart Assoc. 2020;9(10):e015785.
Lindholm D, Storey RF, Christersson C, Halvorsen S, Grove EL, Braun OÖ, et al. Design and rationale of TROCADERO: a trial of caffeine to alleviate dyspnea related to ticagrelor. Am Heart J. 2015;170(3):465–70.
Lindholm D, James S, Andersson J, Braun OO, Heller S, Henriksson P, et al. Caffeine and incidence of dyspnea in patients treated with ticagrelor. Am Heart J. 2018;200:141–3.
Scirica BM, Cannon CP, Emanuelsson H, Michelson EL, Harrington RA, Husted S, et al. The incidence of bradyarrhythmias and clinical bradyarrhythmic events in patients with acute coronary syndromes treated with ticagrelor or clopidogrel in the PLATO (Platelet Inhibition and Patient Outcomes) trial: results of the continuous electrocardiographic assessment substudy. J Am Coll Cardiol. 2011;57(19):1908–16.
Baker NC, Nadour W, Friehling M. Clinically significant ticagrelor induced conduction abnormalities following percutaneous coronary intervention. Int J Cardiol. 2016;214:21–2.
Zhang N, Chen K-Y, Zhao J, Xu G, Li G, Liu T. Another side effect of ticagrelor: atrial fibrillation. Int J Cardiol. 2016;212:242–4.
Waldmann V, Laredo M, Nigam A, Khairy P. Cyclical sinus bradycardia and atrioventricular block induced by ticagrelor. Heart Rhythm Case Rep. 2018;4(11):527.
Butler K, Teng R. Evaluation and characterization of the effects of ticagrelor on serum and urinary uric acid in healthy volunteers. Clin Pharmacol Ther. 2012;91(2):264–71.
Bonaca MP, Bhatt DL, Cohen M, Steg PG, Storey RF, Jensen EC, et al. Long-term use of ticagrelor in patients with prior myocardial infarction. N Engl J Med. 2015;372(19):1791–800.
Teng R, Oliver S, Hayes MA, Butler K. Absorption, distribution, metabolism, and excretion of ticagrelor in healthy subjects. Drug Metab Dispos. 2010;38(9):1514–21.
Zhang N, Zhang Z, Yang Y, Xu Y, Li G, Liu T. Ticagrelor-related gout: an underestimated side effect. Int J Cardiol. 2015;192:11–3.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Akkaif, M.A., Ng, M.L., SK Abdul Kader, M.A. et al. A review of the effects of ticagrelor on adenosine concentration and its clinical significance. Pharmacol. Rep 73, 1551–1564 (2021). https://doi.org/10.1007/s43440-021-00309-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s43440-021-00309-0