Skip to main content

Advertisement

Log in

JNK signaling as a target for anticancer therapy

  • Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

The JNKs are members of mitogen-activated protein kinases (MAPK) which regulate many physiological processes including inflammatory responses, macrophages, cell proliferation, differentiation, survival, and death. It is increasingly clear that the continuous activation of JNKs has a role in cancer development and progression. Therefore, JNKs represent attractive oncogenic targets for cancer therapy using small molecule kinase inhibitors. Studies showed that the two major JNK proteins JNK1 and JNK2 have opposite functions in different types of cancers, which need more specification in the design of JNK inhibitors. Some of ATP- competitive and ATP non-competitive inhibitors have been developed and widely used in vitro, but this type of inhibitors lack selectivity and inhibits phosphorylation of all JNK substrates and may lead to cellular toxicity. In this review, we summarized and discussed the strategies of JNK binding inhibitors and the role of JNK signaling in the pathogenesis of different solid and hematological malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Smeal T, Binetruy B, Mercola DA, Birrer M, Karin M. Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73. Nature. 1991;354(6353):494–6.

    Article  CAS  PubMed  Google Scholar 

  2. Wang X, Destrument A, Tournier C. Physiological roles of MKK4 and MKK7: insights from animal models. Biochimica Biophys Acta (BBA)-Mol Cell Res. 2007;1773(8):1349–57.

    Article  CAS  Google Scholar 

  3. Yamasaki T, Kawasaki H, Nishina H. Diverse roles of JNK and MKK pathways in the brain. Journal of signal transduction, 2012. 2012.

  4. Hu Y, Metzler B, Xu Q. Discordant activation of stress-activated protein kinases or c-Jun NH2-terminal protein kinases in tissues of heat-stressed mice. J Biol Chem. 1997;272(14):9113–9.

    Article  CAS  PubMed  Google Scholar 

  5. Zeke A, Misheva M, Reményi A, Bogoyevitch MA. JNK signaling: regulation and functions based on complex protein-protein partnerships. Microbiol Mol Biol Rev. 2016;80(3):793–835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hu P, Han Z, Couvillon AD, Kaufman RJ, Exton JH. Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1α-mediated NF-κB activation and down-regulation of TRAF2 expression. Mol Cell Biol. 2006;26(8):3071–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rosette C, Karin M. Ultraviolet light and osmotic stress: activation of the JNK cascade through multiple growth factor and cytokine receptors. Science. 1996;274(5290):1194–7.

    Article  CAS  PubMed  Google Scholar 

  8. Chang L, Jones Y, Ellisman MH, Goldstein LS, Karin M. JNK1 is required for maintenance of neuronal microtubules and controls phosphorylation of microtubule-associated proteins. Dev Cell. 2003;4(4):521–33.

    Article  CAS  PubMed  Google Scholar 

  9. Wuestefeld T, Pesic M, Rudalska R, Dauch D, Longerich T, Kang T-W, et al. A direct in vivo RNAi screen identifies MKK4 as a key regulator of liver regeneration. Cell. 2013;153(2):389–401.

    Article  CAS  PubMed  Google Scholar 

  10. Yamasaki T, Kawasaki H, Arakawa S, Shimizu K, Shimizu S, Reiner O, et al. Stress-activated protein kinase MKK7 regulates axon elongation in the developing cerebral cortex. J Neurosci. 2011;31(46):16872–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kenney AM, Kocsis JD. Peripheral axotomy induces long-term c-Jun amino-terminal kinase-1 activation and activator protein-1 binding activity by c-Jun and junD in adult rat dorsal root ganglia in vivo. J Neurosci. 1998;18(4):1318–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002;420(6913):333–6.

    Article  CAS  PubMed  Google Scholar 

  13. abio G, Kennedy NJ, Cavanagh-Kyros J, Jung DY, Ko HJ, Ong H, et al. Role of muscle c-Jun NH2-terminal kinase 1 in obesity-induced insulin resistance. Mol Cell Biol. 2010;30(1):106–15.

    Article  CAS  PubMed  Google Scholar 

  14. Ma L, Liu L, Zhao Y, Yang L, Chen C, Li Z, et al. JNK pathway plays a key role in the immune system of the pea aphid and is regulated by microRNA-184. PLoS Pathog. 2020;16(6):e1008627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Garver LS, de Almeida Oliveira G, Barillas-Mury C. The JNK pathway is a key mediator of Anopheles gambiae antiplasmodial immunity. PLoS Pathog. 2013;9(9):e1003622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sabapathy K, Kallunki T, David J-P, Graef I, Karin M, Wagner EF. c-Jun NH2-terminal kinase (JNK) 1 and JNK2 have similar and stage-dependent roles in regulating T cell apoptosis and proliferation. J Exp Med. 2001;193(3):317–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chowdhury A, Modahl CM, Tan S, Wong B, Kini RM, Pompon J. JNK pathway-a key mediator of antiviral immunity in mosquito salivary glands. Access Microbiol. 2019;1(10):88.

    Article  Google Scholar 

  18. Ventura J-J, Kennedy NJ, Lamb JA, Flavell RA, Davis RJ. c-Jun NH2-terminal kinase is essential for the regulation of AP-1 by tumor necrosis factor. Mol Cell Biol. 2003;23(8):2871–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ventura J-J, Kennedy NJ, Flavell RA, Davis RJ. JNK regulates autocrine expression of TGF-β1. Mol Cell. 2004;15(2):269–78.

    Article  CAS  PubMed  Google Scholar 

  20. Chen F. JNK-induced apoptosis, compensatory growth, and cancer stem cells. Can Res. 2012;72(2):379–86.

    Article  CAS  Google Scholar 

  21. Hess P, Pihan G, Sawyers CL, Flavell RA, Davis RJ. Survival signaling mediated by c-Jun NH 2-terminal kinase in transformed B lymphoblasts. Nat Genet. 2002;32(1):201–5.

    Article  CAS  PubMed  Google Scholar 

  22. Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, et al. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res. 2015;43(D1):D805–11.

    Article  CAS  PubMed  Google Scholar 

  23. Pham TT, Angus SP, Johnson GL. MAP3K1: genomic alterations in cancer and function in promoting cell survival or apoptosis. Genes Cancer. 2013;4(11–12):419–26.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Network CGA. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61.

    Article  Google Scholar 

  25. Hibi M, Lin A, Smeal T, Minden A, Karin M. Identification of an oncoprotein-and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev. 1993;7(11):2135–48.

    Article  CAS  PubMed  Google Scholar 

  26. Davis RJ. Signal transduction by the JNK group of MAP kinases, in Inflammatory Processes: 2000, Springer. p. 13–21.

  27. Yamamoto K, Ichijo H, Korsmeyer SJ. BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G2/M. Mol Cell Biol. 1999;19(12):8469–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Minden A, Lin A, McMahon M, Lange-Carter C, Derijard B, Davis RJ, et al. Differential activation of ERK and JNK mitogen-activated protein kinases by Raf-1 and MEKK. Science. 1994;266(5191):1719–23.

    Article  CAS  PubMed  Google Scholar 

  29. Lin A. Activation of the JNK signaling pathway: breaking the break on apoptosis. Bioassays. 2003;25:1–8.

    Article  Google Scholar 

  30. Baud V, Karin M. Signal transduction by tumor necrosis factor andits relatives. 2001, Trends.

  31. Granato M, Santarelli R, Lotti LV, Di Renzo L, Gonnella R, Garufi A, et al. JNK and macroautophagy activation by bortezomib has a pro-survival effect in primary effusion lymphoma cells. PLoS ONE. 2013;8(9):e75965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Suzuki S, Okada M, Shibuya K, Seino M, Sato A, Takeda H, et al. JNK suppression of chemotherapeutic agents-induced ROS confers chemoresistance on pancreatic cancer stem cells. Oncotarget. 2015;6(1):458.

    Article  PubMed  Google Scholar 

  33. Wang J, Tai G. Role of C-Jun N-terminal kinase in hepatocellular carcinoma development. Targeted Oncol. 2016;11(6):723–38.

    Article  Google Scholar 

  34. Gururajan M, Chui R, Karuppannan AK, Ke J, Jennings CD, Bondada S. c-Jun N-terminal kinase (JNK) is required for survival and proliferation of B-lymphoma cells. Blood. 2005;106(4):1382–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ruan J, Qi Z, Shen L, Jiang Y, Xu Y, Lan L, et al. Crosstalk between JNK and NF-κB signaling pathways via HSP27 phosphorylation in HepG2 cells. Biochem Biophys Res Commun. 2015;456(1):122–8.

    Article  CAS  PubMed  Google Scholar 

  36. Wu Q, Wu W, Fu B, Shi L, Wang X, Kuca K. JNK signaling in cancer cell survival. Med Res Rev. 2019;39(6):2082–104.

    Article  CAS  PubMed  Google Scholar 

  37. Mao C-P, Wu T, Song K-H, Kim TW. Immune-mediated tumor evolution: Nanog links the emergence of a stem like cancer cell state and immune evasion. Oncoimmunology. 2014;3(7):e947871.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu G-y, Jiang X-x, Zhu X, He W-y, Kuang Y-l, Ren K, et al. ROS activates JNK-mediated autophagy to counteract apoptosis in mouse mesenchymal stem cells in vitro. Acta Pharmacol Sin. 2015;36(12):1473–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science. 2000;288(5467):870–4.

    Article  CAS  PubMed  Google Scholar 

  40. Gancz D, Donin N, Fishelson Z. Involvement of the c-jun N-terminal kinases JNK1 and JNK2 in complement-mediated cell death. Mol Immunol. 2009;47(2–3):310–7.

    Article  CAS  PubMed  Google Scholar 

  41. Durbin AD, Somers GR, Forrester M, Pienkowska M, Hannigan GE, Malkin D. JNK1 determines the oncogenic or tumor-suppressive activity of the integrin-linked kinase in human rhabdomyosarcoma. J Clin Investig. 2009;119(6):1558–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Shibata W, Maeda S, Hikiba Y, Yanai A, Sakamoto K, Nakagawa H, et al. c-Jun NH2-terminal kinase 1 is a critical regulator for the development of gastric cancer in mice. Can Res. 2008;68(13):5031–9.

    Article  CAS  Google Scholar 

  43. Takahashi H, Ogata H, Nishigaki R, Broide DH, Karin M. Tobacco smoke promotes lung tumorigenesis by triggering IKKβ-and JNK1-dependent inflammation. Cancer Cell. 2010;17(1):89–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hui L, Zatloukal K, Scheuch H, Stepniak E, Wagner EF. Proliferation of human HCC cells and chemically induced mouse liver cancers requires JNK1-dependent p21 downregulation. J Clin Investig. 2008;118(12):3943–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Conze D, Krahl T, Kennedy N, Weiss L, Lumsden J, Hess P, et al. c-Jun NH2-terminal kinase (JNK) 1 and JNK2 have distinct roles in CD8+ T cell activation. J Exp Med. 2002;195(7):811–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhong S, Fromm J, Johnson DL. TBP is differentially regulated by c-Jun N-terminal kinase 1 (JNK1) and JNK2 through Elk-1, controlling c-Jun expression and cell proliferation. Mol Cell Biol. 2007;27(1):54–64.

    Article  CAS  PubMed  Google Scholar 

  47. Liu J, Minemoto Y, Lin A. c-Jun N-terminal protein kinase 1 (JNK1), but not JNK2, is essential for tumor necrosis factor alpha-induced c-Jun kinase activation and apoptosis. Mol Cell Biol. 2004;24(24):10844–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bogoyevitch MA, Ngoei KR, Zhao TT, Yeap YY, Ng DC. c-Jun N-terminal kinase (JNK) signaling: recent advances and challenges. Biochimica Biophys Acta (BBA)-Proteins Proteomics. 2010;1804(3):463–75.

    Article  CAS  Google Scholar 

  49. Siddiqui MA, Reddy PA. Small molecule JNK (c-Jun N-terminal kinase) inhibitors. J Med Chem. 2010;53(8):3005–12.

    Article  CAS  PubMed  Google Scholar 

  50. Akella R, Moon TM, Goldsmith EJ. Unique MAP Kinase binding sites. Biochimica Biophys Acta (BBA)-Proteins Proteomics. 2008;1784(1):48–55.

    Article  CAS  Google Scholar 

  51. Wang W, Shi L, Xie Y, Ma C, Li W, Su X, et al. SP600125, a new JNK inhibitor, protects dopaminergic neurons in the MPTP model of Parkinson’s disease. Neurosci Res. 2004;48(2):195–202.

    Article  CAS  PubMed  Google Scholar 

  52. Tanemura S, Momose H, Shimizu N, Kitagawa D, Seo J, Yamasaki T, et al. Blockage by SP600125 of Fcε receptor-induced degranulation and cytokine gene expression in mast cells is mediated through inhibition of phosphatidylinositol 3-kinase signalling pathway. J Biochem. 2009;145(3):345–54.

    Article  CAS  PubMed  Google Scholar 

  53. Gaillard P, Jeanclaude-Etter I, Ardissone V, Arkinstall S, Cambet Y, Camps M, et al. Design and synthesis of the first generation of novel potent, selective, and in vivo active (benzothiazol-2-yl) acetonitrile inhibitors of the c-Jun N-terminal kinase. J Med Chem. 2005;48(14):4596–607.

    Article  CAS  PubMed  Google Scholar 

  54. Carboni S, Hiver A, Szyndralewiez C, Gaillard P, Gotteland J-P, Vitte P-A. AS601245 (1, 3-Benzothiazol-2-yl (2-{[2-(3-pyridinyl) ethyl] amino}-4 pyrimidinyl) Acetonitrile): a c-Jun NH2-terminal protein kinase inhibitor with neuroprotective properties. J Pharmacol Exp Ther. 2004;310(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  55. Messoussi A, Feneyrolles C, Bros A, Deroide A, Daydé-Cazals B, Chevé G, et al. Recent progress in the design, study, and development of c-Jun N-terminal kinase inhibitors as anticancer agents. Chem Biol. 2014;21(11):1433–43.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang T, Inesta-Vaquera F, Niepel M, Zhang J, Ficarro SB, Machleidt T, et al. Discovery of potent and selective covalent inhibitors of JNK. Chem Biol. 2012;19(1):140–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Whitmarsh A. The JIP family of MAPK scaffold proteins. Biochem Soc Trans. 2006;34(5):828–32.

    Article  CAS  PubMed  Google Scholar 

  58. Barr RK, Kendrick TS, Bogoyevitch MA. Identification of the critical features of a small peptide inhibitor of JNK activity. J Biol Chem. 2002;277(13):10987–97.

    Article  CAS  PubMed  Google Scholar 

  59. Ngoei KR, Catimel B, Church N, Lio DS, Dogovski C, Perugini MA, et al. Characterization of a novel JNK (c-Jun N-terminal kinase) inhibitory peptide. Biochem J. 2011;434(3):399–413.

    Article  CAS  PubMed  Google Scholar 

  60. Kaneto H, Nakatani Y, Miyatsuka T, Kawamori D, Matsuoka T-a, Matsuhisa M, et al. Possible novel therapy for diabetes with cell-permeable JNK-inhibitory peptide. Nat Med. 2004;10(10):1128–32.

    Article  CAS  PubMed  Google Scholar 

  61. Borsello T, Clarke PG, Hirt L, Vercelli A, Repici M, Schorderet DF, et al. A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med. 2003;9(9):1180–6.

    Article  CAS  PubMed  Google Scholar 

  62. Gao Y-J, Cheng J-K, Zeng Q, Xu Z-Z, Decosterd I, Xu X, et al. Selective inhibition of JNK with a peptide inhibitor attenuates pain hypersensitivity and tumor growth in a mouse skin cancer pain model. Exp Neurol. 2009;219(1):146–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stebbins JL, De SK, Machleidt T, Becattini B, Vazquez J, Kuntzen C, et al. Identification of a new JNK inhibitor targeting the JNK-JIP interaction site. Proc Natl Acad Sci. 2008;105(43):16809–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ngoei KR, Ng DC, Gooley PR, Fairlie DP, Stoermer MJ, Bogoyevitch MA. Identification and characterization of bi-thiazole-2, 2′-diamines as kinase inhibitory scaffolds. Biochimica Biophys Acta (BBA)-Proteins Proteomics. 2013;1834(6):1077–88.

    Article  CAS  Google Scholar 

  65. Abdel-Aziz M, Abuo-Rahma GE-DA, Beshr EA, Ali TF. New nitric oxide donating 1, 2, 4-triazole/oxime hybrids: synthesis, investigation of anti-inflammatory, ulceroginic liability and antiproliferative activities. Bioorg Med Chem. 2013;21(13):3839–49.

    Article  CAS  PubMed  Google Scholar 

  66. Moon D-O, Kim M-O, Kang C-H, Lee J-D, Choi YH, Kim G-Y. JNK inhibitor SP600125 promotes the formation of polymerized tubulin, leading to G 2/M phase arrest, endoreduplication, and delayed apoptosis. Exp Mol Med. 2009;41(9):665–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Grassi ES, Vezzoli V, Negri I, Lábadi Á, Fugazzola L, Vitale G, et al. SP600125 has a remarkable anticancer potential against undifferentiated thyroid cancer through selective action on ROCK and p53 pathways. Oncotarget. 2015;6(34):36383.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yu H, Wu C-L, Wang X, Ban Q, Quan C, Liu M, et al. SP600125 enhances C-2-induced cell death by the switch from autophagy to apoptosis in bladder cancer cells. J Exp Clin Cancer Res. 2019;38(1):1–13.

    Article  Google Scholar 

  69. Okada M, Shibuya K, Sato A, Seino S, Watanabe E, Suzuki S, et al. Specific role of JNK in the maintenance of the tumor-initiating capacity of A549 human non-small cell lung cancer cells. Oncol Rep. 2013;30(4):1957–64.

    Article  CAS  PubMed  Google Scholar 

  70. Kim S, Ishida H, Yamane D, Yi M, Swinney DC, Foung S, et al. Contrasting roles of mitogen-activated protein kinases in cellular entry and replication of hepatitis C virus: MKNK1 facilitates cell entry. J Virol. 2013;87(8):4214–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cerbone A, Toaldo C, Minelli R, Ciamporcero E, Pizzimenti S, Pettazzoni P, et al. Rosiglitazone and AS601245 decrease cell adhesion and migration through modulation of specific gene expression in human colon cancer cells. PLoS ONE. 2012;7(6):e40149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cui J, Wang Q, Wang J, Lv M, Zhu N, Li Y, et al. Basal c-Jun NH2-terminal protein kinase activity is essential for survival and proliferation of T-cell acute lymphoblastic leukemia cells. Mol Cancer Ther. 2009;8(12):3214–22.

    Article  CAS  PubMed  Google Scholar 

  73. Ferrandi C, Richard F, Tavano P, Hauben E, Barbié V, Gotteland J-P, et al. Characterization of immune cell subsets during the active phase of multiple sclerosis reveals disease and c-Jun N-terminal kinase pathway biomarkers. Multiple Sclerosis J. 2011;17(1):43–56.

    Article  CAS  Google Scholar 

  74. Okada M, Kuramoto K, Takeda H, Watarai H, Sakaki H, Seino S, et al. The novel JNK inhibitor AS602801 inhibits cancer stem cells in vitro and in vivo. Oncotarget. 2016;7(19):27021.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Salehi AH, Morris SJ, Ho W-C, Dickson KM, Doucet G, Milutinovic S, et al. AEG3482 is an antiapoptotic compound that inhibits Jun kinase activity and cell death through induced expression of heat shock protein 70. Chem Biol. 2006;13(2):213–23.

    Article  CAS  PubMed  Google Scholar 

  76. Cicenas J, Zalyte E, Rimkus A, Dapkus D, Noreika R, Urbonavicius S. JNK, p38, ERK, and SGK1 inhibitors in cancer. 2018, Multidisciplinary Digital Publishing Institute.

  77. De Boer JP, van Egmond PW, Helder MN, de Menezes RX, Cleton-Jansen A-M, Beliën JA, et al. Targeting JNK-interacting protein 1 (JIP1) sensitises osteosarcoma to doxorubicin. Oncotarget. 2012;3(10):1169.

    Article  PubMed Central  Google Scholar 

  78. Ma FY, Flanc RS, Tesch GH, Han Y, Atkins RC, Bennett BL, et al. A pathogenic role for c-Jun amino-terminal kinase signaling in renal fibrosis and tubular cell apoptosis. J Am Soc Nephrol. 2007;18(2):472–84.

    Article  CAS  PubMed  Google Scholar 

  79. Vasilevskaya IA, Selvakumaran M, Hierro LC, Goldstein SR, Winkler JD, O'Dwyer PJ. Inhibition of JNK sensitizes hypoxic colon cancer cells to DNA-damaging agents. Clin Cancer Res. 2015;21(18):4143–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wu Q, Wu W, Jacevic V, Franca TC, Wang X, Kuca K. Selective inhibitors for JNK signalling: a potential targeted therapy in cancer. J Enzyme Inhib Med Chem. 2020;35(1):574–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. De SK, Stebbins JL, Chen L-H, Riel-Mehan M, Machleidt T, Dahl R, et al. Design, synthesis, and structure− activity relationship of substrate competitive, selective, and in vivo active triazole and thiadiazole inhibitors of the c-Jun N-terminal kinase. J Med Chem. 2009;52(7):1943–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Augustine C, Cepinskas G, Fraser DD, Group CCCTB. Traumatic injury elicits JNK-mediated human astrocyte retraction in vitro. Neuroscience. 2014;274:1–10.

    Article  CAS  PubMed  Google Scholar 

  83. Krenitsky VP, Nadolny L, Delgado M, Ayala L, Clareen SS, Hilgraf R, et al. Discovery of CC-930, an orally active anti-fibrotic JNK inhibitor. Bioorg Med Chem Lett. 2012;22(3):1433–8.

    Article  Google Scholar 

  84. van der Velden JL, Ye Y, Nolin JD, Hoffman SM, Chapman DG, Lahue KG, et al. JNK inhibition reduces lung remodeling and pulmonary fibrotic systemic markers. Clin Trans Med. 2016;5(1):1–18.

    Article  Google Scholar 

  85. Lipner MB, Peng XL, Jin C, Xu Y, Gao Y, East MP, et al. Irreversible JNK1-JUN inhibition by JNK-IN-8 sensitizes pancreatic cancer to 5-FU/FOLFOX chemotherapy. JCI insight, 2020. 5(8).

  86. Semba T, Xie X, Cohen EN, Reuben JM, Dalby KN, Wang X, et al. Suppression of tumorigenicity and metastasis of triple-negative breast cancer (TNBC) by c-Jun N-Terminal Kinase (JNK) inhibitor via reversing immunosuppressive tumor microenvironment (TME). 2020, AACR.

  87. Maroney A, Finn J, Bozyczko-Coyne D, O’Kane T, Neff N, Tolkovsky A, et al. CEP-1347 (KT7515), an inhibitor of JNK activation, rescues sympathetic neurons and neuronally differentiated PC12 cells from death evoked by three distinct insults. J Neurochem. 1999. 73(5).

  88. Trotter L, Panton W, Hajimohamadreza I, Petalidis L, Ward R, Fleming Y, et al. Mitogen-activated protein kinase kinase 7 is activated during low potassium-induced apoptosis in rat cerebellar granule neurons. Neurosci Lett. 2002;320(1–2):29–32.

    Article  CAS  PubMed  Google Scholar 

  89. Okada M, Takeda H, Sakaki H, Kuramoto K, Suzuki S, Sanomachi T, et al. Repositioning CEP-1347, a chemical agent originally developed for the treatment of Parkinson’s disease, as an anti-cancer stem cell drug. Oncotarget. 2017;8(55):94872.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Eshraghi AA, Aranke M, Salvi R, Ding D, Coleman Jr JK, Ocak E, et al. Preclinical and clinical otoprotective applications of cell-penetrating peptide D-JNKI-1 (AM-111). Hear Res. 2018;368:86–91.

    Article  CAS  PubMed  Google Scholar 

  91. Wang J, Van De Water TR, Bonny C, De Ribaupierre F, Puel J, Zine A. A peptide inhibitor of c-Jun N-terminal kinase protects against both aminoglycoside and acoustic trauma-induced auditory hair cell death and hearing loss. J Neurosci. 2003;23(24):8596–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Seki E, Brenner DA, Karin M. A liver full of JNK: signaling in regulation of cell function and disease pathogenesis, and clinical approaches. Gastroenterology. 2012;143(2):307–20.

    Article  CAS  PubMed  Google Scholar 

  93. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet. 2003;362(9399):1907–17.

    Article  PubMed  Google Scholar 

  94. Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer. 2006;6(9):674–87.

    Article  CAS  PubMed  Google Scholar 

  95. Sakurai T, Maeda S, Chang L, Karin M. Loss of hepatic NF-κB activity enhances chemical hepatocarcinogenesis through sustained c-Jun N-terminal kinase 1 activation. Proc Natl Acad Sci. 2006;103(28):10544–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chang Q, Zhang Y, Beezhold KJ, Bhatia D, Zhao H, Chen J, et al. Sustained JNK1 activation is associated with altered histone H3 methylations in human liver cancer. J Hepatol. 2009;50(2):323–33.

    Article  CAS  PubMed  Google Scholar 

  97. Machida K, Tsukamoto H, Liu JC, Han YP, Govindarajan S, Lai MM, et al. c-Jun mediates hepatitis C virus hepatocarcinogenesis through signal transducer and activator of transcription 3 and nitric oxide–dependent impairment of oxidative DNA repair. Hepatology. 2010;52(2):480–92.

    Article  CAS  PubMed  Google Scholar 

  98. Das M, Garlick DS, Greiner DL, Davis RJ. The role of JNK in the development of hepatocellular carcinoma. Genes Dev. 2011;25(6):634–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kim JB, Park S-Y, Kim HR, Ahn YH, Jee H-G, Lee JH, et al. JNK signaling in hepatocarcinoma cells is associated with the side population upon treatment with anticancer drugs. Mol Med Rep. 2015;11(1):263–8.

    Article  CAS  PubMed  Google Scholar 

  100. Liu X, Liu S, Jiang J, Zhang X, Zhang T. Inhibition of the JNK signaling pathway increases sensitivity of hepatocellular carcinoma cells to cisplatin by down-regulating expression of P-glycoprotein. Eur Rev Med Pharmacol Sci. 2016;20(6):1098–108.

    PubMed  Google Scholar 

  101. Liu X, Liu S, Jiang J, Zhang X, Zhang T. A new prenylated flavonoid induces g0/g1 arrest and apoptosis through p38/jnk mapk pathways in human hepatocellular carcinoma cells. Sci Rep. 2017;7(1):1–13.

    PubMed  PubMed Central  Google Scholar 

  102. Saavedra JE, Srinivasan A, Bonifant CL, Chu J, Shanklin AP, Flippen-Anderson JL, et al. The secondary amine/nitric oxide complex ion R2N [N (O) NO]-as nucleophile and leaving group in SNAr reactions. J Organic Chem. 2001;66(9):3090–8.

    Article  CAS  Google Scholar 

  103. Goyette P, Chen CF, Wang W, Seguin F, Lohnes D. Characterization of retinoic acid receptor-deficient keratinocytes. J Biol Chem. 2000;275(22):16497–505.

    Article  CAS  PubMed  Google Scholar 

  104. Ren Z, Kar S, Wang Z, Wang M, Saavedra JE, Carr BI. JS-K, a novel non-ionic diazeniumdiolate derivative, inhibits Hep 3B hepatoma cell growth and induces c-Jun phosphorylation via multiple MAP kinase pathways. J Cell Physiol. 2003;197(3):426–34.

    Article  CAS  PubMed  Google Scholar 

  105. Zhou Y-Y, Li Y, Jiang W-Q, Zhou L-F. MAPK/JNK signalling: a potential autophagy regulation pathway. Biosci Rep. 2015. 35(3).

  106. Hu L, Zhang T, Liu D, Guan G, Huang J, Proksch P, et al. Notoamide-type alkaloid induced apoptosis and autophagy via a P38/JNK signaling pathway in hepatocellular carcinoma cells. RSC Adv. 2019;9(34):19855–68.

    Article  CAS  Google Scholar 

  107. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000;408(6810):307–10.

    Article  CAS  PubMed  Google Scholar 

  108. Androutsopoulos VP, Spandidos DA. Anticancer pyridines induce G2/M arrest and apoptosis via p53 and JNK upregulation in liver and breast cancer cells. Oncol Rep. 2018;39(2):519–24.

    CAS  PubMed  Google Scholar 

  109. Lepage C, Capocaccia R, Hackl M, Lemmens V, Molina E, Pierannunzio D, et al. Survival in patients with primary liver cancer, gallbladder and extrahepatic biliary tract cancer and pancreatic cancer in Europe 1999–2007: results of EUROCARE-5. Eur J Cancer. 2015;51(15):2169–78.

    Article  PubMed  Google Scholar 

  110. Takahashi R, Hirata Y, Sakitani K, Nakata W, Kinoshita H, Hayakawa Y, et al. Therapeutic effect of c-Jun N-terminal kinase inhibition on pancreatic cancer. Cancer Sci. 2013;104(3):337–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Blackford A, Serrano OK, Wolfgang CL, Parmigiani G, Jones S, Zhang X, et al. SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clin Cancer Res. 2009;15(14):4674–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. He S, Liu X, Yang Y, Huang W, Xu S, Yang S, et al. Mechanisms of transforming growth factor β1/Smad signalling mediated by mitogen-activated protein kinase pathways in keloid fibroblasts. Br J Dermatol. 2010;162(3):538–46.

    Article  CAS  PubMed  Google Scholar 

  113. Zhang X, Cao J, Pei Y, Zhang J, Wang Q. Smad4 inhibits cell migration via suppression of JNK activity in human pancreatic carcinoma PANC-1 cells. Oncol Lett. 2016;11(5):3465–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lee J, Yang D-H, Suh JH, Kim U, Eom HY, Kim J, et al.. Species discrimination of Radix Bupleuri through the simultaneous determination of ten saikosaponins by high performance liquid chromatography with evaporative light scattering detection and electrospray ionization mass spectrometry. J Chromatogr B. 2011;879(32):3887–95.

    Article  CAS  Google Scholar 

  115. Lai M, Ge Y, Chen M, Sun S, Chen J, Cheng R. Saikosaponin D inhibits proliferation and promotes apoptosis through activation of MKK4–JNK signaling pathway in pancreatic cancer cells. OncoTargets Therapy. 2020;13:9465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Honkanen RE. Cantharidin, another natural toxin that inhibits the activity of serine/threonine protein phosphatases types 1 and 2A. FEBS Lett. 1993;330(3):283–6.

    Article  CAS  PubMed  Google Scholar 

  117. Li W, Xie L, Chen Z, Zhu Y, Sun Y, Miao Y, et al. Cantharidin, a potent and selective PP2A inhibitor, induces an oxidative stress-independent growth inhibition of pancreatic cancer cells through G2/M cell-cycle arrest and apoptosis. Cancer Sci. 2010;101(5):1226–33.

    Article  CAS  PubMed  Google Scholar 

  118. Ahn WS, Huh SW, Bae S-M, Lee IP, Lee JM, Namkoong SE, et al. A major constituent of green tea, EGCG, inhibits the growth of a human cervical cancer cell line, CaSki cells, through apoptosis, G1 arrest, and regulation of gene expression. DNA Cell Biol. 2003;22(3):217–24.

    Article  CAS  PubMed  Google Scholar 

  119. Shankar S, Ganapathy S, Hingorani SR, Srivastava RK. EGCG inhibits growth, invasion, angiogenesis and metastasis of pancreatic cancer. Front Biosci. 2008;13(4):440–52.

    Article  PubMed  Google Scholar 

  120. Huang X, Li B, Shen L. Studies on the anti-inflammatory effect and its mechanisms of sophoridine. J Anal Methods Chem, 2014. 2014.

  121. Bi C, Ye C, Li Y, Zhao W, Shao R, Song D. Synthesis and biological evaluation of 12-Np-chlorobenzyl sophoridinol derivatives as a novel family of anticancer agents. Acta Pharmaceutica Sinica B. 2016;6(3):222–8.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Li C-Q, Zhu Y-T, Zhang F-X, Fu L-C, Li X-H, Cheng Y, et al. Anti-HBV effect of liposome-encapsulated matrine in vitro and in vivo. World J Gastroenterol: WJG. 2005;11(3):426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Xu Z, Zhang F, Bai C, Yao C, Zhong H, Zou C, et al. Sophoridine induces apoptosis and S phase arrest via ROS-dependent JNK and ERK activation in human pancreatic cancer cells. J Exp Clin Cancer Res. 2017;36(1):1–10.

    Article  Google Scholar 

  124. Pathania D, Sechi M, Palomba M, Sanna V, Berrettini F, Sias A, et al. Design and discovery of novel quinazolinedione-based redox modulators as therapies for pancreatic cancer. Biochimica Biophys Acta (BBA)-General Subjects. 2014;1840(1):332–43.

    Article  CAS  Google Scholar 

  125. Cellurale C, Girnius N, Jiang F, Cavanagh-Kyros J, Lu S, Garlick DS, et al. Role of JNK in mammary gland development and breast cancer. Can Res. 2012;72(2):472–81.

    Article  CAS  Google Scholar 

  126. Chen P, O'Neal JF, Ebelt ND, Cantrell MA, Mitra S, Nasrazadani A, et al. Jnk2 effects on tumor development, genetic instability and replicative stress in an oncogene-driven mouse mammary tumor model. PLoS ONE. 2010;5(5):e10443.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Schramek D, Kotsinas A, Meixner A, Wada T, Elling U, Pospisilik JA, et al. The stress kinase MKK7 couples oncogenic stress to p53 stability and tumor suppression. Nat Genet. 2011;43(3):212.

    Article  CAS  PubMed  Google Scholar 

  128. Insua‐Rodríguez J, Pein M, Hongu T, Meier J, Descot A, Lowy CM, et al. Stress signaling in breast cancer cells induces matrix components that promote chemoresistant metastasis. EMBO Mol Med. 2018;10(10):e9003.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature. 1990;343(6257):425–30.

    Article  CAS  PubMed  Google Scholar 

  130. Spampanato C, De Maria S, Sarnataro M, Giordano E, Zanfardino M, Baiano S, et al. Simvastatin inhibits cancer cell growth by inducing apoptosis correlated to activation of Bax and down-regulation of BCL-2 gene expression. Int J Oncol. 2012;40(4):935–41.

    Article  CAS  PubMed  Google Scholar 

  131. Koyuturk M, Ersoz M, Altiok N. Simvastatin induces apoptosis in human breast cancer cells: p53 and estrogen receptor independent pathway requiring signalling through JNK. Cancer Lett. 2007;250(2):220–8.

    Article  CAS  PubMed  Google Scholar 

  132. Sánchez CA, Rodriguez E, Varela E, Zapata E, Paez A, Massó FA, et al. Statin-induced inhibition of MCF-7 breast cancer cell proliferation is related to cell cycle arrest and apoptotic and necrotic cell death mediated by an enhanced oxidative stress. Cancer Invest. 2008;26(7):698–707.

    Article  PubMed  Google Scholar 

  133. Hwang K-E, Na K-S, Park D-S, Choi K-H, Kim B-R, Shim H, et al. Apoptotic induction by simvastatin in human lung cancer A549 cells via Akt signaling dependent down-regulation of survivin. Invest New Drugs. 2011;29(5):945–52.

    Article  CAS  PubMed  Google Scholar 

  134. Ahn KS, Sethi G, Aggarwal BB. Simvastatin potentiates TNF-α-induced apoptosis through the down-regulation of NF-κB-dependent antiapoptotic gene products: role of IκBα kinase and TGF-β-activated kinase-1. J Immunol. 2007;178(4):2507–16.

    Article  CAS  PubMed  Google Scholar 

  135. Gopalan A, Yu W, Sanders BG, Kline K. Simvastatin inhibition of mevalonate pathway induces apoptosis in human breast cancer cells via activation of JNK/CHOP/DR5 signaling pathway. Cancer Lett. 2013;329(1):9–16.

    Article  CAS  PubMed  Google Scholar 

  136. Chiang C-T, Weng M-S, Lin-Shiau S-Y, Kuo K-L, Tsai Y-J, Lin J-K. Pu-erh tea supplementation suppresses fatty acid synthase expression in the rat liver through downregulating Akt and JNK signalings as demonstrated in human hepatoma HepG2 cells. Oncol Res Featuring Preclin Clin Cancer Therapeutics. 2006;16(3):119–28.

    Article  CAS  Google Scholar 

  137. Van de Sande T, De Schrijver E, Heyns W, Verhoeven G, Swinnen JV. Role of the phosphatidylinositol 3′-kinase/PTEN/Akt kinase pathway in the overexpression of fatty acid synthase in LNCaP prostate cancer cells. Can Res. 2002;62(3):642–6.

    Google Scholar 

  138. Yoon S, Lee M-Y, Park SW, Moon J-S, Koh Y-K, Ahn Y-H, et al. Up-regulation of acetyl-CoA carboxylase α and fatty acid synthase by human epidermal growth factor receptor 2 at the translational level in breast cancer cells. J Biol Chem. 2007;282(36):26122–31.

    Article  CAS  PubMed  Google Scholar 

  139. Kumar-Sinha C, Ignatoski KW, Lippman ME, Ethier SP, Chinnaiyan AM. Transcriptome analysis of HER2 reveals a molecular connection to fatty acid synthesis. Can Res. 2003;63(1):132–9.

    CAS  Google Scholar 

  140. Zhang J, Dai J, Zheng Q, Guo S, Yu Y, Hu W, et al. The fluoro-thiazolylhydrazone compound TSC-3C inhibits triple negative breast cancer (TNBC) cell line activity by promoting apoptosis, regulating the MAPK pathway and inducing mitochondrial dysfunction. Int J Mol Sci. 2020;21(3):1038.

    Article  PubMed Central  Google Scholar 

  141. Chen Y-C, Liao C-H, Chen I-S. Lignans, an amide and anti-platelet activities from Piper philippinum. Phytochemistry. 2007;68(15):2101–11.

    Article  CAS  PubMed  Google Scholar 

  142. Setzer WN, Setzer MC, Bates RB, Nakkiew P, Jackes BR, Chen L, et al. Antibacterial hydroxycinnamic esters from Piper caninum from Paluma, north Queensland, Australia. The crystal and molecular structure of (+)-bornyl coumarate. Planta Med. 1999;65(08):747–9.

    Article  CAS  PubMed  Google Scholar 

  143. Etzenhouser B, Hansch C, Kapur S, Selassie CD. Mechanism of toxicity of esters of caffeic and dihydrocaffeic acids. Bioorg Med Chem. 2001;9(1):199–209.

    Article  CAS  PubMed  Google Scholar 

  144. Yang C-b, Pei W-j, Zhao J, Cheng Y-y, Zheng X-h, Rong J-h. Bornyl caffeate induces apoptosis in human breast cancer MCF-7 cells via the ROS-and JNK-mediated pathways. Acta Pharmacol Sin. 2014;35(1):113–23.

    Article  CAS  PubMed  Google Scholar 

  145. Zhang X, Wang X, Wu T, Li B, Liu T, Wang R, et al. Isoliensinine induces apoptosis in triple-negative human breast cancer cells through ROS generation and p38 MAPK/JNK activation. Sci Rep. 2015;5:12579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Malki A, Elbayaa RY, Ashour HM, Loffredo CA, Youssef AM. Novel thiosemicarbazides induced apoptosis in human MCF-7 breast cancer cells via JNK signaling. J Enzyme Inhib Med Chem. 2015;30(5):786–95.

    Article  CAS  PubMed  Google Scholar 

  147. Reid BM, Permuth JB, Sellers TA. Epidemiology of ovarian cancer: a review. Cancer Biol Med. 2017;14(1):9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Xu L, Zhang X, Li Y, Lu S, Lu S, Li J, et al. Neferine induces autophagy of human ovarian cancer cells via p38 MAPK/JNK activation. Tumor Biol. 2016;37(7):8721–9.

    Article  CAS  Google Scholar 

  149. Bhattacharjee A, Hasanain M, Kathuria M, Singh A, Datta D, Sarkar J, et al. Ormeloxifene-induced unfolded protein response contributes to autophagy-associated apoptosis via disruption of Akt/mTOR and activation of JNK. Sci Rep. 2018;8(1):1–13.

    Article  Google Scholar 

  150. Zheng G-F, Cai Z, Meng X-K, Zhang Y, Zhu W, Pang X-Y, et al. Unfolded protein response mediated JNK/AP-1 signal transduction, a target for ovarian cancer treatment. Int J Clin Exp Pathol. 2015;8(6):6505.

    PubMed  PubMed Central  Google Scholar 

  151. Kim R, Emi M, Tanabe K, Murakami S. Role of the unfolded protein response in cell death. Apoptosis. 2006;11(1):5–13.

    Article  CAS  PubMed  Google Scholar 

  152. Dhanasekaran DN, Reddy EP. JNK signaling in apoptosis. Oncogene. 2008;27(48):6245–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Dou Y, Jiang X, Xie H, He J, Xiao S. The Jun N-terminal kinases signaling pathway plays a “seesaw” role in ovarian carcinoma: a molecular aspect. J Ovarian Res. 2019;12(1):1–11.

    Article  CAS  Google Scholar 

  154. Gao N, Liu J, Liu D, Hao Y, Yan L, Ma Y, et al. c-Jun transcriptionally regulates alpha 1, 2-fucosyltransferase 1 (FUT1) in ovarian cancer. Biochimie. 2014;107:286–92.

    Article  CAS  PubMed  Google Scholar 

  155. Huang H-L, Chao M-W, Li Y-C, Chang L-H, Chen C-H, Chen M-C, et al. MPT0G066, a novel anti-mitotic drug, induces JNK-independent mitotic arrest, JNK-mediated apoptosis and potentiates antineoplastic effect of cisplatin in ovarian cancer. Sci Rep. 2016;6(1):1–11.

    Google Scholar 

  156. Cho YJ, Woo J-H, Lee J-S, Jang DS, Lee K-T, Choi J-H. Eclalbasaponin II induces autophagic and apoptotic cell death in human ovarian cancer cells. J Pharmacol Sci. 2016;132(1):6–14.

    Article  CAS  PubMed  Google Scholar 

  157. De Palo G, Mariani L, Camerini T, Marubini E, Formelli F, Pasini B, et al. Effect of fenretinide on ovarian carcinoma occurrence. Gynecol Oncol. 2002;86(1):24–7.

    Article  PubMed  Google Scholar 

  158. Appierto V, Tiberio P, Villani MG, Cavadini E, Formelli F. PLAB induction in fenretinide-induced apoptosis of ovarian cancer cells occurs via a ROS-dependent mechanism involving ER stress and JNK activation. Carcinogenesis. 2009;30(5):824–31.

    Article  CAS  PubMed  Google Scholar 

  159. Fernández A, Sanguino A, Peng Z, Crespo A, Ozturk E, Zhang X, et al. Rational drug redesign to overcome drug resistance in cancer therapy: imatinib moving target. Can Res. 2007;67(9):4028–33.

    Article  Google Scholar 

  160. Fernández A, Sanguino A, Peng Z, Crespo A, Ozturk E, Zhang X, et al. JNK-1 inhibition leads to antitumor activity in ovarian cancer. 2010, AACR.

  161. Fernández A, Sanguino A, Peng Z, Crespo A, Ozturk E, Zhang X, et al. TRX-E-002-1 induces c-Jun–Dependent apoptosis in ovarian cancer stem cells and prevents recurrence in vivo. Mol Cancer Ther. 2016;15(6):1279–90.

    Article  CAS  PubMed  Google Scholar 

  162. Zhang JY, Selim MA. The role of the c-Jun N-terminal Kinase signaling pathway in skin cancer. Am J Cancer Res. 2012;2(6):691.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. She Q-B, Chen N, Bode AM, Flavell RA, Dong Z. Deficiency of c-Jun-NH2-terminal kinase-1 in mice enhances skin tumor development by 12-O-tetradecanoylphorbol-13-acetate. Can Res. 2002;62(5):1343–8.

    CAS  Google Scholar 

  164. Katagiri C, Nakanishi J, Kadoya K, Hibino T. Serpin squamous cell carcinoma antigen inhibits UV-induced apoptosis via suppression of c-JUN NH2-terminal kinase. J Cell Biol. 2006;172(7):983–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Lu C, Zhu F, Cho Y-Y, Tang F, Zykova T, Ma W-y, et al. Cell apoptosis: requirement of H2AX in DNA ladder formation, but not for the activation of caspase-3. Mol Cell. 2006;23(1):121–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Choi HS, Bode AM, Shim J-H, Lee S-Y, Dong Z. c-Jun N-terminal kinase 1 phosphorylates Myt1 to prevent UVA-induced skin cancer. Mol Cell Biol. 2009;29(8):2168–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ke H, Harris R, Coloff JL, Jin JY, Leshin B, de Marval PM, et al. The c-Jun NH2-terminal kinase 2 plays a dominant role in human epidermal neoplasia. Can Res. 2010;70(8):3080–8.

    Article  CAS  Google Scholar 

  168. Han Y-H, Mun J-G, Jeon HD, Park J, Kee J-Y, Hong S-H. Gomisin A ameliorates metastatic melanoma by inhibiting AMPK and ERK/JNK-mediated cell survival and metastatic phenotypes. Phytomedicine. 2020;68:153147.

    Article  CAS  PubMed  Google Scholar 

  169. Van Kiem P, Mai NT, Van Minh C, Khoi NH, Dang NH, Thao NP, et al. Two new C-glucosyl benzoic acids and flavonoids from Mallotus nanus and their antioxidant activity. Arch Pharmacal Res. 2010;33(2):203–8.

    Article  CAS  Google Scholar 

  170. Hou GR, Zeng K, Lan HM, Wang Q. Juglanin ameliorates UVB-induced skin carcinogenesis via anti-inflammatory and proapoptotic effects in vivo and in vitro. Int J Mol Med. 2018;42(1):41–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T. Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem. 2003;253:269–85.

    Article  CAS  PubMed  Google Scholar 

  172. Rangaswami H, Bulbule A, Kundu GC. Nuclear factor-inducing kinase plays a crucial role in osteopontin-induced MAPK/IκBα kinase-dependent nuclear factor κB-mediated promatrix metalloproteinase-9 activation. J Biol Chem. 2004;279(37):38921–35.

    Article  CAS  PubMed  Google Scholar 

  173. Lu M-K, Shih Y-W, Chien T-TC, Fang L-H, Huang H-C, Chen P-S. α-Solanine inhibits human melanoma cell migration and invasion by reducing matrix metalloproteinase-2/9 activities. Biol Pharm Bull. 2010;33(10):1685–91.

    Article  CAS  PubMed  Google Scholar 

  174. Kobayashi M, Ishida Y, Shoji N, Ohizumi Y. Cardiotonic action of [8]-gingerol, an activator of the Ca++-pumping adenosine triphosphatase of sarcoplasmic reticulum, in guinea pig atrial muscle. J Pharmacol Exp Ther. 1988;246(2):667–73.

    CAS  PubMed  Google Scholar 

  175. Dugasani S, Pichika MR, Nadarajah VD, Balijepalli MK, Tandra S, Korlakunta JN. Comparative antioxidant and anti-inflammatory effects of [6]-gingerol,[8]-gingerol,[10]-gingerol and [6]-shogaol. J Ethnopharmacol. 2010;127(2):515–20.

    Article  CAS  PubMed  Google Scholar 

  176. Galibert MD, Carreira S, Goding CR. The Usf-1 transcription factor is a novel target for the stress-responsive p38 kinase and mediates UV-induced Tyrosinase expression. EMBO J. 2001;20(17):5022–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Hirata N, Naruto S, Ohguchi K, Akao Y, Nozawa Y, Iinuma M, et al. Mechanism of the melanogenesis stimulation activity of (−)-cubebin in murine B16 melanoma cells. Bioorg Med Chem. 2007;15(14):4897–902.

    Article  CAS  PubMed  Google Scholar 

  178. Huang H-C, Chou Y-C, Wu C-Y, Chang T-M. [8]-Gingerol inhibits melanogenesis in murine melanoma cells through down-regulation of the MAPK and PKA signal pathways. Biochem Biophys Res Commun. 2013;438(2):375–81.

    Article  CAS  PubMed  Google Scholar 

  179. Sharma S, Ali A, Ali J, Sahni JK, Baboota S. Rutin: therapeutic potential and recent advances in drug delivery. Expert Opin Investig Drugs. 2013;22(8):1063–79.

    Article  CAS  PubMed  Google Scholar 

  180. Choi K-S, Kundu JK, Chun K-S, Na H-K, Surh Y-J. Rutin inhibits UVB radiation-induced expression of COX-2 and iNOS in hairless mouse skin: p38 MAP kinase and JNK as potential targets. Arch Biochem Biophys. 2014;559:38–45.

    Article  CAS  PubMed  Google Scholar 

  181. Li JY, Wang H, May S, Song X, Fueyo J, Fuller GN, et al. Constitutive activation of c-Jun N-terminal kinase correlates with histologic grade and EGFR expression in diffuse gliomas. J Neurooncol. 2008;88(1):11–7.

    Article  CAS  PubMed  Google Scholar 

  182. Antonyak MA, Kenyon LC, Godwin AK, James DC, Emlet DR, Okamoto I, et al. Elevated JNK activation contributes to the pathogenesis of human brain tumors. Oncogene. 2002;21(33):5038–46.

    Article  CAS  PubMed  Google Scholar 

  183. Tsuiki H, Tnani M, Okamoto I, Kenyon LC, Emlet DR, Holgado-Madruga M, et al. Constitutively active forms of c-Jun NH2-terminal kinase are expressed in primary glial tumors. Can Res. 2003;63(1):250–5.

    CAS  Google Scholar 

  184. Lazaris-Karatzas A, Montine KS, Sonenberg N. Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5’cap. Nature. 1990;345(6275):544–7.

    Article  CAS  PubMed  Google Scholar 

  185. Cui J, Han S-Y, Wang C, Su W, Harshyne L, Holgado-Madruga M, et al. c-Jun NH2-terminal kinase 2α2 promotes the tumorigenicity of human glioblastoma cells. Can Res. 2006;66(20):10024–31.

    Article  CAS  Google Scholar 

  186. Yoon C, Kim M, Kim R, Lim E, Choi K, An S, et al. c-Jun N-terminal kinase has a pivotal role in the maintenance of self-renewal and tumorigenicity in glioma stem-like cells. Oncogene. 2012;31(44):4655–66.

    Article  CAS  PubMed  Google Scholar 

  187. Liu JM, Pan F, Li L, Liu QR, Chen Y, Xiong XX, et al. Piperlongumine selectively kills glioblastoma multiforme cells via reactive oxygen species accumulation dependent JNK and p38 activation. Biochem Biophys Res Commun. 2013;437(1):87–93.

    Article  CAS  PubMed  Google Scholar 

  188. Kaomongkolgit R, et alKaomongkolgit R, Jamdee K, Wongnoi S, Chimnoi N, Techasakul S. Antifungal activity of coronarin D against Candida albicans. Oral Surg, Oral Med, Oral Pathol Oral Radiol. 2012;114(1):61–6.

    Article  Google Scholar 

  189. Reuk-ngam N, Chimnoi N, Khunnawutmanotham N, Techasakul S. Antimicrobial activity of coronarin D and its synergistic potential with antibiotics. BioMed Res Int. 2014. 2014.

  190. Van Kiem P, Thuy NTK, Anh HLT, Nhiem NX, Van Minh C, Yen PH, et al. Chemical constituents of the rhizomes of Hedychium coronarium and their inhibitory effect on the pro-inflammatory cytokines production LPS-stimulated in bone marrow-derived dendritic cells. Bioorg Med Chem Lett. 2011;21(24):7460–5.

    Article  CAS  PubMed  Google Scholar 

  191. Zhou H, Liu J, Chen Z. Coronarin D suppresses proliferation, invasion and migration of glioma cells via activating JNK signaling pathway. Pathol-Res Practice. 2020;216(2):152789.

    Article  CAS  Google Scholar 

  192. Wang C, Li S, Wang M-W. Evodiamine-induced human melanoma A375–S2 cell death was mediated by PI3K/Akt/caspase and Fas-L/NF-κB signaling pathways and augmented by ubiquitin–proteasome inhibition. Toxicol In Vitro. 2010;24(3):898–904.

    Article  CAS  PubMed  Google Scholar 

  193. Lv Q, Xue Y, Li G, Zou L, Zhang X, Ying M, et al. Beneficial effects of evodiamine on P2X4-mediated inflammatory injury of human umbilical vein endothelial cells due to high glucose. Int Immunopharmacol. 2015;28(2):1044–9.

    Article  CAS  PubMed  Google Scholar 

  194. Wang T, Wang Y, Yamashita H. Evodiamine inhibits adipogenesis via the EGFR–PKCα–ERK signaling pathway. FEBS Lett. 2009;583(22):3655–9.

    Article  CAS  PubMed  Google Scholar 

  195. Wang R, Deng D, Shao N, Xu Y, Xue L, Peng Y, et al. Evodiamine activates cellular apoptosis through suppressing PI3K/AKT and activating MAPK in glioma. OncoTargets Therapy. 2018;11:1183.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Yin D, Wakimoto N, Xing H, Lu D, Huynh T, Wang X, et al. Cucurbitacin B markedly inhibits growth and rapidly affects the cytoskeleton in glioblastoma multiforme. Int J Cancer. 2008;123(6):1364–75.

    Article  CAS  PubMed  Google Scholar 

  197. Fimognari C, Turrini E, Ferruzzi L, Lenzi M, Hrelia P. Natural isothiocyanates: genotoxic potential versus chemoprevention. Mutation Res/Rev Mutation Res. 2012;750(2):107–31.

    Article  CAS  Google Scholar 

  198. Lee C-S, Cho H-J, Jeong Y-J, Shin J-M, Park K-K, Park Y-Y, et al. Isothiocyanates inhibit the invasion and migration of C6 glioma cells by blocking FAK/JNK-mediated MMP-9 expression. Oncol Rep. 2015;34(6):2901–8.

    Article  CAS  PubMed  Google Scholar 

  199. Shimizu S, Suzuki M, Tomoda A, Arai S, Taguchi H, Hanawa T, et al. Phenoxazine compounds produced by the reactions with bovine hemoglobin show antimicrobial activity against non-tuberculosis mycobacteria. Tohoku J Exp Med. 2004;203(1):47–52.

    Article  CAS  PubMed  Google Scholar 

  200. Miyano-Kurosaki N, et al.Miyano-Kurosaki N, Kurosaki K, Hayashi M, Takaku H, Hayafune M, Shirato K, et al. 2-Aminophenoxazine-3-one suppresses the growth of mouse malignant melanoma B16 cells transplanted into C57BL/6Cr Slc mice. Biol Pharm Bull. 2006;29(11):2197–201.

    Article  CAS  PubMed  Google Scholar 

  201. Che X-F, Moriya S, Zheng C-L, Abe A, Tomoda A, Miyazawa K. 2-Aminophenoxazine-3-one-induced apoptosis via generation of reactive oxygen species followed by c-jun N-terminal kinase activation in the human glioblastoma cell line LN229. Int J Oncol. 2013;43(5):1456–66.

    Article  CAS  PubMed  Google Scholar 

  202. Bubici C, Papa S. JNK signalling in cancer: in need of new, smarter therapeutic targets. Br J Pharmacol. 2014;171(1):24–37.

    Article  CAS  PubMed  Google Scholar 

  203. Estey E, Döhner H. Acute myeloid leukaemia. The Lancet. 2006;368(9550):1894–907.

    Article  Google Scholar 

  204. Frazer R, Irvine AE, McMullin MF. Chronic myeloid leukaemia in the 21st century. Ulster Med J. 2007;76(1):8.

    PubMed  PubMed Central  Google Scholar 

  205. Wang Q, Salman H, Danilenko M, Studzinski GP. Cooperation between antioxidants and 1, 25-dihydroxyvitamin D3 in induction of leukemia HL60 cell differentiation through the JNK/AP-1/Egr-1 pathway. J Cell Physiol. 2005;204(3):964–74.

    Article  CAS  PubMed  Google Scholar 

  206. Chen-Deutsch X, Garay E, Zhang J, Harrison JS, Studzinski GP. c-Jun N-terminal kinase 2 (JNK2) antagonizes the signaling of differentiation by JNK1 in human myeloid leukemia cells resistant to vitamin D. Leuk Res. 2009;33(10):1372–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Cripe L, Gelfanov V, Smith E, Spigel D, Phillips C, Gabig T, et al. Role for c-jun N-terminal kinase in treatment-refractory acute myeloid leukemia (AML): signaling to multidrug-efflux and hyperproliferation. Leukemia. 2002;16(5):799–812.

    Article  CAS  PubMed  Google Scholar 

  208. Wiench B, Eichhorn T, Paulsen M, Efferth T. Shikonin directly targets mitochondria and causes mitochondrial dysfunction in cancer cells. Evidence-Based Complementary and Alternative Medicine. 2013. 2012.

  209. Zhao Q, Assimopoulou AN, Klauck SM, Damianakos H, Chinou I, Kretschmer N, et al. Inhibition of c-MYC with involvement of ERK/JNK/MAPK and AKT pathways as a novel mechanism for shikonin and its derivatives in killing leukemia cells. Oncotarget. 2015;6(36):38934.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Wu L, Li Q, Liu Y. Polyphyllin D induces apoptosis in K 562/A 02 cells through G 2/M phase arrest. J Pharm Pharmacol. 2014;66(5):713–21.

    Article  CAS  PubMed  Google Scholar 

  211. Tian Y, et alTian Y, Jia S-X, Shi J, Gong G-Y, Yu J-W, Niu Y, et al. Polyphyllin I induces apoptosis and autophagy via modulating JNK and mTOR pathways in human acute myeloid leukemia cells. Chem Biol Interact. 2019;311:108793.

    Article  CAS  PubMed  Google Scholar 

  212. Díaz JG, Carmona AJ, de Paz PP, Herz W. Acylated flavonol glycosides from Delphinium staphisagria. Phytochem Lett. 2008;1(2):125–9.

    Article  Google Scholar 

  213. Burmistrova O, et alBurmistrova O, Quintana J, Díaz JG, Estévez F. Astragalin heptaacetate-induced cell death in human leukemia cells is dependent on caspases and activates the MAPK pathway. Cancer Lett. 2011;309(1):71–7.

    Article  CAS  PubMed  Google Scholar 

  214. Masuda Y, Kadokura T, Ishii M, Takada K, Kitajima J. Hinesol, a compound isolated from the essential oils of Atractylodes lancea rhizome, inhibits cell growth and induces apoptosis in human leukemia HL-60 cells. J Nat Med. 2015;69(3):332–9.

    Article  CAS  PubMed  Google Scholar 

  215. Zahedpanah M, Shaiegan M, Ghaffari SH, Nikbakht M, Nikugoftar M, Mohammadi S. Parthenolide induces apoptosis in committed progenitor AML cell line U937 via reduction in osteopontin. Rep Biochem Mol Biol. 2016;4(2):82.

    PubMed  PubMed Central  Google Scholar 

  216. Zunino SJ, Storms DH, Ducore JM. Parthenolide treatment activates stress signaling proteins in high-risk acute lymphoblastic leukemia cells with chromosomal translocation t (4; 11). Int J Oncol. 2010;37(5):1307–13.

    Article  CAS  PubMed  Google Scholar 

  217. Kyle RA, Greipp PR. Smoldering multiple myeloma. N Engl J Med. 1980;302(24):1347–9.

    Article  CAS  PubMed  Google Scholar 

  218. Barbarulo A, Iansante V, Chaidos A, Naresh K, Rahemtulla A, Franzoso G, et al. Poly (ADP-ribose) polymerase family member 14 (PARP14) is a novel effector of the JNK2-dependent pro-survival signal in multiple myeloma. Oncogene. 2013;32(36):4231–42.

    Article  CAS  PubMed  Google Scholar 

  219. Hideshima T, Hayashi T, Chauhan D, Akiyama M, Richardson P, Anderson K. Biologic sequelae of c-Jun NH 2-terminal kinase (JNK) activation in multiple myeloma cell lines. Oncogene. 2003;22(54):8797–801.

    Article  CAS  PubMed  Google Scholar 

  220. Hideshima T, Mitsiades C, Akiyama M, Hayashi T, Chauhan D, Richardson P, et al. Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood, J Am Soc Hematol. 2003;101(4):1530–4.

    CAS  Google Scholar 

  221. Bouic PJ. Sterols and sterolins: new drugs for the immune system? Drug Discovery Today. 2002;7(14):775–8.

    Article  CAS  PubMed  Google Scholar 

  222. Koschutnig K, Heikkinen S, Kemmo S, Lampi A-M, Piironen V, Wagner K-H. Cytotoxic and apoptotic effects of single and mixed oxides of β-sitosterol on HepG2-cells. Toxicol In Vitro. 2009;23(5):755–62.

    Article  CAS  PubMed  Google Scholar 

  223. Ostlund RE Jr. Phytosterols in human nutrition. Annu Rev Nutr. 2002;22(1):533–49.

    Article  CAS  PubMed  Google Scholar 

  224. Sook SH, Lee HJ, Kim JH, Sohn EJ, Jung JH, Kim B, et al. Reactive oxygen species-mediated activation of AMP-activated protein kinase and c-Jun N-terminal kinase plays a critical role in beta-sitosterol-induced apoptosis in multiple myeloma U266 cells. Phytotherapy Res. 2014;28(3):387–94.

    Article  CAS  Google Scholar 

  225. Abraham E, Bursten S, Shenkar R, Allbee J, Tuder R, Woodson P, et al. Phosphatidic acid signaling mediates lung cytokine expression and lung inflammatory injury after hemorrhage in mice. J Exp Med. 1995;181(2):569–75.

    Article  CAS  PubMed  Google Scholar 

  226. Hideshima T, Chauhan D, Hayashi T, Podar K, Akiyama M, Mitsiades C, et al. Antitumor activity of lysophosphatidic acid acyltransferase-β inhibitors, a novel class of agents, in multiple myeloma. Can Res. 2003;63(23):8428–36.

    CAS  Google Scholar 

  227. Mitsiades CS, Ocio EM, Pandiella A, Maiso P, Gajate C, Garayoa M, et al. Aplidin, a marine organism–derived compound with potent antimyeloma activity in vitro and in vivo. Can Res. 2008;68(13):5216–25.

    Article  CAS  Google Scholar 

  228. Jiang C-H, Sun T-L, Xiang D-X, Wei S-S, Li W-Q. Anticancer activity and mechanism of xanthohumol: a prenylated flavonoid from hops (Humulus lupulus L.). Front Pharmacol. 2018;9:530.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Sławińska-Brych A, Zdzisińska B, Czerwonka A, Mizerska-Kowalska M, Dmoszyńska-Graniczka M, Stepulak A, et al. Xanthohumol exhibits anti-myeloma activity in vitro through inhibition of cell proliferation, induction of apoptosis via the ERK and JNK-dependent mechanism, and suppression of sIL-6R and VEGF production. Biochimica Biophys Acta (BBA)-General Subjects. 2019;1863(11):129408.

    Article  Google Scholar 

  230. Sharkey J, Khong T, Spencer A. PKC412 demonstrates JNK-dependent activity against human multiple myeloma cells. Blood. 2007;109(4):1712–9.

    Article  CAS  PubMed  Google Scholar 

  231. Wu H-J, Venkataraman C, Estus S, Dong C, Davis RJ, Flavell RA, et al. Positive signaling through CD72 induces mitogen-activated protein kinase activation and synergizes with B cell receptor signals to induce X-linked immunodeficiency B cell proliferation. J Immunol. 2001;167(3):1263–73.

    Article  CAS  PubMed  Google Scholar 

  232. Yang DD, Conze D, Whitmarsh AJ, Barrett T, Davis RJ, Rincón M, et al. Differentiation of CD4+ T cells to Th1 cells requires MAP kinase JNK2. Immunity. 1998;9(4):575–85.

    Article  CAS  PubMed  Google Scholar 

  233. Anbalagan M, Sabapathy K. JNK1 and JNK2 play redundant functions in Myc-induced B cell lymphoma formation. Int J Cancer. 2012;130(8):1967–9.

    Article  CAS  PubMed  Google Scholar 

  234. Ke J, Gururajan M, Kumar A, Simmons A, Turcios L, Chelvarajan RL, et al. The role of MAPKs in B cell receptor-induced down-regulation of Egr-1 in immature B lymphoma cells. J Biol Chem. 2006;281(52):39806–18.

    Article  CAS  PubMed  Google Scholar 

  235. Wang M, Zhang L, Han X, Yang J, Qian J, Hong S, et al. Atiprimod inhibits the growth of mantle cell lymphoma in vitro and in vivo and induces apoptosis via activating the mitochondrial pathways. Blood, J Am Soc Hematol. 2007;109(12):5455–62.

    CAS  Google Scholar 

  236. Johansson B. A review of the pharmacokinetics and pharmacodynamics of disulfiram and its metabolites. Acta Psychiatr Scand. 1992;86(S369):15–26.

    Article  Google Scholar 

  237. Zha J, Chen F, Dong H, Shi P, Yao Y, Zhang Y, et al. Disulfiram targeting lymphoid malignant cell lines via ROS-JNK activation as well as Nrf2 and NF-kB pathway inhibition. J Trans Med. 2014;12(1):1–9.

    Article  Google Scholar 

  238. Tharmalingam N, Port J, Castillo D, Mylonakis E. Repurposing the anthelmintic drug niclosamide to combat Helicobacter pylori. Sci Rep. 2018;8(1):3701.

    Article  PubMed  PubMed Central  Google Scholar 

  239. He W, Xu Z, Song D, Zhang H, Li B, Gao L, et al. Antitumor effects of rafoxanide in diffuse large B cell lymphoma via the PTEN/PI3K/Akt and JNK/c-Jun pathways. Life Sci. 2020;243:117249.

    Article  CAS  PubMed  Google Scholar 

  240. Kénani A, Bailly C, Helbecque N, Catteau J, Houssin R, Bernier J, et al. The role of the gulose-mannose part of bleomycin in activation of iron-molecular oxygen complexes. Biochem J. 1988;253(2):497–504.

    Article  PubMed  PubMed Central  Google Scholar 

  241. Keldsen N, Michalski W, Bentzen SM, Hansen KB, Thorling K. Risk factors for central nervous system involvement in non-hodgkins-lymphoma a multivariate analysis. Acta Oncol. 1996;35(6):703–8.

    Article  CAS  PubMed  Google Scholar 

  242. Bonadonna G, de Lena M, Monfardini S, Bartoli C, Bajetta E, Beretta G, et al.. Clinical trials with bleomycin in lymphomas and in solid tumors. Eur J Cancer (1965). 1972;8(2):205–15.

    Article  CAS  Google Scholar 

  243. Souhir B, Laurent P, Sonia Y, Delphine M, Marion C, Cédric R, et al. Deglycosylated bleomycin induces apoptosis in lymphoma cell via c-jun NH2-terminal kinase but not reactive oxygen species. Biochem Pharmacol. 2007;74(10):1445–55.

    Article  CAS  PubMed  Google Scholar 

  244. Xi M, He W, Li B, Zhou J, Xu Z, Wu H, et al. Novel cyclophosphamide of natural products osalmide and pterostilbene induces cytotoxicity and cell cycle arrest in diffuse large B-cell lymphoma cells. Acta Biochim Biophys Sin. 2020;52(4):401–10.

    Article  CAS  PubMed  Google Scholar 

  245. Zhang T, Li B, Feng Q, Xu Z, Huang C, Wu H, et al. DCZ0801, a novel compound, induces cell apoptosis and cell cycle arrest via MAPK pathway in multiple myeloma. Acta Biochim Biophys Sin. 2019;51(5):517–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heba A. Hassan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelrahman, K.S., Hassan, H.A., Abdel-Aziz, S.A. et al. JNK signaling as a target for anticancer therapy. Pharmacol. Rep 73, 405–434 (2021). https://doi.org/10.1007/s43440-021-00238-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-021-00238-y

Keywords

Navigation