Skip to main content
Log in

The potential use of tideglusib as an adjuvant radio-therapeutic treatment for glioblastoma multiforme cancer stem-like cells

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

A Correction to this article was published on 01 December 2020

This article has been updated

Abstract

Background

Glioblastoma multiforme (GBM), a stage IV astrocytoma, is the most common brain malignancy among adults. Conventional treatments of surgical resection followed by radio and/or chemotherapy fail to completely eradicate the tumor. Resistance to the currently available therapies is mainly attributed to a subpopulation of cancer stem cells (CSCs) present within the tumor bulk that self-renew leading to tumor relapse with time. Therefore, identification of characteristic markers specific to these cells is crucial for the development of targeted therapies. Glycogen synthase kinase 3 (GSK-3), a serine–threonine kinase, is deregulated in a wide range of diseases, including cancer. In GBM, GSK-3β is overexpressed and its suppression in vitro has been shown to induce apoptosis of cancer cells.

Methods

In our study, we assessed the effect of GSK-3β inhibition with Tideglusib (TDG), an irreversible non-ATP competitive inhibitor, using two human GBM cell lines, U-251 MG and U-118 MG. In addition, we combined TDG with radiotherapy to assess whether this inhibition enhances the effect of standard treatment.

Results

Our results showed that TDG significantly reduced cell proliferation, cell viability, and migration of both GBM cell lines in a dose- and time-dependent manner in vitro. Treatment with TDG alone and in combination with radiation significantly decreased the colony formation of U-251 MG cells and the sphere formation of both cell lines, by targeting and reducing their glioblastoma cancer stem-like cells (GSCs) population. Finally, cells treated with TDG showed an increased level of unrepaired radio-induced DNA damage and, thus, became sensitized toward radiation.

Conclusions

In conclusion, TDG has proven its effectiveness in targeting the cancerous properties of GBM in vitro and may, hence, serve as a potential adjuvant radio-therapeutic agent to better target this deadly tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material (data transparency)

All data generated or analyzed during this study were included in this published article.

Change history

References

  1. Ostrom QT, Gittleman H, Liao P, Rouse C, Chen Y, Dowling J, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro-oncology. 2014;16(Suppl 4):iv1-63.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Touat M, Idbaih A, Sanson M, Ligon KL. Glioblastoma targeted therapy: updated approaches from recent biological insights. Ann Oncol. 2017;28:1457–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.

    Article  CAS  PubMed  Google Scholar 

  4. AANS. Brain Tumors. Types of Brain Tumors 2019

  5. Dhermain F. Radiotherapy of high-grade gliomas: current standards and new concepts, innovations in imaging and radiotherapy, and new therapeutic approaches. Chin J Cancer. 2014;33:16–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yao KC, Komata T, Kondo Y, Kanzawa T, Kondo S, Germano IM. Molecular response of human glioblastoma multiforme cells to ionizing radiation: cell cycle arrest, modulation of the expression of cyclin-dependent kinase inhibitors, and autophagy. J Neurosurg. 2003;98:378–84.

    Article  CAS  PubMed  Google Scholar 

  7. Miyashita K, Kawakami K, Nakada M, Mai W, Shakoori A, Fujisawa H, et al. Potential therapeutic effect of glycogen synthase kinase 3beta inhibition against human glioblastoma. Clin Cancer Res. 2009;15:887–97.

    Article  CAS  PubMed  Google Scholar 

  8. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–66.

    Article  CAS  PubMed  Google Scholar 

  9. Stupp R, Dietrich PY, Ostermann Kraljevic S, Pica A, Maillard I, Maeder P, et al. Promising survival for patients with newly diagnosed glioblastoma multiforme treated with concomitant radiation plus temozolomide followed by adjuvant temozolomide. J Clin Oncol. 2002;20:1375–82.

    Article  CAS  PubMed  Google Scholar 

  10. Nam JY, de Groot JF. Treatment of glioblastoma. J Oncol Pract. 2017;13:629–38.

    Article  PubMed  Google Scholar 

  11. Xu HS, Qin XL, Zong HL, He XG, Cao L. Cancer stem cell markers in glioblastoma - an update. Eur Rev Med Pharmacol Sci. 2017;21:3207–11.

    PubMed  Google Scholar 

  12. Singh SK, Clarke ID, Hide T, Dirks PB. Cancer stem cells in nervous system tumors. Oncogene. 2004;23:7267–73.

    Article  CAS  PubMed  Google Scholar 

  13. Gimple RC, Bhargava S, Dixit D, Rich JN. Glioblastoma stem cells: lessons from the tumor hierarchy in a lethal cancer. Genes Dev. 2019;33:591–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yi Y, Hsieh IY, Huang X, Li J, Zhao W. Glioblastoma stem-like cells: characteristics, microenvironment, and therapy. Front Pharmacol. 2016;7:477.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Mittal S, Pradhan S, Srivastava T. Recent advances in targeted therapy for glioblastoma. Expert Rev Neurother. 2015;15:935–46.

    Article  CAS  PubMed  Google Scholar 

  16. Jalili-Nik M, Sadeghi MM, Mohtashami E, Mollazadeh H, Afshari AR, Sahebkar A. Zerumbone promotes cytotoxicity in human malignant glioblastoma cells through reactive oxygen species (ROS) generation. Oxid Med Cell Longev. 2020;2020:3237983.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Soukhtanloo M, Mohtashami E, Maghrouni A, Mollazadeh H, Mousavi SH, Roshan MK, et al. Natural products as promising targets in glioblastoma multiforme: a focus on NF-κB signaling pathway. Pharmacol Rep. 2020;72:285–95.

    Article  PubMed  Google Scholar 

  18. Jope RS, Johnson GV. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci. 2004;29:95–102.

    Article  CAS  PubMed  Google Scholar 

  19. Jope RS, Yuskaitis CJ, Beurel E. Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochem Res. 2007;32:577–95.

    Article  CAS  PubMed  Google Scholar 

  20. Vashishtha V, Jinghan N. Antagonistic role of GSK3 isoforms in glioma survival. J Cancer. 2018;9:1846–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. ALZFORUM. Therapeutics-Tideglusib. ALZFORUM; 2019.

  22. Lovestone S, Boada M, Dubois B, Hull M, Rinne JO, Huppertz HJ, et al. A phase II trial of tideglusib in Alzheimer’s disease. J Alzheimer’s Dis. 2015;45:75–88.

    Article  CAS  Google Scholar 

  23. Tolosa E, Litvan I, Hoglinger GU, Burn D, Lees A, Andres MV, et al. A phase 2 trial of the GSK-3 inhibitor tideglusib in progressive supranuclear palsy. Mov Disord. 2014;29:470–8.

    Article  CAS  PubMed  Google Scholar 

  24. Martinez A, Gil C, Perez DI. Glycogen synthase kinase 3 inhibitors in the next horizon for Alzheimer’s disease treatment. Int J Alzheimers Dis. 2011;2011:280502.

    PubMed  PubMed Central  Google Scholar 

  25. Dominguez JM, Fuertes A, Orozco L, del Monte-Millan M, Delgado E, Medina M. Evidence for irreversible inhibition of glycogen synthase kinase-3beta by tideglusib. J Biol Chem. 2012;287:893–904.

    Article  CAS  PubMed  Google Scholar 

  26. Mathuram TL, Ravikumar V, Reece LM, Karthik S, Sasikumar CS, Cherian KM. Tideglusib induces apoptosis in human neuroblastoma IMR32 cells, provoking sub-G0/G1 accumulation and ROS generation. Environ Toxicol Pharmacol. 2016;46:194–205.

    Article  CAS  PubMed  Google Scholar 

  27. Mathuram TL, Ravikumar V, Reece LM, Sasikumar CS, Cherian KM. Correlative studies unravelling the possible mechanism of cell death in tideglusib-treated human ovarian teratocarcinoma-derived PA-1 cells. J Environm Pathol Toxicol Oncol. 2017;36:321–44.

    Article  Google Scholar 

  28. Sun A, Li C, Chen R, Huang Y, Chen Q, Cui X, et al. GSK-3beta controls autophagy by modulating LKB1-AMPK pathway in prostate cancer cells. Prostate. 2016;76:172–83.

    Article  CAS  PubMed  Google Scholar 

  29. Westermark B. The deficient density-dependent growth control of human malignant glioma cells and virus-transformed glia-like cells in culture. Int J Cancer. 1973;12:438–51.

    Article  CAS  PubMed  Google Scholar 

  30. Macintyre EH, Pontén J, Vatter AE. The ultrastructure of human and murine astrocytes and of human fibroblasts in culture. Acta pathologica et microbiologica Scandinavica Section A Pathol. 1972;80:267–83.

    CAS  Google Scholar 

  31. van Meerloo J, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT assay. Methods Molecular Biol (Clifton, NJ). 2011;731:237–45.

    Article  CAS  Google Scholar 

  32. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.

    Article  CAS  PubMed  Google Scholar 

  33. Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ, et al. Cell Viability Assays. In: Sittampalam GS, Coussens NP, Brimacombe K, Grossman A, Arkin M, Auld D, et al., (eds) Assay Guidance Manual. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2004.

  34. Strober W. Trypan blue exclusion test of cell viability. Current protocols in immunology. 2001;Appendix 3:Appendix 3B.

  35. Arnold E. Quantifying cell kill and cell survival. Basic Clin Radiobiol London 2009. p. 41–55.

  36. Sart S, Tomasi RFX, Amselem G, Baroud CN. Multiscale cytometry and regulation of 3D cell cultures on a chip. Nature Communic. 2017;8:469.

    Article  CAS  Google Scholar 

  37. Abou-Antoun TJ, Hale JS, Lathia JD, Dombrowski SM. Brain cancer stem cells in adults and children: cell biology and therapeutic implications. Neurotherapeutics. 2017;14:372–84.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Weller M, Cloughesy T, Perry JR, Wick W. Standards of care for treatment of recurrent glioblastoma–are we there yet? Neuro-oncology. 2013;15:4–27.

    Article  PubMed  Google Scholar 

  39. Alifieris C, Trafalis DT. Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol Ther. 2015;152:63–82.

    Article  CAS  PubMed  Google Scholar 

  40. Ghaffari S. Cancer, stem cells and cancer stem cells: old ideas, new developments. F1000 Med Rep. 2011;3:23.

  41. Easton JB, Houghton PJ. mTOR and cancer therapy. Oncogene. 2006;25:6436–46.

    Article  CAS  PubMed  Google Scholar 

  42. Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther. 2015;148:114–31.

    Article  CAS  PubMed  Google Scholar 

  43. Luo J. Glycogen synthase kinase 3beta (GSK3beta) in tumorigenesis and cancer chemotherapy. Cancer Lett. 2009;273:194–200.

    Article  CAS  PubMed  Google Scholar 

  44. Mancinelli R, Carpino G, Petrungaro S, Mammola CL, Tomaipitinca L, Filippini A, et al. Multifaceted roles of GSK-3 in cancer and autophagy-related diseases. Oxid Med Cell Longev. 2017;2017:4629495.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Nakada M. MT, Pyko I, Hayashi Y, Hamada J. The Pivotal Roles of GSK3β in Glioma Biology In: Garami M, (ed) Molecular Targets of CNS Tumors IntechOpen 2011.

  46. Kotliarova S, Pastorino S, Kovell LC, Kotliarov Y, Song H, Zhang W, et al. Glycogen synthase kinase-3 inhibition induces glioma cell death through c-MYC, nuclear factor-kappaB, and glucose regulation. Cancer Res. 2008;68:6643–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. del Ser T, Steinwachs KC, Gertz HJ, Andres MV, Gomez-Carrillo B, Medina M, et al. Treatment of Alzheimer’s disease with the GSK-3 inhibitor tideglusib: a pilot study. J Alzheimer’s Dis. 2013;33:205–15.

    Google Scholar 

  48. Bahmad HF, Chalhoub RM, Harati H, Bou-Gharios J, Assi S, Ballout F, et al. Tideglusib attenuates growth of neuroblastoma cancer stem/progenitor cells in vitro and in vivo by specifically targeting GSK-3β. Pharmacol Rep. 2020. https://doi.org/10.1007/s43440-020-00162-7.

    Article  PubMed  Google Scholar 

  49. Foray N, Bourguignon M, Hamada N. Individual response to ionizing radiation. Mutat Res. 2016;770:369–86.

    Article  CAS  Google Scholar 

  50. Mori R, Matsuya Y, Yoshii Y, Date H. Estimation of the radiation-induced DNA double-strand breaks number by considering cell cycle and absorbed dose per cell nucleus. J Radiat Res. 2018;59:253–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhao J, Guo Z, Pei S, Song L, Wang C, Ma J, et al. pATM and γH2AX are effective radiation biomarkers in assessing the radiosensitivity of 12C6+ in human tumor cells. Cancer Cell Int. 2017;17:49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Bahmad HF, Cheaito K, Chalhoub RM, Hadadeh O, Monzer A, Ballout F, et al. Sphere-formation assay: three-dimensional in vitro culturing of prostate cancer stem/progenitor sphere-forming cells. Front Oncol. 2018;8:347.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mouhieddine TH, Nokkari A, Itani MM, Chamaa F, Bahmad H, Monzer A, et al. Metformin and ara-a effectively suppress brain cancer by targeting cancer stem/progenitor cells. Front Neurosci. 2015;9:442.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank all members in the Abou-Kheir’s Laboratory (The WAK Lab) for their help on this work. In addition, we would like to thank members of the core facilities in the DTS Building at the American University of Beirut (AUB) for their help and support.

Funding

This work was supported by the Lebanese National Council for Scientific Research Grant Research Program (LNCSR-GRP) (Grant # 01-10-17; to YF), the Neuroscience Research Center, Faculty of Medicine, Lebanese University (LU) (to HH), and the Medical Practice Plan (MPP) at the American University of Beirut – Faculty of Medicine (AUB-FM) (to WAK). Funders had no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Contributions

JBG: Formal analysis, Investigation, Methodology, Writing- Original draft preparation. SA: Formal analysis, Investigation, Methodology, Writing—Original draft preparation. HFB: Project administration, Supervision, Formal analysis, Investigation, Methodology, Writing- Reviewing and Editing. HK: Investigation, Methodology, Writing- Reviewing and Editing. TA: Investigation, Methodology, Writing- Reviewing and Editing. RMC: Investigation, Methodology, Writing- Reviewing and Editing, Validation. FB: Investigation, Methodology, Writing- Reviewing and Editing. HH: Resources, Funding acquisition, Writing—Reviewing and Editing, Supervision, Validation, Visualization. YF: Project administration, Funding acquisition, Writing- Reviewing and Editing, Supervision, Validation, Visualization. WAK: Conceptualization, Project administration, Resources, Software, Supervision, Funding acquisition, Writing—Reviewing and Editing, Validation, Visualization.

Corresponding authors

Correspondence to Youssef Fares or Wassim Abou-Kheir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The spelling of Youssef Fares’ name was incorrect.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 1133 KB)

Supplementary file2 (TIF 1668 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bou-Gharios, J., Assi, S., Bahmad, H.F. et al. The potential use of tideglusib as an adjuvant radio-therapeutic treatment for glioblastoma multiforme cancer stem-like cells. Pharmacol. Rep 73, 227–239 (2021). https://doi.org/10.1007/s43440-020-00180-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-020-00180-5

Keywords

Navigation