Skip to main content

Advertisement

Log in

Clinical plasma concentration of vinpocetine does not affect osteogenic differentiation of mesenchymal stem cells

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Aim

Vinpocetine (Vin) has long been used as a medicine to treat cerebrovascular disorders and as a dietary supplement to improve cognitive functions. Previous studies have revealed that the transcription factor nuclear factor kappa B (NF-κB) activity plays an important role in osteogenic differentiation of mesenchymal stem cells (MSC). Vin inhibits NF-κB-dependent inflammatory responses; however, the effect of Vin on the osteogenic differentiation of MSCs has not been reported. In this study, we aimed to the investigate effect of Vin on the osteogenic differentiation of rat bone marrow-derived MSCs (BMSCs).

Methods

We treated BMSCs with clinical plasma (0.17 µM) or higher concentrations (5 and 20 µM) of Vin with no significant effect on the cell viability. Alizarin Red S and alkaline phosphatase (ALP) stainings were used to evaluate mineralizations on days 14 and 21. Moreover, expressions of target genes were detected using qRT-PCR analysis.

Results

Osteogenic differentiation of BMSCs did not significantly change with Vin’s clinical plasma concentration, but significantly decreased with higher concentrations. Calcium mineralization, ALP staining and mRNA gene expressions of Runx2 and ALP were decreased significantly with high concentrations of Vin, paticularly on day 21.

Conclusion

Our in vitro findings suggest that clinically relevant concentration of Vin seems safe to use in elderly patients with respect to osteoporosis. On the other hand, Vin at high concentrations appears to be harmful to bone homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ALP:

Alkaline phosphatase

BMSCs:

Bone marrow-derived mesenchymal stem cells

BMP-4:

Bone morphogenetic protein 4

ColIa1:

Collagen type I alpha 1

DMSO:

Dimethyl sulfoxide

DMEM-LG:

Dulbecco’s modified Eagle’s medium-low sugar

DPBS:

Dulbecco’s phosphate-buffered saline

FBS:

Fetal bovine serum

IKK:

IκB kinase

IKKβ:

IκB kinase β

MSCs:

Mesenchymal stem cells

NF-κB:

Nuclear factor kappa B

ODM:

Osteogenic differentiation medium

PDE 1:

Phosphodiesterase type 1

Runx2:

Runt-related transcription factor 2

VSMCs:

Vascular smooth muscle cells

Vin:

Vinpocetine

References

  1. Hu X, Ma S, Yang C, Wang W, Chen L. Relationship between senile osteoporosis and cardiovascular and crebrovascular diseases. Exp Ther Med. 2019;17(6):4417–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Carda S, Cisari C, Invernizzi M, Bevilacqua M. Osteoporosis after stroke: a review of the causes and potential treatments. Cerebrovasc Dis. 2009;28:191–200.

    Article  PubMed  Google Scholar 

  3. Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal stem cells for regenerative medicine. Cells. 2019;8(8):886.

    Article  CAS  PubMed Central  Google Scholar 

  4. Hu L, Yin C, Zhao F, Ali A, Ma J, Qia A. Mesenchymal stem cells: cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment. Int J Mol Sci. 2018;19(2):360.

    Article  PubMed Central  CAS  Google Scholar 

  5. Carbonare LD, Valenti MT, Zanatta M, Donatelli L. Circulating mesenchymal stem cells with abnormal osteogenic differentiation in patients with osteoporosis. Arthritis Rheum. 2009;60(11):3356–65.

    Article  Google Scholar 

  6. Patyar S, Prakash A, Modi M, Medhi B. Role of vinpocetine in cerebrovascular diseases. Pharmacol Rep. 2011;63:618–28.

    Article  CAS  PubMed  Google Scholar 

  7. Al-Kuraishy HM, Al-Gareeb AI, Naji MT, Al-Mamorry F. Role of vinpocetine in ischemic stroke and poststroke outcomes: a critical review. Brain Circ. 2020;6:1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gomez CD, Buijs RM, Sitges M. The anti-seizure drugs vinpocetine and carbamazepine, but not valproic acid reduce inflammatory IL-1β and TNF-α expression in rat hippocampus. J Neurochem. 2014;130:770–9.

    Article  CAS  PubMed  Google Scholar 

  9. Lourenco-Gonzalez Y, Fattori V, Domiciano TP, Rossaneis AC, Borghi SM, Zaninelli TH, et al. Repurposing of the nootropic drug vinpocetine as an analgesic and anti-inflammatory agent: evidence in a mouse model of superoxide anion-triggered inflammation. Mediators Inflamm. 2019;2019:6481812.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Medina AE. Therapeutic utility of phosphodiesterase type i inhibitors in neurological conditions. Front Neurosci. 2011;5:21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jeon KI, Xu X, Aizawa T, Lim JH, Jono H, Kwon DS, et al. Vinpocetine inhibits NF-κB–dependent inflammation via an IKK-dependent but PDE-independent mechanism. PNAS. 2010;107(21):9795–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bonoczk P, Gulyas B, Adam-Vizi V, Nemes A, Karpati E, Kiss B, et al. Role of sodium channel inhibition in neuroprotection: effect of vinpocetine. Brain Res Bull. 2000;53(3):245–54.

    Article  CAS  PubMed  Google Scholar 

  13. Zhu M, Liu H, Sun K, Liu J, Mou Y, Qi D, Zhou C, Abudunaibi M, Tasiken B, Li J, Cheng H, Huan H. Vinpocetine inhibits RANKL-induced osteoclastogenesis and attenuates ovariectomy-induced bone loss. Biomed Pharmacother. 2020;123:109769.

    Article  CAS  PubMed  Google Scholar 

  14. Ma YY, Sun L, Chen XJ, Wang N, Yi PF, Song M, et al. Vinpocetine attenuates the osteoblastic differentiation of vascular smooth muscle cells. PLoSOne. 2016;11(9):e0162295.

    Article  CAS  Google Scholar 

  15. Sui Y, Liu Z, Park SH, Thatcher SE, Zhu B, Fernandez JP, et al. IKKβ is a β-catenin kinase that regulates mesenchymal stem cell differentiation. JCI Insight. 2018;3(2):e96660.

    Article  PubMed Central  Google Scholar 

  16. Soleimani M, Nadri S. A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat Protoc. 2009;4(1):102–6.

    Article  CAS  PubMed  Google Scholar 

  17. Vereczkey L, Czira G, Tamás J, Szentirmay Z, Botár Z, Szporny L. Pharmacokinetics of vinpocetine in humans. Arzneimittelforsch. 1979;29(6):957–60.

    CAS  PubMed  Google Scholar 

  18. Gage BF, Birman-Deych E, Radford MJ, Nilasena DS, Binder EF. Risk of osteoporotic fracture in elderly patients taking warfarin: results from the National Registry of Atrial Fibrillation 2. Arch Int Med. 2006;166(2):241–6.

    Article  CAS  Google Scholar 

  19. Shiek Ahmad B, O'Brien TJ, Gorelik A, Hill KD, Wark JD. Bone mineral changes in epilepsy patients during initial years of antiepileptic drug therapy. J Clin Densitom. 2016;19(4):450–6.

    Article  PubMed  Google Scholar 

  20. Wang H, Zhang K, Zhao L, Tang J, Gao L, Wei Z. Anti-inflammatory effects of vinpocetine on the functional expression of nuclear factor-kappa B and tumor necrosis factor-alpha in a rat model of cerebral ischemia-reperfusion injury. Neurosci Lett. 2014;30(566):247–51.

    Article  CAS  Google Scholar 

  21. Oeckinghaus A, Ghosh S. The NF-κB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol. 2009;1(4):a000034.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Yao Z, Li Y, Yin X, Dong Y, Xing L, Boyce BF. NF-κB RelB negatively regulates osteoblast differentiation and bone formation. J Bone Miner Res. 2014;29(4):866–77.

    Article  CAS  PubMed  Google Scholar 

  23. Alles N, Soysa NS, Hayashi J, Khan M, Shimoda A, Shimokawa H, et al. Suppression of NF-κB increases bone formation and ameliorates osteopenia in ovariectomized mice. Endocrinol. 2010;151(10):4626–34.

    Article  CAS  Google Scholar 

  24. Chang J, Wang Z, Tang E, Fan Z, McCauley L, Franceschi R, et al. Inhibition of osteoblastic bone formation by nuclear factor-kappaB. Nat Med. 2009;15(6):682–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chang J, Liu F, Lee M, Wu B, Ting K, Zara JN, et al. NF-kappaB inhibits osteogenic differentiation of mesenchymal stem cells by promoting beta catenin degradation. PNAS. 2013;110(23):9469–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lu Z, Wang G, Dunstan CR, Zreiqat H. Short-term exposure to tumor necrosis factor-alpha enables human osteoblasts to direct adipose tissue-derived mesenchymal stem cells into osteogenic differentiation. Stem Cells Dev. 2012;21:2420–9.

    Article  CAS  PubMed  Google Scholar 

  27. Croes M, Oner FC, Kruyt MC, Blokhuis TJ, Bastian O, Dhert WJA, et al. Proinflammatory mediators enhance the osteogenesis of human mesenchymal stem cells after lineage commitment. PLoS ONE. 2015;10(7):e0132781.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Cho HH, Shin KK, Kim YJ, Song JS, Kim JM, Bae YC, et al. NF-kappaB activation stimulates osteogenic differentiation of mesenchymal stem cells derived from human adipose tissue by increasing TAZ expression. J Cell Physiol. 2010;223(1):168–77.

    CAS  PubMed  Google Scholar 

  29. Feng X, Feng G, Xing J, Shen B, Li L, Tan W, et al. TNF-α triggers osteogenic differentiation of human dental pulp stem cells via the NF-kB signalling pathway. Cell Biol Int. 2013;37(12):1267–75.

    Article  CAS  PubMed  Google Scholar 

  30. Hess K, Ushmorov A, Fiedler J, Brenner RE, Wirth T. TNF-α promotes osteogenic differentiation of human mesenchymal stem cells by triggering the NF-kappaB signaling pathway. Bone. 2009;5:367–76.

    Article  CAS  Google Scholar 

  31. Zhang F, Yan C, Wei C, Yao Y, Ma X, Gong Z, et al. Vinpocetine inhibits NF-κB-dependent inflammation in acute ischemic stroke patients. Transl Stroke Res. 2018;9(2):174–84.

    Article  CAS  PubMed  Google Scholar 

  32. Lencel P, Delplace S, Hardouin P, Magne D. TNF-α stimulates alkaline phosphatase and mineralization through PPARγ inhibition in human osteoblasts. Bone. 2011;48(2):242–9.

    Article  CAS  PubMed  Google Scholar 

  33. Wakabayashi S, Tsutsumimoto T, Kawasaki S, Kinoshita T, Horiuchi H, Takaoka K. Involvement of phosphodiesterase ısozymes in osteoblastic differentiation. J Bone Miner Res. 2002;17(2):249–56.

    Article  CAS  PubMed  Google Scholar 

  34. Munissoa MC, Kanga JH, Tsurufuji M, Yamaok T. Cilomilast enhances osteoblast differentiation of mesenchymal stem cells and bone formation induced by bone morphogenetic protein 2. Biochimie. 2012;94(11):2360–5.

    Article  CAS  Google Scholar 

  35. Tsutsumimoto T, Wakabayashi S, Kinoshita T, Horiuchi H, Takaoka K. A phosphodiesterase inhibitor, pentoxifylline, enhances the bone morphogenetic protein-4 (BMP-4)-dependent differentiation of osteoprogenitor cells. Bone. 2002;31:396–401.

    Article  CAS  PubMed  Google Scholar 

  36. Azevedo MF, Faucz FR, Bimpaki E, Horvath A, Levy I, Alexandre RB. Clinical and molecular genetics of the phosphodiesterases (PDEs). Endocr Rev. 2014;35(2):195–233.

    Article  CAS  PubMed  Google Scholar 

  37. Shen C, Quan Q, Yang C, Wen Y, Li H. Histone demethylase JMJD6 regulates cellular migration and proliferation in adipose-derived mesenchymal stem cells. Stem Cell Res Ther. 2018;9(1):212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim NJ, Baek JH, Lee JA, Kim HN, Song JK, Chun KH. A PDE1 inhibitor reduces adipogenesis in mice via regulation of lipolysis and adipogenic cell signaling. Exp Mol Med. 2019;51:1–15.

    PubMed  PubMed Central  Google Scholar 

  39. Choi HD, Noh WC, Park JW, Lee J, Su JY. Analysis of gene expression during mineralization of cultured human periodontal ligament cells. J Periodontal Implant Sci. 2011;41(1):30–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhou X, Dong XW, Crona J, Maguire M, Priestley T. Vinpocetine is a potent blocker of rat NaV1.8 tetrodotoxin-resistant sodium channels. J Pharmacol Exp Ther. 2003;306(2):498–504.

    Article  CAS  PubMed  Google Scholar 

  41. Li GR, Deng XL. Functional ion channels in stem cells. World J Stem Cells. 2011;3(3):19–24.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jones E, Schäfer R. Where is the common ground between bone marrow mesenchymal stem/stromal cells from different donors and species? Stem Cell Res Ther. 2015;6:143.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Li C, Wei G, Gu Q, Wang Q, Tao S, Xu L, et al. Proliferation and differentiation of rat osteoporosis mesenchymal stem cells (MSCs) after telomerase reverse transcriptase (TERT) transfection. Med Sci Monit. 2015;21:845–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Scientific Research Projects Coordination Unit of Erciyes University (project code: TYL-2018-8300).

Author information

Authors and Affiliations

Authors

Contributions

Both authors participated in the study design, in vitro experiments, interpretation, data analysis, and review of the manuscript. GS contributed to writing and editing of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gulay Sezer.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yıldırım, E., Sezer, G. Clinical plasma concentration of vinpocetine does not affect osteogenic differentiation of mesenchymal stem cells. Pharmacol. Rep 73, 202–210 (2021). https://doi.org/10.1007/s43440-020-00153-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-020-00153-8

Keywords

Navigation