Effects of curcumin on neurological diseases: focus on astrocytes

Abstract

Astrocytes are the most abundant glial cells in the central nervous system, and are important players in both brain injury and neurodegenerative disease. Curcumin (1,7-bis[4-hydroxy-3-methoxyphenyl]-1,6-heptadiene-3,5-dione), the major active component of turmeric, belongs to the curcuminoid family that was originally isolated from the plant Curcuma longa. Several studies suggest that curcumin may have a beneficial impact on the brain pathology and aging. These effects are due to curcumin’s antioxidant, free-radical scavenging, and anti-inflammatory activity. In light of this, our current review aims to discuss the role of astrocytes as essential players in neurodegenerative diseases and suggest that curcumin is capable of direct inhibition of astrocyte activity with a particular focus on its effects in Alexander disease, Alzheimer's disease, ischemia stroke, spinal cord injury, Multiple sclerosis, and Parkinson’s disease.

This is a preview of subscription content, access via your institution.

Fig. 1

Abbreviations

TNF:

Tumor necrosis factor

ROS:

Reactive-oxygen species

NO:

Nitric oxide

MAPK:

Mitogen-activated protein kinases

Iba-1:

Ionized calcium binding adaptor molecule 1

MCP-1:

Monocyte chemoattractant protein-1

JAKs:

Janus kinases

STATs:

Signal transducer and activator of transcription proteins

MMP-9:

Matrix metallopeptidase 9

IL-6:

Interleukin 6

IL-1β:

Interleukin 1 beta

MIP-1 α:

Macrophage inflammatory protein-1 alpha

MIP-2:

Macrophage inflammatory protein 2

NF-ҡB:

The inducible transcription factor nuclear factor-kappa B

RANTES:

Regulated upon activation, normal T cell

iNOS:

Inducible nitric oxide synthase

BDNF:

Brain-derived neurotrophic factor

CB1:

Cannabinoid receptor type 1

GFAP:

Glial fibrillary acidic protein

COX-2:

Cyclooxygenase-2

MEK1:

Mitogen-activated protein kinase

ERK1/2:

Extracellular signal-regulated kinase 2

CISD2:

The causative gene in Wolfram syndrome 2

References

  1. 1.

    Kettenmann H, Ransom B. Neuroglia. 2nd ed. Oxford: Oxford University Press; 2005.

    Google Scholar 

  2. 2.

    Sandhu JK, Sodja C, Byrd A, Cadieux C, Lanthier ZP, Roy Walker P, et al. The significance of astrocytic glutathione system in neuroprotection: a potential role for curcumin. Glutathione: biochemistry, mechanisms of action and biotechnological implications;2013. pp. 95–110.

  3. 3.

    Kimelberg HK, Nedergaard M. Functions of astrocytes and their potential as therapeutic targets. Neurotherapeutics. 2010;7(4):338–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Nag S. Morphology and properties of astrocytes. The blood-brain and other neural barriers. New York: Springer; 2011. p. 69–100.

    Google Scholar 

  5. 5.

    Aloisi F. The role of microglia and astrocytes in CNS immune surveillance and immunopathology. The functional roles of glial cells in health and disease. New York: Springer; 1999. p. 123–133.

    Google Scholar 

  6. 6.

    Phatnani H, Maniatis T. Astrocytes in neurodegenerative disease. Cold Spring Harbor perspectives in biology. 2015;2015:a020628.

    Google Scholar 

  7. 7.

    Ben Haim L, Carrillo-de Sauvage M-A, Ceyzériat K, Escartin C. Elusive roles for reactive astrocytes in neurodegenerative diseases. Front Cell Neurosci. 2015;9:278.

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Daverey A, Agrawal SK. Curcumin alleviates oxidative stress and mitochondrial dysfunction in astrocytes. Neuroscience. 2016;333:92–103.

    CAS  PubMed  Google Scholar 

  9. 9.

    Chin D, Huebbe P, Pallauf K, Rimbach G. Neuroprotective properties of curcumin in Alzheimer's disease–merits and limitations. Curr Med Chem. 2013;20(32):3955–85.

    CAS  PubMed  Google Scholar 

  10. 10.

    Panahi Y, Kianpour P, Mohtashami R, Jafari R, Simental-Mendía LE, Sahebkar A. Efficacy and safety of phytosomal curcumin in non-alcoholic fatty liver disease: a randomized controlled trial. Drug Res (Stuttg). 2017;67(4):244–51.

    CAS  Google Scholar 

  11. 11.

    Fereydouni N, Darroudi M, Movaffagh J, Shahroodi A, Butler AE, Ganjali S, et al. Curcumin nanofibers for the purpose of wound healing. J Cell Physiol. 2018;234(5):5537–54.

    PubMed  Google Scholar 

  12. 12.

    Panahi Y, Ghanei M, Bashiri S, Hajihashemi A, Sahebkar A. Short-term curcuminoid supplementation for chronic pulmonary complications due to sulfur mustard intoxication: positive results of a randomized double-blind placebo-controlled trial. Drug Res. 2014;65(11):567–73.

    Google Scholar 

  13. 13.

    Hamzehzadeh L, Atkin SL, Majeed M, Butler AE, Sahebkar A. The versatile role of curcumin in cancer prevention and treatment: A focus on PI3K/AKT pathway. J Cell Physiol. 2018;233(10):6530–7.

    CAS  PubMed  Google Scholar 

  14. 14.

    Rezaee R, Momtazi AA, Monemi A, Sahebkar A. Curcumin: A potentially powerful tool to reverse cisplatin-induced toxicity. Pharmacol Res. 2017;117:218–27.

    CAS  PubMed  Google Scholar 

  15. 15.

    Iranshahi M, Sahebkar A, Takasaki M, Konoshima T, Tokuda H. Cancer chemopreventive activity of the prenylated coumarin, umbelliprenin, in vivo. Eur J Cancer Prev. 2009;18(5):412–5.

    CAS  PubMed  Google Scholar 

  16. 16.

    Sahebkar A. Molecular mechanisms for curcumin benefits against ischemic injury. Fertil Steril. 2010;94(5):e75–e7676.

    PubMed  Google Scholar 

  17. 17.

    Karimian MS, Pirro M, Majeed M, Sahebkar A. Curcumin as a natural regulator of monocyte chemoattractant protein-1. Cytokine Growth Factor Rev. 2017;33:55–63.

    CAS  PubMed  Google Scholar 

  18. 18.

    Seyedzadeh MH, Safari Z, Zare A, Gholizadeh Navashenaq J, Razavi SA, Kardar GA, et al. Study of curcumin immunomodulatory effects on reactive astrocyte cell function. Int Immunopharmacol. 2014;22(1):230–5.

    CAS  PubMed  Google Scholar 

  19. 19.

    Abdollahi E, Momtazi AA, Johnston TP, Sahebkar A. Therapeutic effects of curcumin in inflammatory and immune-mediated diseases: a nature-made jack-of-all-trades? J Cell Physiol. 2018;233(2):830–48.

    CAS  PubMed  Google Scholar 

  20. 20.

    Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA. The essential medicinal. Chem Curcumin J Med Chem. 2017;60(5):1620–37.

    CAS  PubMed  Google Scholar 

  21. 21.

    Vareed SK, Kakarala M, Ruffin MT, Crowell JA, Normolle DP, Djuric Z, Brenner DE. Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiol Biomarkers Prev. 2008;17(6):1411–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Shakeri A, Zirak MR, Hayes AW, Reiter R, Karimi G. Curcumin and its analogues protect from endoplasmic reticulum stress: mechanisms and pathways. Pharmacol Res. 2019;146:104335.

    CAS  PubMed  Google Scholar 

  23. 23.

    Nones J, Stipursky J, Costa SL, Gomes FCA. Flavonoids and astrocytes crosstalking: implications for brain development and pathology. Neurochem Res. 2010;35(7):955–66.

    CAS  PubMed  Google Scholar 

  24. 24.

    Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging. 2000;21(3):383–421.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Zhang ZJ, Zhao LX, Cao DL, Zhang X, Gao YJ, Xia C. Curcumin inhibits LPS-induced CCL2 expression via JNK pathway in C6 rat astrocytoma cells. Cell Mol Neurobiol. 2012;32(6):1003–100.

    CAS  PubMed  Google Scholar 

  26. 26.

    Sundaram JR, Poore CP, Sulaimee NHB, Pareek T, Cheong WF, Wenk MR, et al. Curcumin ameliorates neuroinflammation, neurodegeneration, and memory deficits in p25 transgenic mouse model that bears hallmarks of Alzheimer’s disease. J Alzheimers Dis. 2017;60(4):1429–42.

    CAS  PubMed  Google Scholar 

  27. 27.

    Liu ZJ, Li ZH, Liu L, Tang WX, Wang Y, Dong MR, et al. Curcumin attenuates beta-amyloid-induced neuroinflammation via activation of peroxisome proliferator-activated receptor-gamma function in a rat model of Alzheimer's disease. Front Pharmacol. 2016;7:261.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Lin MS, Hung KS, Chiu WT, Sun YY, Tsai SH, Lin JW, et al. Curcumin enhances neuronal survival in N-methyl-d-aspartic acid toxicity by inducing RANTES expression in astrocytes via PI-3K and MAPK signaling pathways. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(4):931–8.

    CAS  PubMed  Google Scholar 

  29. 29.

    Tai YH, Lin YY, Wang KC, Chang CL, Chen RY, Wu CC, et al. Curcuminoid submicron particle ameliorates cognitive deficits and decreases amyloid pathology in Alzheimer's disease mouse model. Oncotarget. 2018;9(12):10681–97.

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Maiti P, Paladugu L, Dunbar GL. Solid lipid curcumin particles provide greater anti-amyloid, anti-inflammatory and neuroprotective effects than curcumin in the 5xFAD mouse model of Alzheimer's disease. BMC Neurosci. 2018;19(1):1–18.

    Google Scholar 

  31. 31.

    Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci. 2001;21(21):8370–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Kuo YC, Lin CC. Rescuing apoptotic neurons in Alzheimer’s disease using wheat germ agglutinin-conjugated and cardiolipin-conjugated liposomes with encapsulated nerve growth factor and curcumin. Int J Nanomed. 2015;10:2653–72.

    CAS  Google Scholar 

  33. 33.

    Wang Y, Yin H, Wang L, Shuboy A, Lou J, Han B, et al. Curcumin as a potential treatment for Alzheimer's disease: a study of the effects of curcumin on hippocampal expression of glial fibrillary acidic protein. Am J Chin Med. 2013;41(1):59–70.

    PubMed  Google Scholar 

  34. 34.

    Ganugapati J, Babu R, Ahuja SJ, Mukundan M, Vutukuru SS. Screening and molecular docking studies of curcumin and its derivatives as inhibitors of amyloid-β protein: a key protein in Alzheimer’s disease. Asian J Pharm Clin Res. 2015;8(2):98–101.

    CAS  Google Scholar 

  35. 35.

    Wang HM, Zhao YX, Zhang S, Liu GD, Kang WY, Tang HD, et al. PPARγ agonist curcumin reduces the amyloid-β-stimulated inflammatory responses in primary astrocytes. J Alzheimers Dis. 2010;20(4):1189–99.

    CAS  PubMed  Google Scholar 

  36. 36.

    Ambegaokar SS, Wu L, Alamshahi K, Lau J, Jazayeri L, Chan S, et al. Curcumin inhibits dose-dependently and time-dependently neuroglial cell proliferation and growth. Neuroendocrinol Lett. 2003;24(6):469–73.

    CAS  PubMed  Google Scholar 

  37. 37.

    Wang Y-L, Ju B, Zhang Y-Z, Yin H-L, Liu Y-J, Wang S-S, et al. Protective effect of curcumin against oxidative stress-induced injury in rats with parkinson’s disease through the Wnt/β-catenin signaling pathway. Cell Physiol Biochem. 2017;43(6):2226–41.

    CAS  PubMed  Google Scholar 

  38. 38.

    Norenberg MD. Reactive astrocytosis. In: Aschner A, Kimelberg HK, editors. The role of glia in neurotoxicity. Boca Raton, FL: CRC Press; 1996. p. 93–107.

    Google Scholar 

  39. 39.

    Tripanichkul W, Jaroensuppaperch EO. Ameliorating effects of curcumin on 6-OHDA-induced dopaminergic denervation, glial response, and SOD1 reduction in the striatum of hemiparkinsonian mice. Eur Rev Med Pharmacol Sci. 2013;17(10):1360–8.

    CAS  PubMed  Google Scholar 

  40. 40.

    Yu S, Wang X, He X, Wang Y, Gao S, Ren L, et al. Curcumin exerts anti-inflammatory and antioxidative properties in 1-methyl-4-phenylpyridinium ion (MPP+)-stimulated mesencephalic astrocytes by interference with TLR4 and downstream signaling pathway. Cell Stress Chaperones. 2016;21(4):697–705.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Gui HY, Chen RN, Peng Y, Hu JH, Mao Z, Ning R, et al. Curcumin protects against 1-methyl-4-phenylpyridinium ion- and lipopolysaccharide-induced cytotoxicities in the mouse mesencephalic astrocyte via inhibiting the cytochrome P450 2E1. Evid Based Complement Alternat Med. 2013;2013:523484. https://doi.org/10.1155/2013/523484.

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    He XJ, Uchida K, Megumi C, Tsuge N, Nakayama H. Dietary curcumin supplementation attenuates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity in C57BL mice. Exp Toxicol Pathol. 2015;28(4):197–206.

    CAS  Google Scholar 

  43. 43.

    Sharma N, Sharma S, Nehru B. Curcumin protects dopaminergic neurons against inflammation-mediated damage and improves motor dysfunction induced by single intranigral lipopolysaccharide injection. Inflammopharmacology. 2017;25(3):351–68.

    CAS  PubMed  Google Scholar 

  44. 44.

    Sharma N, Nehru B. Curcumin affords neuroprotection and inhibits α-synuclein aggregation in lipopolysaccharide-induced Parkinson’s disease model. Inflammopharmacology. 2018;26(2):349–60.

    CAS  Google Scholar 

  45. 45.

    Tripanichkul W, Jaroensuppaperch EO. Curcumin protects nigrostriatal dopaminergic neurons and reduces glial activation in 6-hydroxydopamine hemiparkinsonian mice model. Int J Neurosci. 2012;122(5):263–70.

    CAS  PubMed  Google Scholar 

  46. 46.

    Abbaoui A, Gamrani H. Neuronal, astroglial and locomotor injuries in subchronic copper intoxicated rats are repaired by curcumin: a possible link with Parkinson's disease. Acta Histochem. 2018;120(6):542–50.

    CAS  PubMed  Google Scholar 

  47. 47.

    Wang Q, Sun AY, Simonyi A, Jensen MD, Shelat PB, Rottinghaus GE, et al. Neuroprotective mechanisms of curcumin against cerebral ischemia-induced neuronal apoptosis and behavioral deficits. J Neurosci Res. 2005;82(1):138–48.

    CAS  PubMed  Google Scholar 

  48. 48.

    Jiang J, Wang W, Sun YJ, Hu M, Li F, Zhu DY. Neuroprotective effect of curcumin on focal cerebral ischemic rats by preventing blood–brain barrier damage. Eur J Pharmacol. 2007;561(1–3):54–62.

    CAS  PubMed  Google Scholar 

  49. 49.

    El-Haroun H. Microscopic study of a possible ameliorating role of curcumin against the effects of first-generation and second-generation antipsychotic drugs in adult rat cerebral cortex. Egypt J Chem. 2016;39(1):96–108.

    Google Scholar 

  50. 50.

    Zhang P, Yu T, Zhang X, Li Y. Curcumin alters expression of glial fibrillary acidic protein and nestin following chronic cerebral ischemia. Neural Regen Res. 2011;6(9):651–5.

    CAS  Google Scholar 

  51. 51.

    Rajasekar N, Dwivedi S, Tota SK, Kamat PK, Hanif K, Nath C, et al. Neuroprotective effect of curcumin on okadaic acid induced memory impairment in mice. Eur J Pharmacol. 2013;715(1–3):381–94.

    CAS  PubMed  Google Scholar 

  52. 52.

    Amer MG, Karam RA. Morphological and biochemical features of cerebellar cortex after exposure to zinc oxide nanoparticles: possible protective role of curcumin. Anat Rec. 2018;301(8):1454–66.

    CAS  Google Scholar 

  53. 53.

    Kalani A, Chaturvedi P, Kamat PK, Maldonado C, Bauer P, Joshua IG, et al. Curcumin-loaded embryonic stem cell exosomes restored neurovascular unit following ischemia-reperfusion injury. Int J Biochem Cell Biol. 2016;79:360–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Levin HS, Eisenberg HM, Gary HE, Marmarou A, Foulkes MA, Jane JA, et al. Intracranial hypertension in relation to memory functioning during the first year after severe head injury. Neurosurgery. 1991;28(2):196–200.

    CAS  PubMed  Google Scholar 

  55. 55.

    Wang BF, Cui ZW, Zhong ZH, Sun YH, Sun QF, Yang GY, et al. Curcumin attenuates brain edema in mice with intracerebral hemorrhage through inhibition of AQP4 and AQP9 expression. Acta Pharmacol Sin. 2015;36(8):939–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Banerjee PN, Filippi D, Hauser WA. The descriptive epidemiology of epilepsy—a review. Epilepsy Res. 2009;85(1):31–45.

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Drion CM, van Scheppingen J, Arena A, Geijtenbeek KW, Kooijman L, van Vliet EA, et al. Effects of rapamycin and curcumin on inflammation and oxidative stress in vitro and in vivo—in search of potential anti-epileptogenic strategies for temporal lobe epilepsy. J Neuroinflammation. 2018;15(1):212.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Jiang Z, Guo M, Shi C, Wang H, Yao L, Liu L, et al. Protection against cognitive impairment and modification of epileptogenesis with curcumin in a post-status epilepticus model of temporal lobe epilepsy. Neuroscience. 2015;310:362–71.

    CAS  PubMed  Google Scholar 

  59. 59.

    Kaur H, Patro I, Tikoo K, Sandhir R. Curcumin attenuates inflammatory response and cognitive deficits in experimental model of chronic epilepsy. Neurochem Int. 2015;89:40–50.

    CAS  PubMed  Google Scholar 

  60. 60.

    Lin MS, Lee YH, Chiu WT, Hung KS. Curcumin provides neuroprotection after spinal cord injury. J Surg Res. 2011;166(2):280–9.

    CAS  PubMed  Google Scholar 

  61. 61.

    Lin CC, Chiang TH, Chen WJ, Sun YY, Lee YH, Lin MS. CISD2 serves a novel role as a suppressor of nitric oxide signalling and curcumin increases CISD2 expression in spinal cord injuries. Injury. 2015;46(12):2341–50.

    PubMed  Google Scholar 

  62. 62.

    Yuan J, Liu W, Zhu H, Chen Y, Zhang X, Li L, et al. Curcumin inhibits glial scar formation by suppressing astrocyte-induced inflammation and fibrosis in vitro and in vivo. Brain Res. 2017;1655:90–103.

    CAS  PubMed  Google Scholar 

  63. 63.

    Wang YF, Zu JN, Li J, Chen C, Xi CY, Yan JL. Curcumin promotes the spinal cord repair via inhibition of glial scar formation and inflammation. Neurosci Lett. 2014;560:51–6.

    CAS  PubMed  Google Scholar 

  64. 64.

    Bondan E, Cardoso C, Martins MF. Curcumin decreases astrocytic reaction after gliotoxic injury in the rat brainstem. Arq Neuropsiquiatr. 2017;75(8):546–52.

    PubMed  Google Scholar 

  65. 65.

    Johnson SA, Fournier NM, Kalynchuk LE. Effect of different doses of corticosterone on depression-like behavior and HPA axis responses to a novel stressor. Behav Brain Res. 2006;168(2):280–8.

    CAS  PubMed  Google Scholar 

  66. 66.

    Huang Z, Zhong X-M, Li Z-Y, Feng C-R, Pan A-J, Mao Q-Q. Curcumin reverses corticosterone-induced depressive-like behavior and decrease in brain BDNF levels in rats. Neurosci Lett. 2011;493(3):145–8.

    CAS  PubMed  Google Scholar 

  67. 67.

    He X, Yang L, Wang M, Zhuang X, Huang R, Zhu R, et al. Targeting the endocannabinoid/CB1 receptor system for treating major depression through antidepressant activities of curcumin and dexanabinol-loaded solid lipid nanoparticles. Cell Physiol Biochem. 2017;42(6):2281–94.

    CAS  PubMed  Google Scholar 

  68. 68.

    Chen JJ, Dai L, Zhao LX, Zhu X, Cao S, Gao YJ. Intrathecal curcumin attenuates pain hypersensitivity and decreases spinal neuroinflammation in rat model of monoarthritis. Sci Rep. 2015;5:10278.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Xu MX, Yu R, Shao LF, Zhang YX, Ge CX, Liu XM, et al. Up-regulated fractalkine (FKN) and its receptor CX3CR1 are involved in fructose-induced neuroinflammation: suppression by curcumin. Brain Behav Immun. 2016;58:69–81.

    CAS  PubMed  Google Scholar 

  70. 70.

    Tomita M, Holman BJ, Santoro CP, Santoro TJ. Astrocyte production of the chemokine macrophage inflammatory protein-2 is inhibited by the spice principle curcumin at the level of gene transcription. J Neuroinflamm. 2005;2:8.

    Google Scholar 

  71. 71.

    Haider L, Zrzavy T, Hametner S, Höftberger R, Bagnato F, Grabner G, et al. The topograpy of demyelination and neurodegeneration in the multiple sclerosis brain. Brain. 2016;139(3):807–15.

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Naeimi R, Safarpour F, Hashemian M, Tashakorian H, Ahmadian SR, Ashrafpour M, et al. Curcumin-loaded nanoparticles ameliorate glial activation and improve myelin repair in lyolecithin-induced focal demyelination model of rat corpus callosum. Neurosci Lett. 2018;674:1–10.

    CAS  PubMed  Google Scholar 

  73. 73.

    Qin X, Qiao H, Wu S, Cheng J, Wan Q, Liu R. curcumin inhibits monocyte chemoattractant protein-1 expression in TNF-α induced astrocytes through AMPK pathway. Neurochem Res. 2018;43(4):775–84.

    CAS  PubMed  Google Scholar 

  74. 74.

    Liu S, Li Q, Zhang MT, Mao-Ying QL, Hu LY, Wu GC, et al. Curcumin ameliorates neuropathic pain by down-regulating spinal IL-1β via suppressing astroglial NALP1 inflammasome and JAK2-STAT3 signalling. Sci Rep. 2016;6:1–4.

    Google Scholar 

  75. 75.

    Jiang H, Tian X, Guo Y, Duan W, Bu H, Li C. Activation of nuclear factor erythroid 2-related factor 2 cytoprotective signaling by curcumin protect primary spinal cord astrocytes against oxidative toxicity. Biol Pharm Bull. 2011;34(8):1194–7.

    CAS  PubMed  Google Scholar 

  76. 76.

    Zhao L, Liu Z, Jia H, Feng Z, Liu J, Li X. Lipoamide acts as an indirect antioxidant by simultaneously stimulating mitochondrial biogenesis and phase II antioxidant enzyme systems in arpe-19 cells. PLoS ONE. 2015;10:e0128502.

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Daverey A, Agrawal SK. Pre and post treatment with curcumin and resveratrol protects astrocytes after oxidative stress. Brain Res. 2018;1692:45–55.

    CAS  PubMed  Google Scholar 

  78. 78.

    Yu B, Changsheng Y, Wenjun Z, Ben L, Hai Q, Jing M, et al. Differential protection of pre- versus post-treatment with curcumin, Trolox, and N-acetylcysteine against acrylonitrile-induced cytotoxicity in primary rat astrocytes. NeuroToxicol. 2015;51:58–66.

    CAS  Google Scholar 

  79. 79.

    Lavoie S, Chen Y, Dalton TP, Gysin R, Cuénod M, Steullet P, et al. Curcumin, quercetin, and tBHQ modulate glutathione levels in astrocytes and neurons: importance of the glutamate cysteine ligase modifier subunit. J Neurochem. 2009;108(6):1410–22.

    CAS  PubMed  Google Scholar 

  80. 80.

    Stridh MH, Correa F, Nodin C, Weber SG, Blomstrand F, Nilsson M, et al. Enhanced glutathione efflux from astrocytes in culture by low extracellular Ca2+ and curcumin. Neurochem Res. 2010;35(8):1231–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Scapagnini G, Colombrita C, Amadio M, D'Agata V, Arcelli E, Sapienza M, et al. Curcumin activates defensive genes and protects neurons against oxidative stress. Antioxid Redox Signal. 2006;8(3–4):395–403.

    CAS  PubMed  Google Scholar 

  82. 82.

    Shin HJ, Lee JY, Son E, Lee DH, Kim HJ, Kang SS, et al. Curcumin attenuates the kainic acid-induced hippocampal cell death in the mice. Neurosci Lett. 2007;416(1):49–544.

    CAS  PubMed  Google Scholar 

  83. 83.

    Canales-Aguirre AA, Gomez-Pinedo UA, Luquin S, Ramírez-Herrera MA, Mendoza-Magaña ML, Feria-Velasco A. Curcumin protects against the oxidative damage induced by the pesticide parathion in the hippocampus of the rat brain. Nutr Neurosci. 2012;15(2):62–9.

    CAS  PubMed  Google Scholar 

  84. 84.

    Zanotto-Filho A, Braganhol E, Edelweiss MI, Behr GA, Zanin R, Schröder R, et al. The curry spice curcumin selectively inhibits cancer cells growth in vitro and in preclinical model of glioblastoma. J Nutr Biochem. 2012;23(6):591–601.

    CAS  PubMed  Google Scholar 

  85. 85.

    Kim SY, Jung SH, Kim HS. Curcumin is a potent broad spectrum inhibitor of matrix metalloproteinase gene expression in human astroglioma cells. Biochem Biophys Res Commun. 2005;337(2):510–6.

    CAS  PubMed  Google Scholar 

  86. 86.

    Woo MS, Jung SH, Kim SY, Hyun JW, Ko KH, Kim WK, et al. Curcumin suppresses phorbol ester-induced matrix metalloproteinase-9 expression by inhibiting the PKC to MAPK signaling pathways in human astroglioma cells. Biochem Biophys Res Commun. 2005;335(4):1017–25.

    CAS  PubMed  Google Scholar 

  87. 87.

    Nagai S, Kurimoto M, Washiyama K, Hirashima Y, Kumanishi T, Endo S. Inhibition of cellular proliferation and induction of apoptosis by curcumin in human malignant astrocytoma cell lines. J Neurooncol. 2005;74(2):105–11.

    CAS  PubMed  Google Scholar 

  88. 88.

    Romero-Hernández MA, Eguía-Aguilar P, Perézpeña-Diazconti M, Rodríguez-Leviz A, Sadowinski-Pine S, Velasco-Rodríguez LA, et al. Toxic effects induced by curcumin in human astrocytoma cell lines. Toxicol Mech Methods. 2013;23(9):650–9.

    PubMed  Google Scholar 

  89. 89.

    Ahn Y, Oh S, Lee SJ, Park BG, Park YS, Shin WS, et al. Synthesis of diethylamino-curcumin mimics with substituted triazolyl groups and their sensitization effect of TRAIL against brain cancer cells. Bioorg Med Chem Lett. 2014;24(15):3346–50.

    CAS  PubMed  Google Scholar 

  90. 90.

    Madane RG, Mahajan HS. Curcumin-loaded nanostructured lipid carriers (NLCs) for nasal administration: design, characterization, and in vivo study. Drug Deliv. 2016;23(4):1326–34.

    CAS  PubMed  Google Scholar 

  91. 91.

    Ghorbani M, Bigdeli B, Jalili-baleh L, Baharifar H, Akrami M, Dehghani S, et al. Curcumin-lipoic acid conjugate as a promising anticancer agent on the surface of gold-iron oxide nanocomposites: a pH-sensitive targeted drug delivery system for brain cancer theranostics. Eur J Pharm Biopharm. 2018;114:175–88.

    CAS  Google Scholar 

  92. 92.

    Santel T, Pflug G, Hemdan NYA, Schäfer A, Hollenbach M, Buchold M, et al. Curcumin inhibits glyoxalase 1—a possible link to its anti-inflammatory and anti-tumor activity. PLoS One. 2008;3(10):e3508. https://doi.org/10.1371/journal.pone.0003508.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Dhandapani KM, Mahesh VB, Brann DW. Curcumin suppresses growth and chemoresistance of human glioblastoma cells via AP-1 and NFκB transcription factors. J Neurochem. 2007;102(2):522–38.

    CAS  PubMed  Google Scholar 

  94. 94.

    Kang SK, Cha SH, Jeon HG. Curcumin-induced histone hypoacetylation enhances caspase-3-dependent glioma cell death and neurogenesis of neural progenitor cells. Stem Cells Dev. 2006;15(2):165–74.

    CAS  PubMed  Google Scholar 

  95. 95.

    Bachetti T, Di Zanni E, Balbi P, Ravazzolo R, Sechi G, Ceccherini I. Beneficial effects of curcumin on GFAP filament organization and down-regulation of GFAP expression in an in vitro model of Alexander disease. Exp Cell Res. 2012;318(15):1844–54.

    CAS  PubMed  Google Scholar 

  96. 96.

    Epplen DB, Prukop T, Nientiedt T, Albrecht P, Arlt FA, Stassart RM, et al. Curcumin therapy in a Plp1 transgenic mouse model of Pelizaeus-Merzbacher disease. Ann Clin Transl Neurol. 2015;2(8):787–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Association AD. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37(Supplement 1):S81–S90.

    Google Scholar 

  98. 98.

    Faheem NM, Askary AE. Neuroprotective role of curcumin on the hippocampus against the structural and serological alterations of streptozotocin-induced diabetes in sprague dawely rats. Iran J Basic Med Sci. 2017;20(6):690–9.

    PubMed  PubMed Central  Google Scholar 

  99. 99.

    Wang B, Li W, Jin H, Nie X, Shen H, Li E, et al. Curcumin attenuates chronic intermittent hypoxia-induced brain injuries by inhibiting AQP4 and p38 MAPK pathway. Respir Physiol Neurobiol. 2018;255:50–7.

    CAS  PubMed  Google Scholar 

  100. 100.

    Nedzvetsky VS, Agca CA, Kyrychenko SV. Neuroprotective effect of curcumin on LPS-activated astrocytes is related to the prevention of GFAP and NF-κB upregulation. Neurophysiology. 2017;49(4):305–7.

    CAS  Google Scholar 

  101. 101.

    Kodali M, Hattiangady B, Shetty GA, Bates A, Shuai B, Shetty AK. Curcumin treatment leads to better cognitive and mood function in a model of Gulf War Illness with enhanced neurogenesis, and alleviation of inflammation and mitochondrial dysfunction in the hippocampus. Brain Behav Immuny. 2018;69:499–514.

    CAS  Google Scholar 

  102. 102.

    Monroy A, Lithgow GJ, Alavez S. Curcumin and neurodegenerative diseases. BioFactors. 2013;39(1):122–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Hu S, Maiti P, Ma Q, Zuo X, Jones M, Cole GM, et al. Clinical development of curcumin in neurodegenerative disease. Expert Rev Neurother. 2015;15(6):629–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Lin MS, Sun YY, Chiu WT, Hung CC, Chang CY, Shie FS, et al. Curcumin attenuates the expression and secretion of RANTES after spinal cord injury in vivo and lipopolysaccharide-induced astrocyte reactivation in vitro. J Neurotrauma. 2011;28(7):1259–69.

    PubMed  Google Scholar 

  105. 105.

    Hoppe JB, Coradini K, Frozza RL, Oliveira CM, Meneghetti AB, Bernardi A, et al. Free and nanoencapsulated curcumin suppress β-amyloid-induced cognitive impairments in rats: involvement of BDNF and Akt/GSK-3β signaling pathway. Neurobiol Learn Mem. 2013;106:134–44.

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

Conceived the idea: SE, FF, MM, AS. Wrote the manuscript: SE, FF, GEB, MM, AS. Reviewed critically for content: GEB, AS. All authors approved the final manuscript and submission.

Corresponding author

Correspondence to Amirhossein Sahebkar.

Ethics declarations

Conflict of interest

Muhammed Majeed is the founder of Sabinsa Corporation and Sami Labs Ltd. Other authors have no direct competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eghbaliferiz, S., Farhadi, F., Barreto, G.E. et al. Effects of curcumin on neurological diseases: focus on astrocytes. Pharmacol. Rep 72, 769–782 (2020). https://doi.org/10.1007/s43440-020-00112-3

Download citation

Keywords

  • Curcuminoids
  • Neurodegenerative disease
  • Brain