Skip to main content
Log in

Effects of carbamazepine, eslicarbazepine, valproic acid and levetiracetam on bone microarchitecture in rats

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Metabolic bone disease and fractures are a great problem for patients with epilepsy. The use of antiepileptic drugs (AEDs) is known to play an essential role in the progression of bone loss by various pathophysiological mechanisms. The aim of this study was to evaluate the effects of AEDs on bone microstructure as an additional cause of an increased fracture risk in patients with epilepsy.

Methods

Five groups of each of 12 female rats were orally dosed daily for 8 weeks with either carbamazepine (CBZ) (60 mg/kg), eslicarbazepine (ESL) (80 mg/kg), valproic acid (VPA) (300 mg/kg), levetiracetam (LEV) (50 mg/kg) or saline (control (CTL)). Following killing, dissected femurs were analyzed using X-ray micro-computed tomography (µCT), dual-energy X-ray absorptiometry (DXA) and biomechanical testing. In addition, serum bone turnover markers (BTM) were monitored throughout the experiment.

Results

Compared to CTL treatment, VPA decreased bone volume fraction by 19%, decreased apparent density by 14% and increased structural model index by 41%. No changes were observed in bone biomechanics nor mineral density evaluated by DXA or in levels of BTM.

Conclusions

Our findings suggest that VPA affects the microarchitectural properties of the bone. The AEDs CBZ, ESL and LEV appear to have less adverse effects on bone biology and may be a better choice when treating patients with respect to bone health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fedorenko M, Wagner ML, Wu BY. Survey of risk factors for osteoporosis and osteoprotective behaviors among patients with epilepsy. Epilepsy Behav. 2015;45:1–6. https://doi.org/10.1016/j.yebeh.2015.01.021.

    Article  Google Scholar 

  2. Svalheim S, Røste LS, Nakken KO, Taubøll E. Bone health in adults with epilepsy. Acta Neurol Scand Suppl. 2011;124:89–95. https://doi.org/10.1111/j.1600-0404.2011.01551.x.

    Article  Google Scholar 

  3. Jetté N, Lix LM, Metge CJ, Prior HJ, McChesney J, Leslie WD. Association of antiepileptic drugs with nontraumatic fractures: a population-based analysis. Arch Neurol. 2011;68:107–12. https://doi.org/10.1001/archneurol.2010.341.

    Article  PubMed  Google Scholar 

  4. Vestergaard P, Tigaran S, Rejnmark L, Tigaran C, Dam M, Mosekilde L. Fracture risk is increased in epilepsy. Acta Neurol Scand. 1999;99:269–75. https://doi.org/10.1111/j.1600-0404.1999.tb00675.x.

    Article  CAS  PubMed  Google Scholar 

  5. Darba J, Kaskens L, Perez-Alvarez N, Palacios S, Neyro JL, Rejas J. Disability-adjusted-life-years losses in postmenopausal women with osteoporosis: a burden of illness study. BMC Public Health. 2015;15:324. https://doi.org/10.1186/s12889-015-1684-7.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Carbone LD, Johnson KC, Robbins J, Larson JC, Curb JD, Watson K, et al. Antiepileptic drug use, falls, fractures, and BMD in postmenopausal women: findings from the Women’s Health Initiative (WHI). J Bone Miner Res. 2010;25:873–81. https://doi.org/10.1359/jbmr.091027.

    Article  CAS  PubMed  Google Scholar 

  7. Souverein PC, Webb DJ, Weil JG, Van Staa TP, Egberts ACG. Use of antiepileptic drugs and risk of fractures—case–control study among patients with epilepsy. Neurology. 2006;66:1318–24.

    Article  CAS  Google Scholar 

  8. Schelleman H, Pollard JR, Newcomb C, Markowitz CE, Bilker WB, Leonard MB, et al. Exposure to CYP3A4-inducing and CYP3A4-non-inducing antiepileptic agents and the risk of fractures. Pharmacoepidemiol Drug Saf. 2011;20:619–25. https://doi.org/10.1002/pds.2141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hahn TJ, Halstead LR. Anticonvulsant drug-induced osteomalacia: alterations in mineral metabolism and response to vitamin D3 administration. Calcif Tissue Int. 1979;27:13–8. https://doi.org/10.1007/BF02441155.

    Article  CAS  PubMed  Google Scholar 

  10. Hahn TJ. Bone complications of anticonvulsants. Drugs. 1976;12:201–11. https://doi.org/10.2165/00003495-197612030-00003.

    Article  CAS  PubMed  Google Scholar 

  11. Teagarden DL, Meador KJ, Loring DW. Low vitamin D levels are common in patients with epilepsy. Epilepsy Res. 2014;108:1352–6. https://doi.org/10.1016/j.eplepsyres.2014.06.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kulak CAM, Borba VZC, Bilezikian JP, Silvado CE, De Paola L, Boguszewski CL. Bone mineral density and serum levels of 25 OH vitamin D in chronic users of antiepileptic drugs. Arq Neuropsiquiatr. 2004;62:940–8. https://doi.org/10.1590/S0004-282X2004000600003.

    Article  PubMed  Google Scholar 

  13. Boluk A, Guzelipek M, Savli H, Temel I, Ozişik HI, Kaygusuz A. The effect of valproate on bone mineral density in adult epileptic patients. Pharmacol Res. 2004;50:93–7. https://doi.org/10.1016/j.phrs.2003.11.011.

    Article  CAS  PubMed  Google Scholar 

  14. El-Haggar SM, Mostafa TM, Allah HMS, Akef GH. Levetiracetam and lamotrigine effects as mono-and polytherapy on bone mineral density in epileptic patients. Arq Neuropsiquiatr. 2018;76:452–8. https://doi.org/10.1590/0004-282x20180068.

    Article  PubMed  Google Scholar 

  15. Vestergaard P. Epilepsy, osteoporosis and fracture risk—a meta-analysis. Acta Neurol Scand. 2005;112:277–86. https://doi.org/10.1111/j.1600-0404.2005.00474.x.

    Article  CAS  PubMed  Google Scholar 

  16. Herrera S, Diez-Perez A. Clinical experience with microindentation in vivo in humans. Bone. 2017;95:175–82. https://doi.org/10.1016/j.bone.2016.11.003.

    Article  PubMed  Google Scholar 

  17. Diez-Perez A, Güerri R, Nogues X, Cáceres E, Peñ MJ, Mellibovsky L, et al. Microindentation for in vivo measurement of bone tissue mechanical properties in humans. J Bone Miner Res. 2010;25:1877–85. https://doi.org/10.1002/jbmr.73.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Parveen B, Tiwari AK, Jain M, Pal S, Chattopadhyay N, Tripathi M, et al. The anti-epileptic drugs valproate, carbamazepine and levetiracetam cause bone loss and modulate Wnt inhibitors in normal and ovariectomised rats. Bone. 2018;113:57–67. https://doi.org/10.1016/j.bone.2018.05.011.

    Article  CAS  PubMed  Google Scholar 

  19. Nissen-Meyer LSH, Svalheim S, Taubøll E, Reppe S, Lekva T, Solberg LB, et al. Levetiracetam, phenytoin, and valproate act differently on rat bone mass, structure, and metabolism. Epilepsia. 2007;48:1850–60. https://doi.org/10.1111/j.1528-1167.2007.01176.x.

    Article  CAS  PubMed  Google Scholar 

  20. Chbili C, Hassine A, Laouani A, Amor SB, Nouira M, Ammou SB, et al. The relationship between pharmacokinetic parameters of carbamazepine and therapeutic response in epileptic patients. Arch Med Sci. 2017;13:353–60. https://doi.org/10.5114/aoms.2016.60090.

    Article  CAS  PubMed  Google Scholar 

  21. Ding M. Microarchitectural adaptations in aging and osteoarthrotic subchondral bone issues. Acta Orthop. 2010;81:1–53. https://doi.org/10.3109/17453671003619037.

    Article  Google Scholar 

  22. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res. 2010;25:1468–86. https://doi.org/10.1002/jbmr.141.

    Article  PubMed  Google Scholar 

  23. Humphrey EL, Morris GE, Fuller HR. Valproate reduces collagen and osteonectin in cultured bone cells. Epilepsy Res. 2013;106:446–50. https://doi.org/10.1016/j.eplepsyres.2013.06.011.

    Article  CAS  PubMed  Google Scholar 

  24. Schroeder TM, Westendorf JJ. Histone deacetylase inhibitors promote osteoblast maturation. J Bone Miner Res. 2005;20:2254–63. https://doi.org/10.1359/JBMR.050813.

    Article  CAS  PubMed  Google Scholar 

  25. Schroeder TM, Nair AK, Staggs R, Lamblin A-F, Westendorf JJ. Gene profile analysis of osteoblast genes differentially regulated by histone deacetylase inhibitors. BMC Genom. 2007;8:362. https://doi.org/10.1186/1471-2164-8-362.

    Article  Google Scholar 

  26. Gold PW, Pavlatou MG, Michelson D, Mouro CM, Kling MA, Wong ML, et al. Chronic administration of anticonvulsants but not antidepressants impairs bone strength: clinical implications. Transl Psychiatry. 2015;5:e576. https://doi.org/10.1038/tp.2015.38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pack AM, Olarte LS, Morrell MJ, Flaster E, Resor SR, Shane E. Bone mineral density in an outpatient population receiving enzyme-inducing antiepileptic drugs. Epilepsy Behav. 2003;4:169–74. https://doi.org/10.1016/S1525-5050(03)00036-2.

    Article  PubMed  Google Scholar 

  28. Ohta T, Wergedal JE, Gruber HE, Baylink DJ, William Lau KH. Low dose phenytoin is an osteogenic agent in the rat. Calcif Tissue Int. 1995;56:42–8. https://doi.org/10.1007/BF00298743.

    Article  CAS  PubMed  Google Scholar 

  29. Abou-Khalil B, Schaich L. Long-term efficacy of levetiracetam for partial seizures. Seizure. 2005;14:577–85.

    Article  Google Scholar 

  30. Karesova I, Simko J, Fekete S, Zimcikova E, Malakova J, Zivna H, et al. The effect of levetiracetam on rat bone mineral density, bone structure and biochemical markers of bone metabolism. Eur J Pharmacol. 2018;824:115–9. https://doi.org/10.1016/j.ejphar.2018.02.010.

    Article  CAS  PubMed  Google Scholar 

  31. Kanda J, Izumo N, Kobayashi Y, Onodera K, Shimakura T, Yamamoto N, et al. Effects of the antiepileptic drugs phenytoin, gabapentin, and levetiracetam on bone strength, bone mass, and bone turnover in rats. Biol Pharm Bull. 2017;40:1934–40.

    Article  CAS  Google Scholar 

  32. Fekete S, Simko J, Gradosova I, Malakova J, Zivna H, Palicka V, et al. The effect of levetiracetam on rat bone mass, structure and metabolism. Epilepsy Res. 2013;107:56–60. https://doi.org/10.1016/j.eplepsyres.2013.08.012.

    Article  CAS  PubMed  Google Scholar 

  33. Jayo MJ, Register TC, Hughes CL, Blas-Machado U, Sulistiawati E, Borgerink H, et al. Effects of an oral contraceptive combination with or without androgen on mammary tissues: a study in rats. J Soc Gynecol Investig. 2000;7:257–65. https://doi.org/10.1016/S1071-5576(00)00059-9.

    Article  CAS  PubMed  Google Scholar 

  34. Hansson L, Menander-Sellman K, Stenström A, Thorngren K. Rate of normal longitudinal bone growth in the rat. Calcif Tissue Res. 1972;10:238–51.

    Article  CAS  Google Scholar 

  35. Smith S, Varela A, Samadfam R, editors. Bone toxicology. 1st ed. Berlin: Springer; 2017.

    Google Scholar 

  36. McHugh J, Delanty N. Epidemiology and classification of epilepst: gender comparisons. Int Rev Neurobiol. 2008;83:11–6.

    Article  Google Scholar 

  37. Pack AM, Morrell MJ, Randall A, Mcmahon DJ, Shane E. Bone health in young women with epilepsy after 1 year of antiepileptic drug monotherapy. Neurology. 2008. https://doi.org/10.1212/01.wnl.0000310981.44676.de.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ensrud KE, Walczak TS, Blackwell T, Ensrud ER, Bowman PJ, Stone KL. Antiepileptic drug use increases rates of bone loss in older women—a prospective study. Neurology. 2004;62:2051–7.

    Article  CAS  Google Scholar 

  39. Ensrud KE, Walczak TS, Blackwell TL, Ensrud ER, Barrett-Connor E, Orwoll ES. Antiepileptic drug use and rates of hip bone loss in older men: a prospective study. Neurology. 2008;71:723–30. https://doi.org/10.1212/01.wnl.0000324919.86696.a9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Välimäki MJ, Tiihonen M, Laitinen K, Tähtelä R, Kärkkäinen M, Lamberg-Allardt C, et al. Bone mineral density measured by dual-energy X-ray absorptiometry and novel markers of bone formation and resorption in patients on antiepileptic drugs. J Bone Miner Res. 1994;9:631–7.

    Article  Google Scholar 

  41. Sato Y, Kondo I, Ishida S, Motooka H, Takayama K, Tomita Y, et al. Decreased bone mass and increased bone turnover with valproate therapy in adults with epilepsy. Neurology. 2001;57:445–9.

    Article  CAS  Google Scholar 

  42. Beniczky SA, Viken J, Jensen LT, Andersen NB. Bone mineral density in adult patients treated with various antiepileptic drugs. Seizure. 2012;21:471–2. https://doi.org/10.1016/j.seizure.2012.04.002.

    Article  PubMed  Google Scholar 

  43. Kobau R, DiIorio CA, Price PH, Thurman DJ, Martin LM, Ridings DL, et al. Prevalence of epilepsy and health status of adults with epilepsy in Georgia and Tennessee: behavioral risk factor surveillance system, 2002. Epilepsy Behav. 2004;5:358–66. https://doi.org/10.1016/j.yebeh.2004.02.007.

    Article  PubMed  Google Scholar 

  44. Elliott JO, Jacobson MP. Bone loss in epilepsy: barriers to prevention, diagnosis, and treatment. Epilepsy Behav. 2006;8:169–75. https://doi.org/10.1016/j.yebeh.2005.08.013.

    Article  PubMed  Google Scholar 

  45. El-Hajj Fuleihan G, Dib L, Yamout B, Sawaya R, Mikati MA. Predictors of bone density in ambulatory patients on antiepileptic drugs. Bone. 2008;43:149–55. https://doi.org/10.1016/j.bone.2008.03.002.

    Article  CAS  PubMed  Google Scholar 

  46. Bin JH, Kim G, Chung SY. Effect of antiepileptic drugs on bone mineral density in pediatric epilepsy patients. Eur J Paediatr Neurol. 2017;21:e41. https://doi.org/10.1016/j.ejpn.2017.04.824.

    Article  Google Scholar 

  47. Chavassieux P, Seeman E, Delmas PD. Insights into material and structural basis of bone fragility from diseases associated with fractures: how determinants of the biomechanical properties of bone are compromised by disease. Endocr Rev. 2007;28:151–64. https://doi.org/10.1210/er.2006-0029.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors specially thank Tanja Hegner and Katja Serena for taking care of the animals and Kira Joensen and Britt Lisette Corfixen for analyzing the samples.

Funding

The study has been funded by an unrestricted educational grant from Eisai Co, Ltd and grants from the Jascha Foundation and the A. P. Møller Foundation, Fonden til Lægevidenskabens Fremme. The sponsors had no role in study design, collection of data, analysis or interpretation of data.

Author information

Authors and Affiliations

Authors

Contributions

Concept and design of the study: SSD, ASS, PE, NBA, NRJ. Conducting experiments: SSD, ME, MD. Analyzing and interpreting data: SSD, ASS, PE, ME, MD, NBA, NRJ. Writing, critically reviewing and approving the manuscript: SSD, ASS, PE, ME, MD, NBA, NRJ.

Corresponding author

Correspondence to Sarah Seberg Diemar.

Ethics declarations

Conflict of interest

SSD has received unrestricted research grants from Eisai Co, Ltd. A-SS has since the initiation of the work been employed by Novo Nordisk A/S. NRJ, ME, and MD have no conflicts of interest to disclose. PE is an advisory board member for Amgen Inc. and Eli Lilly A/S, and on the speakers’ bureau for Amgen Inc. and Eli Lilly A/S, and own shares in Novo Nordisk A/S. NBA is a lecturer at scientific meetings organized by Eisai Co, Ltd, and has received unrestricted research grants from Eisai Co, Ltd.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diemar, S.S., Sejling, AS., Eiken, P. et al. Effects of carbamazepine, eslicarbazepine, valproic acid and levetiracetam on bone microarchitecture in rats. Pharmacol. Rep 72, 1323–1333 (2020). https://doi.org/10.1007/s43440-020-00087-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-020-00087-1

Keywords

Navigation