Skip to main content

Advertisement

Log in

Cleistanthin A inhibits the invasion of MDA-MB-231 human breast cancer cells: involvement of the β-catenin pathway

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Cleistanthin A (CleA), a natural diphyllin glycoside, has been shown to suppress the invasion of cancer cells, but the underlying mechanisms remain unclear. Here, the inhibitory effect of CleA on the invasion of MDA-MB-231 human breast cancer cells was investigated, and the mechanisms involved were clarified.

Methods

Cell viability was studied by MTT assay. The migration and invasion of MDA-MB-231 cells were assessed by wound healing assay and transwell assay, respectively. The enzymatic activity of matrix metalloproteinases (MMPs) was detected by gelatin zymography. mRNA and protein levels were detected by qRT-PCR and Western blotting, respectively. Nuclear translocation of β-catenin was observed by immunofluorescence and detected by Western blotting.

Results

CleA effectively inhibited the migration and invasion of MDA-MB-231 cells and suppressed the expression and activation of MMP-2/9. Moreover, the expression and nuclear translocation of β-catenin were reduced by CleA treatment, as well as transcription of the Cyclin D1 and c-myc genes. In addition, the inhibitory effect of CleA on the β-catenin pathway was attributed to the promotion of β-catenin degradation by inhibition of GSK3β phosphorylation. When the phosphorylation of GSK3β was induced by LiCl, the inhibitory effect of CleA on the β-catenin pathway and the invasion of MDA-MB-231 cells were almost reversed.

Conclusion

CleA suppressed the invasion of MDA-MB-231 cells, likely through the β-catenin pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pradheepkumar CP, Panneerselvam N, Shanmugam G. Cleistanthin A causes DNA strand breaks and induces apoptosis in cultured cells. Mutat Res. 2000;464:185–93.

    CAS  PubMed  Google Scholar 

  2. Parasuraman S, Raveendran R, Rajesh NG, Nandhakumar S. Sub-chronic toxicological evaluation of cleistanthin A and cleistanthin B from the leaves of Cleistanthus collinus (Roxb.). Toxicol Rep. 2014;1:596–611.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Parasuraman S, Raveendran R, Ardestani MS, Ananthakrishnan R, Jabbari-Arabzadeh A, Alavidjeh MS, et al. Biodistribution properties of cleistanthin A and cleistanthin B using magnetic resonance imaging in a normal and tumoric animal model. Pharmacogn Mag. 2012;8:129–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Pradheepkumar CP, Shanmugam G. Anticancer potential of cleistanthin A isolated from the tropical plant Cleistanthus collinus. Oncol Res. 1999;11:225–32.

    CAS  PubMed  Google Scholar 

  5. Prabhakaran C, Kumar P, Panneerselvam N, Rajesh S, Shanmugam G. Cytotoxic and genotoxic effects of cleistanthin B in normal and tumour cells. Mutagenesis. 1996;11:553–7.

    CAS  PubMed  Google Scholar 

  6. Zhao Y, Zhang R, Lu Y, Ma J, Zhu L. Synthesis and bioevaluation of heterocyclic derivatives of Cleistanthin-A. Bioorg Med Chem. 2015;23:4884–90.

    CAS  PubMed  Google Scholar 

  7. Nguyen DX, Bos PD, Massague J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009;9:274–84.

    CAS  PubMed  Google Scholar 

  8. Pan S, Cai H, Gu L, Cao S. Cleistanthin A inhibits the invasion and metastasis of human melanoma cells by inhibiting the expression of matrix metallopeptidase-2 and -9. Oncol Lett. 2017;14:6217–23.

    PubMed  PubMed Central  Google Scholar 

  9. Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell. 2012;149:1192–205.

    CAS  PubMed  Google Scholar 

  10. Cruciat CM, Ohkawara B, Acebron SP, Karaulanov E, Reinhard C, Ingelfinger D, et al. Requirement of prorenin receptor and vacuolar H+-ATPase-mediated acidification for Wnt signaling. Science. 2010;327:459–63.

    CAS  PubMed  Google Scholar 

  11. Klaus A, Birchmeier W. Wnt signalling and its impact on development and cancer. Nat Rev Cancer. 2008;8:387–98.

    CAS  PubMed  Google Scholar 

  12. Zhang Z, Ma J, Zhu L, Zhao Y. Synthesis and identification of cytotoxic diphyllin glycosides as vacuolar H(+)-ATPase inhibitors. Eur J Med Chem. 2014;82:466–71.

    CAS  PubMed  Google Scholar 

  13. Wang L, Ling Y, Chen Y, Li CL, Feng F, You QD, et al. Flavonoid baicalein suppresses adhesion, migration and invasion of MDA-MB-231 human breast cancer cells. Cancer Lett. 2010;297:42–8.

    CAS  PubMed  Google Scholar 

  14. Albini A, D’Agostini F, Giunciuglio D, Paglieri I, Balansky R, De Flora S. Inhibition of invasion, gelatinase activity, tumor take and metastasis of malignant cells by N-acetylcysteine. Int J Cancer. 1995;61:121–9.

    CAS  PubMed  Google Scholar 

  15. Yang J, Wei D, Wang W, Shen B, Xu S, Cao Y. TRAF4 enhances oral squamous cell carcinoma cell growth, invasion and migration by Wnt-beta-catenin signaling pathway. Int J Clin Exp Pathol. 2015;8:11837–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao Y, Ni C, Zhang Y, Zhu L. Synthesis and bioevaluation of diphyllin glycosides as novel anticancer agents. Arch Pharm (Weinheim). 2012;345:622–8.

    CAS  PubMed  Google Scholar 

  17. Teplova VV, Tonshin AA, Grigoriev PA, Saris NE, Salkinoja-Salonen MS. Bafilomycin A1 is a potassium ionophore that impairs mitochondrial functions. J Bioenerg Biomembr. 2007;39:321–9.

    CAS  PubMed  Google Scholar 

  18. von Schwarzenberg K, Wiedmann RM, Oak P, Schulz S, Zischka H, Wanner G, et al. Mode of cell death induction by pharmacological vacuolar H+-ATPase (V-ATPase) inhibition. J Biol Chem. 2013;288:1385–96.

    Google Scholar 

  19. Prasad CP, Manchanda M, Mohapatra P, Andersson T. WNT5A as a therapeutic target in breast cancer. Cancer Metastasis Rev. 2018;37:767–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Irshad I, Varamini P. Different targeting strategies for treating breast cancer bone metastases. Curr Pharm Des. 2018;24:3320–31.

    CAS  PubMed  Google Scholar 

  21. Zhang F, Wang Z, Fan Y, Xu Q, Ji W, Tian R, et al. Elevated STAT3 signaling-mediated upregulation of MMP-2/9 confers enhanced invasion ability in multidrug-resistant breast cancer cells. Int J Mol Sci. 2015;16:24772–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhan Y, Zhang H, Li J, Zhang Y, Zhang J, He L. A novel biphenyl urea derivate inhibits the invasion of breast cancer through the modulation of CXCR4. J Cell Mol Med. 2015;19:1614–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang F, Hu M, Lei Q, Xia Y, Zhu Y, Song X, et al. Nifuroxazide induces apoptosis and impairs pulmonary metastasis in breast cancer model. Cell Death Dis. 2015;6:e1701.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Song N, Zhong J, Hu Q, Gu T, Yang B, Zhang J, et al. FGF18 enhances migration and the epithelial-mesenchymal transition in breast cancer by regulating Akt/GSK3beta/beta-catenin signaling. Cell Physiol Biochem. 2018;49:1019–32.

    PubMed  Google Scholar 

  25. Fan SH, Wang YY, Lu J, Zheng YL, Wu DM, Zhang ZF, et al. CERS2 suppresses tumor cell invasion and is associated with decreased V-ATPase and MMP-2/MMP-9 activities in breast cancer. J Cell Biochem. 2015;116:502–13.

    CAS  PubMed  Google Scholar 

  26. Rao JS. Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer. 2003;3:489–501.

    CAS  PubMed  Google Scholar 

  27. Ninomiya I, Endo Y, Fushida S, Sasagawa T, Miyashita T, Fujimura T, et al. Alteration of beta-catenin expression in esophageal squamous-cell carcinoma. Int J Cancer. 2000;85:757–61.

    CAS  PubMed  Google Scholar 

  28. Osterheld MC, Bian YS, Bosman FT, Benhattar J, Fontolliet C. Beta-catenin expression and its association with prognostic factors in adenocarcinoma developed in Barrett esophagus. Am J Clin Pathol. 2002;117:451–6.

    CAS  PubMed  Google Scholar 

  29. Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW, et al. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC−/− colon carcinoma. Science. 1997;275:1784–7.

    CAS  PubMed  Google Scholar 

  30. Zhang P, Zhu D, Chen X, Li Y, Li N, Gao Q, et al. Prenatal hypoxia promotes atherosclerosis via vascular inflammation in the offspring rats. Atherosclerosis. 2016;245:28–34.

    CAS  PubMed  Google Scholar 

  31. Valenta T, Hausmann G, Basler K. The many faces and functions of beta-catenin. EMBO J. 2012;31:2714–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Jo M, Lester RD, Montel V, Eastman B, Takimoto S, Gonias SL. Reversibility of epithelial-mesenchymal transition (EMT) induced in breast cancer cells by activation of urokinase receptor-dependent cell signaling. J Biol Chem. 2009;284:22825–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Baryawno N, Sveinbjornsson B, Eksborg S, Chen CS, Kogner P, Johnsen JI. Small-molecule inhibitors of phosphatidylinositol 3-kinase/Akt signaling inhibit Wnt/beta-catenin pathway cross-talk and suppress medulloblastoma growth. Can Res. 2010;70:266–76.

    CAS  Google Scholar 

  34. Yang S, Liu Y, Li MY, Ng CSH, Yang SL, Wang S, et al. FOXP3 promotes tumor growth and metastasis by activating Wnt/beta-catenin signaling pathway and EMT in non-small cell lung cancer. Mol Cancer. 2017;16:124.

    PubMed  PubMed Central  Google Scholar 

  35. Shi X, Zhu M, Kang Y, Yang T, Chen X, Zhang Y. Wnt/beta-catenin signaling pathway is involved in regulating the migration by an effective natural compound brucine in LoVo cells. Phytomedicine. 2018;46:85–92.

    CAS  PubMed  Google Scholar 

  36. Luo Y, Sun Z, Li Y, Liu L, Cai X, Li Z. Caudatin inhibits human hepatoma cell growth and metastasis through modulation of the Wnt/beta-catenin pathway. Oncol Rep. 2013;30:2923–8.

    CAS  PubMed  Google Scholar 

  37. Chen YZ, Sun DQ, Zheng Y, Zheng GK, Chen RQ, Lin M, et al. WISP1 silencing confers protection against epithelial-mesenchymal transition of renal tubular epithelial cells in rats via inactivation of the Wnt/beta-catenin signaling pathway in uremia. J Cell Physiol. 2019;234:9673–86.

    CAS  PubMed  Google Scholar 

  38. Henderson BR, Fagotto F. The ins and outs of APC and beta-catenin nuclear transport. EMBO Rep. 2002;3:834–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zeng FY, Dong H, Cui J, Liu L, Chen T. Glycogen synthase kinase 3 regulates PAX3-FKHR-mediated cell proliferation in human alveolar rhabdomyosarcoma cells. Biochem Biophys Res Commun. 2010;391:1049–55.

    CAS  PubMed  Google Scholar 

  40. Zheng H, Saito H, Masuda S, Yang X, Takano Y. Phosphorylated GSK3beta-ser9 and EGFR are good prognostic factors for lung carcinomas. Anticancer Res. 2007;27:3561–9.

    PubMed  Google Scholar 

  41. Tejeda-Munoz N, Robles-Flores M. Glycogen synthase kinase 3 in Wnt signaling pathway and cancer. IUBMB Life. 2015;67:914–22.

    CAS  PubMed  Google Scholar 

  42. Farago M, Dominguez I, Landesman-Bollag E, Xu X, Rosner A, Cardiff RD, et al. Kinase-inactive glycogen synthase kinase 3beta promotes Wnt signaling and mammary tumorigenesis. Can Res. 2005;65:5792–801.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31671206, 31500965, 31471141, and 81702874). We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yapeng Lu or Li Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Wang, L., Ding, W. et al. Cleistanthin A inhibits the invasion of MDA-MB-231 human breast cancer cells: involvement of the β-catenin pathway. Pharmacol. Rep 72, 188–198 (2020). https://doi.org/10.1007/s43440-019-00012-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-019-00012-1

Keywords

Navigation