Skip to main content

Advertisement

Log in

Attenuation of ROS-mediated myocardial ischemia–reperfusion injury by morin via regulation of RISK/SAPK pathways

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Oxidative stress plays an important role in the pathogenesis of myocardial ischemia–reperfusion (IR) injury. Morin, a bioflavonoid, has demonstrated antioxidant, anti-inflammatory and other diverse pharmacological activities in various experimental models such as isoproterenol-induced myocardial injury, doxorubicin-induced cardiotoxicity and neurotoxicity, as well as cisplatin-induced nephrotoxicity. Thus, this study aimed to evaluate the effect of morin in myocardial IR injury model and its underlying mechanisms.

Method

To accomplish this, male albino Wistar rats were pre-treated with morin (40 and 80 mg/kg; po) for 28 days and on 29th day, rats experienced 45-min myocardial ischemia followed by 60-min reperfusion.

Results

In comparison to IR-control group, morin pre-treatment significantly normalized hemodynamic parameters, restored antioxidant status, improved pathological changes, reduced the release of cardiac injury markers, inhibited inflammation (TNF-α/IL-6/NFκB/IKKβ) and apoptosis (increased Bcl-2, decreased Bax/Caspase-3 and TUNEL positivity) in the myocardium. This improvement in antioxidant, inflammation and anti-apoptosis markers could be due to downregulation of SAPK (p38/JNK) pathway and upregulation of survival kinase, i.e. RISK pathway (ERK/eNOS) in the myocardium.

Conclusion

Thus, morin attenuated myocardial IR injury in rats by regulation of RISK/SAPK pathways.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Akt:

Protein kinase A

CK-MB:

Creatinine kinase-MB

CAT:

Catalase

eNOS:

Endothelial nitric oxide synthase

ERK 1/2:

Extracellular regulated kinase 1/2

GSH:

Reduced glutathione

HR:

Heart rate

IL-6:

Interlukin-6

IR:

Ischemia–reperfusion

JNK:

c-Jun N-terminal kinase

LADCA:

Left anterior descending coronary artery

LDH:

Lactate dehydrogenase

LVEDP:

Left ventricular end diastolic pressure

MAP:

Mean arterial pressure

MAPK:

Mitogen-activated protein kinase

MDA:

Malondialdehyde

MI:

Myocardial infarction

NF-κB:

Nuclear factor-kappa B

PI3K:

Phosphotidylinositol 3-kinase

RISK:

Reperfusion-induced salvage kinase

SAPK:

Stress-activated protein kinase

SOD:

Superoxide dismutase

TNF-α:

Tumour necrosis factor-α

References

  1. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. Heart Disease and Stroke Statistics-2018 update: a report from the American Heart Association. Circulation. 2018;137:e67–493.

    Google Scholar 

  2. Tong S, Zhang L, Joseph J, Jiang X. Celastrol pretreatment attenuates rat myocardial ischemia/reperfusion injury by inhibiting high mobility group box 1 protein expression via the PI3K/Akt pathway. Biochem Biophys Res Commun. 2018;497:843–9.

    CAS  PubMed  Google Scholar 

  3. Turer AT, Hill JA. Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. Am J Cardiol. 2010;106:360–8.

    PubMed  PubMed Central  Google Scholar 

  4. Zhang X, Wang Y, Shen W, Ma S, Chen W, Qi R. Rosa rugosa flavonoids alleviate myocardial ischemia reperfusion injury in mice by suppressing JNK and p38 MAPK. Microcirculation. 2017;24:e12385.

    Google Scholar 

  5. Suchal K, Malik S, Khan SI, Malhotra RK, Goyal SN, Bhatia J, et al. Molecular pathways involved in the amelioration of myocardial injury in diabetic rats by kaempferol. Int J Mol Sci. 2017;18:1001.

    PubMed Central  Google Scholar 

  6. Yu Z, Wang S, Zhang X, Li Y, Zhao Q, Liu T. Pterostilbene protects against myocardial ischemia/reperfusion injury via suppressing oxidative/nitrative stress and inflammatory response. Int Immunopharmacol. 2017;43:7–15.

    CAS  PubMed  Google Scholar 

  7. Jang S, Javadov S. Inhibition of JNK aggravates the recovery of rat hearts after global ischemia: the role of mitochondrial JNK. PLoS ONE. 2014;9:e113526.

    PubMed  PubMed Central  Google Scholar 

  8. Chin KY, Silva LS, Darby IA, Ng DCH, Woodman OL. Protection against reperfusion injury by 3′,4′-dihydroxyflavonol in rat isolated hearts involves inhibition of phospholamban and JNK2. Int J Cardiol. 2018;254:265–71.

    PubMed  Google Scholar 

  9. Min J, Wei C. Hydroxysafflor yellow A cardioprotection in ischemia-reperfusion (I/R) injury mainly via Akt/hexokinase II independent of ERK/GSK-3β pathway. Biomed Pharmacother. 2017;87:419–26.

    CAS  PubMed  Google Scholar 

  10. Yang X, Yue R, Zhang J, Zhang X, Liu Y, Chen C, et al. Gastrin protects against myocardial ischemia/reperfusion injury via activation of RISK (reperfusion injury salvage kinase) and SAFE (survivor activating factor enhancement) pathways. J Am Heart Assoc. 2018;7:e005171.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang YY, Li YY, Li L, Yang DL, Zhou K, Li YH. Protective effects of Shenfu injection against myocardial ischemia-reperfusion injury via activation of eNOS in rats. Biol Pharm Bull. 2018;4:1406–13.

    Google Scholar 

  12. Pogula BK, Maharajan MK, Oddepalli DR, Boini L, Arella M, Sabarimuthu DQ. Morin protects heart from beta-adrenergic-stimulated myocardial infarction: an electrocardiographic, biochemical, and histological study in rats. J Physiol Biochem. 2012;68:433–46.

    CAS  PubMed  Google Scholar 

  13. Al-Numair KS, Chandramohan G, Alsaif MA, Veeramani C, El Newehy AS. Morin, a flavonoid, on lipid peroxidation and antioxidant status in experimental myocardial ischemic rats. Afr J Tradit Complement Altern Med. 2014;11:14–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Verma VK, Malik S, Narayanan SP, Mutneja E, Sahu AK, Bhatia J, et al. Role of MAPK/NF-κB pathway in cardioprotective effect of Morin in isoproterenol induced myocardial injury in rats. Mol Biol Rep. 2019;46:1139–48.

    CAS  PubMed  Google Scholar 

  15. Taguchi K, Hida M, Hasegawa M, Matsumoto T, Kobayashi T. Dietary polyphenol morin rescues endothelial dysfunction in a diabetic mouse model by activating the Akt/eNOS pathway. Mol Nutr Food Res. 2016;60:580–8.

    CAS  PubMed  Google Scholar 

  16. Kaltalioglu K, Coskun-Cevher S. Potential of morin and hesperidin in the prevention of cisplatin-induced nephrotoxicity. Ren Fail. 2016;38:1291–9.

    CAS  PubMed  Google Scholar 

  17. Lee MH, Han MH, Lee DS, Park C, Hong SH, Kim GY, et al. Morin exerts cytoprotective effects against oxidative stress in C2C12 myoblasts via the upregulation of Nrf2-dependent HO-1 expression and the activation of the ERK pathway. Int J Mol Med. 2017;39:399–406.

    CAS  PubMed  Google Scholar 

  18. Jung JS, Choi MJ, Lee YY, Moon BI, Park JS, Kim HS. Suppression of lipopolysaccharide-induced neuroinflammation by Morin via MAPK, PI3K/Akt, and PKA/HO-1 signaling pathway modulation. J Agric Food Chem. 2017;65:373–82.

    CAS  PubMed  Google Scholar 

  19. Kuzu M, Kandemir FM, Yildirim S, Kucukler S, Caglayan C, Turk E. Morin attenuates doxorubicin-induced heart and brain damage by reducing oxidative stress, inflammation and apoptosis. Biomed Pharmacother. 2018;106:443–53.

    CAS  PubMed  Google Scholar 

  20. Liu S, Wu N, Miao J, Huang Z, Li X, Jia P, et al. Protective effect of morin on myocardial ischemia-reperfusion injury in rats. Int J Mol Med. 2018;42:1379–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ohkawa H, Ohishi N, Yagi K. Assay of lipid peroxide in animal tissue by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–8.

    CAS  PubMed  Google Scholar 

  22. Moron MS, Depierre JW, Manmerik B. Level of glutathione, glutathione reductase and glutathione-s-transferase activity in rat lung and liver. Biochem Biophys Acta. 1979;82:67–78.

    Google Scholar 

  23. Marklund S, Marklund G. Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47:469–74.

    CAS  PubMed  Google Scholar 

  24. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–6.

    CAS  Google Scholar 

  25. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    CAS  Google Scholar 

  26. Yuan X, Niu HT, Wang PL, Lu J, Zhao H, Liu SH, et al. Cardioprotective effect of licochalcone D against myocardial ischemia/reperfusion injury in Langendorff-perfused rat hearts. PLoS ONE. 2015;10:e0128375.

    PubMed  PubMed Central  Google Scholar 

  27. Huang W, Yang Y, Zeng Z, Su M, Gao Q, Zhu B. Effect of Salvia miltiorrhiza and ligustrazine injection on myocardial ischemia/reperfusion and hypoxia/reoxygenation injury. Mol Med Rep. 2016;14:4537–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Al-Salam S, Hashmi S. Myocardial ischemia reperfusion injury: apoptotic, inflammatory and oxidative stress role of galectin-3. Cell Physiol Biochem. 2018;50:1123–39.

    CAS  PubMed  Google Scholar 

  29. Dröse S, Brandt U. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv Exp Med Biol. 2012;748:145–69.

    PubMed  Google Scholar 

  30. Kalogeris T, Bao Y, Korthuis RJ. Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol. 2014;2:702–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ben-Azu B, Aderibigbe AO, Omogbiya IA, Ajayi AM, Owoeye O, Olonode ET, et al. Probable mechanisms involved in the antipsychotic-like activity of morin in mice. Biomed Pharmacother. 2018;105:1079–90.

    CAS  PubMed  Google Scholar 

  32. Yan Z, Guo R, Gan L, Lau WB, Cao X, Zhao J, et al. Withaferin A inhibits apoptosis via activated Akt-mediated inhibition of oxidative stress. Life Sci. 2018;211:91–101.

    CAS  PubMed  Google Scholar 

  33. Lv X, Xu T, Wu Q, Zhou Y, Huang G, Xu Y, et al. 6-Gingerol activates PI3K/Akt and inhibits apoptosis to attenuate myocardial ischemia/reperfusion injury. Evid Based Complement Altern Med. 2018;2018:9024034.

    Google Scholar 

  34. Yang J, Fan Z, Yang J, Ding J, Yang C, Chen L. microRNA-22 attenuates myocardial ischemia-reperfusion injury via an anti-inflammatory mechanism in rats. Exp Ther Med. 2016;12:3249–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhu J, Huang J, Dai D, Wang X, Gao J, Han W, et al. Recombinant human interleukin-1 receptor antagonist treatment protects rats from myocardial ischemia-reperfusion injury. Biomed Pharmacother. 2018;111:1–5.

    PubMed  Google Scholar 

  36. Xu T, Qin G, Jiang W, Zhao Y, Xu Y, Lv X. 6-Gingerol protects heart by suppressing myocardial ischemia/reperfusion induced inflammation via the PI3K/Akt-dependent mechanism in rats. Evid Based Complement Altern Med. 2018;2018:6209679.

    Google Scholar 

  37. Damico R, Fusco R, Gugliandolo E, Cordaro M, Siracusa R, Impellizzeri D, et al. Effects of a new compound containing palmitoylethanolamide and baicalein in myocardial ischaemia/reperfusion injury in vivo. Phytomedicine. 2018;54:27–42.

    Google Scholar 

  38. Kim M, Lorinsky MK, Gold CA, Lahey SJ, Fusco DS, Rosinski DJ, et al. Usefulness of circulating caspase-3 p17 and caspase-1 p20 peptides and cardiac troponin 1 during cardioplegia to gauge myocardial preservation. Am J Cardiol. 2018;9149:32209–14.

    Google Scholar 

  39. Dillon RL, White DE, Muller WJ. The phosphatidyl inositol 3-kinase signalling network: implications for human breast cancer. Oncogene. 2007;26:1338–45.

    CAS  PubMed  Google Scholar 

  40. Tian Y, Li Z, Shen B, Zhang Q, Feng H. Protective effects of morin on lipopolysaccharide/d-galactosamine-induced acute liver injury by inhibiting TLR4/NF-κB and activating Nrf2/HO-1 signaling pathways. Int Immunopharmacol. 2017;45:148–55.

    CAS  PubMed  Google Scholar 

  41. Bachewal P, Gundu C, Yerra VG, Kalvala AK, Areti A, Kumar A. Morin exerts neuroprotection via attenuation of ROS induced oxidative damage and neuroinflammation in experimental diabetic neuropathy. BioFactors. 2018;44:109–22.

    CAS  PubMed  Google Scholar 

  42. Song L, Yang H, Wang HX, Tian C, Liu Y, Zeng XJ, et al. Inhibition of 12/15 lipoxygenase by baicalein reduces myocardial ischemia/reperfusion injury via modulation of multiple signaling pathways. Apoptosis. 2014;19:567–80.

    CAS  PubMed  Google Scholar 

  43. Chen Y, Ba L, Huang W, Liu Y, Pan H, Mingyao E, et al. Role of carvacrol in cardioprotection against myocardial ischemia/reperfusion injury in rats through activation of MAPK/ERK and Akt/eNOS signaling pathways. Eur J Pharmacol. 2017;796:90–100.

    CAS  PubMed  Google Scholar 

  44. Feng M, Wang L, Chang S, Yuan P. Penehyclidine hydrochloride regulates mitochondrial dynamics and apoptosis through p38MAPK and JNK signal pathways and provides cardioprotection in rats with myocardial ischemia-reperfusion injury. Eur J Pharm Sci. 2018;121:243–50.

    CAS  PubMed  Google Scholar 

  45. Zeng C, Jiang W, Zheng R, He C, Li J, Xing J. Cardioprotection of tilianin ameliorates myocardial ischemia-reperfusion injury: role of the apoptotic signaling pathway. PLoS ONE. 2018;13:e0193845.

    PubMed  PubMed Central  Google Scholar 

  46. Mockridge JW, Marber MS, Heads RJ. Activation of Akt during simulated ischemia/reperfusion in cardiac myocytes. Biochem Biophys Res Commun. 2000;270:947–52.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All authors are grateful to the technical staff for their support. First author is obliged to DST-SERB, India (PDF/2016/003885) for providing fellowship and financial assistance to conduct the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharamvir Singh Arya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, V., Malik, S., Mutneja, E. et al. Attenuation of ROS-mediated myocardial ischemia–reperfusion injury by morin via regulation of RISK/SAPK pathways. Pharmacol. Rep 72, 877–889 (2020). https://doi.org/10.1007/s43440-019-00011-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-019-00011-2

Keywords

Navigation