Skip to main content
Log in

Quality improvement of banana fiber through sequential enzymatic treatment

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

The search for environment-friendly and sustainable techniques like microbial enzymatic treatment for processing of natural fibers outcompete traditional techniques of using harsh chemicals and environmental pollution. This investigation explores the application of microbial enzymes in enhancing the quality of banana pseudo-stem fibers. Solid-state fermentation was systematically optimized for the synthesis of pectinase, xylanase, and laccase, utilizing the previously isolated strains Aspergillus niger SKN1 and Pycnoporus sanguineus SKS1. The sequential enzymatic treatment demonstrated substantial degumming efficiency, evident in a reduction of weight (22.6%), moisture sorption (16.83%), and fiber diameter in comparison to the control. Additionally, a noteworthy decline in pectin (73.75%), xylan (61.9%), and lignin (52.3%) content was observed in the enzyme-treated fibers relative to the control. Moreover, scanning electron microscopy confirmed the efficiency of the synergistic enzymatic treatment. The sequential enzymatic treatment exhibited promising potential to transform crude banana fibers into textile-grade fibers, offering an alternative resource for the textile industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hendriksz V. Sustainable textile innovations: Banana fibres. Fashion United. 2017. https://fashionunited.uk/news/fashion/sustainable-textile-innovations-banana-fibres/2017082825623. Accessed 21 Nov 2023.

  2. Vishnu Vardhini KJ, Murugan R. Effect of laccase and xylanase enzyme treatment on chemical and mechanical properties of banana fiber. J Nat Fibers. 2017;14:217–27. https://doi.org/10.1080/15440478.2016.1193086.

    Article  CAS  Google Scholar 

  3. Ortega Z, Morón M, Monzón MD, Badalló P, Paz R. Production of banana fiber yarns for technical textile reinforced composites. J Mater. 2016;9:370. https://doi.org/10.3390/ma9050370.

    Article  CAS  Google Scholar 

  4. Al Mamun M, Hasan MM, Ali MF, Rahman GS. Eco-friendly treatment of Green Banana Fibre in compared to Chemical Treatment. J Mater Environ Sci. 2021;12:823–6.

    CAS  Google Scholar 

  5. Islam MM, Mahmud K, Faruk O, Billah MS. Textile dyeing industries in Bangladesh for sustainable development. Int J Environ Sci Dev. 2011;2:428.

    Article  Google Scholar 

  6. Rocky AM. Comparison of effectiveness between conventional scouring & bio-scouring on cotton fabrics. Int J Sci Eng Res. 2012;3:1–5.

    Google Scholar 

  7. National Research Centre for Banana (NRCB). Banana fibre processing - wealth from waste technology transferred to UP based entrepreneur on 29.01.2022. ICAR-NRCB. https://nrcb.icar.gov.in/Entrepreneur.php. Accesed 31 Jan 2024.

  8. Sarma I, Deka AC. Process optimization for bio-degumming and surface modification of natural banana fibre. Int J Curr Adv Res. 2021;10:24122–6.

    Google Scholar 

  9. Chares Subash M, Muthiah P. Eco-friendly degumming of natural fibers for textile applications: a comprehensive review. Clean Eng Technol. 2021;5:100304. https://doi.org/10.1016/j.clet.2021.100304.

    Article  Google Scholar 

  10. Kaur A, Varghese LM, Battan B, Patra AK, Mandhan RP, Mahajan R. Bio-degumming of banana fibers using eco-friendly crude xylano-pectinolytic enzymes. Prep Biochem Biotechnol. 2020;50:521–8. https://doi.org/10.1080/10826068.2019.1710713.

    Article  CAS  PubMed  Google Scholar 

  11. Dashtban M, Schraft H, Syed TA, Qin W. Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol. 2010;1:36.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Mondal S, Soren JP, Mondal J, Rakshit S, Halder SK, Mondal KC. Contemporaneous synthesis of multiple carbohydrate debranching enzymes from newly isolated Aspergillus Fumigatus SKF-2 under solid state fermentation: a unique enzyme mixture for proficient saccharification of plant bioresources. Ind Crops Prod. 2020;150:112409. https://doi.org/10.1016/j.indcrop.2020.112409.

    Article  CAS  Google Scholar 

  13. Mondal S, Santra S, Rakshit S, Halder SK, Hossain M, Mondal KC. Saccharification of lignocellulosic biomass using an enzymatic cocktail of fungal origin and successive production of butanol by Clostridium acetobutylicum. Bioresour Technol. 2022a;343:126093. https://doi.org/10.1016/j.biortech.2021.126093.

    Article  CAS  PubMed  Google Scholar 

  14. Ferreira SC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandão GC, da Silva EP, Portugal LA, Dos Reis PS, Souza AS, Dos Santos WN. Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta. 2007;597:179–86. https://doi.org/10.1016/j.aca.2007.07.011.

    Article  CAS  PubMed  Google Scholar 

  15. Beg S, Akhter S. (2021). Box–Behnken Designs and Their Applications in Pharmaceutical Product Development. In: Beg S, editors. Design of Experiments for Pharmaceutical Product Development. Springer, Singapore; 2021. Pp. 77–85. https://doi.org/10.1007/978-981-33-4717-5_7.

  16. Zhao S, Diaby M, Zheng N, Wang J. Sequential action of different fiber-degrading enzymes enhances the degradation of corn stover. Agriculture. 2022;12:181. https://doi.org/10.3390/agriculture12020181.

    Article  CAS  Google Scholar 

  17. Mondal S, Biswal D, Pal K, Rakshit S, Halder SK, Mandavgane SA, Bera D, Hossain M, Mondal KC. Biodeinking of waste papers using combinatorial fungal enzymes and subsequent production of butanol from effluent. Bioresour Technol. 2022b;353:127078. https://doi.org/10.1016/j.biortech.2022.127078.

    Article  CAS  PubMed  Google Scholar 

  18. Mandal A, Kar S, Das Mohapatra PK, Maity C, Pati BR, Mondal KC. Regulation of xylanase biosynthesis in Bacillus cereus BSA1. Appl Biochem Biotechnol. 2012;167:1052–60. https://doi.org/10.1007/s12010-011-9523-5.

    Article  CAS  PubMed  Google Scholar 

  19. Pal K, Rakshit S, Mondal S, Jana A, Mondal KC, Halder SK. Reutilization of waste fungal biomass for concomitant production of proteochitinolytic enzymes and their catalytic products by Alcaligenes faecalis SK10. Indian J Exp Biol. 2022;60:689–700. https://doi.org/10.56042/ijeb.v60i09.65140.

    Article  CAS  Google Scholar 

  20. Mrudula S, Anitharaj R. Pectinase Production in Solid State Fermentation by Aspergillus Niger using Orange Peel as substrate. Global J BiotechnolBiochem. 2011;6:64–71.

    CAS  Google Scholar 

  21. Mondal S, Halder SK, Mondal KC. Recombinant fungal pectinase and their role towards fostering modern agriculture. In: Shukla AC, editor. Entrepreneurship with microorganisms. Academic; 2024. pp. 405–18. https://doi.org/10.1016/B978-0-443-19049-0.00003-7.

  22. Mandal A, Dutta T, Pati BR, Mondal KC, Mohapatra PK. Parametric optimalization of submerged fermantation conditions for xylanase production Bacillus cereus BSA1 through Taguchi Methodology. Acta Biol Szeged. 2015;59:189–95.

    Google Scholar 

  23. Kar S, Mandal A, Samanta S, Pati BR, Mondal KC. Studies on regulation of Xylanase Bio-synthesis by Trichoderma Reesei SAF3. Indian Sci Cruiser. 2019;19–26. https://doi.org/10.24906/isc/2019/v33/i3/185424.

  24. Halder SK, Jana A, Paul T, Das A, Ghosh K, Pati BR, Mondal KC. Purification and biochemical characterization of chitinase of Aeromonas hydrophila SBK1 biosynthesized using crustacean shell. Biocatal Agric Biotechnol. 2016;5:211–8. https://doi.org/10.1016/j.bcab.2015.11.003.

    Article  Google Scholar 

  25. Mamunur Rashid M, Samad SA, Gafur MA, Qadir R, Chowdhury AM. Effect of reinforcement of hydrophobic grade banana (musaornata) bark fiber on the physicomechanical properties of isotactic polypropylene. Int J Polym Sci. 2016. https://doi.org/10.1155/2016/9017956.

    Article  Google Scholar 

  26. Verma P, Bhardwaj NK, Chakraborti SK. Enzymatic upgradation of secondary fibers. Q J Indian Pulp Pap Tech Assoc. 2010;22:133–6.

    CAS  Google Scholar 

  27. Das Gupta P, Sen K, Sen SK. Degumming of decorticated ramie for textile purposes. Cellul Chem Technol. 1976;10:285–93.

    CAS  Google Scholar 

  28. Rashid M, Samad SA, Gafur MA, Chowdhury AS. Study of different Chemical treatments for the suitability of Banana (Musa Oranta) Fiber in Composite materials. Int J Sci Res. 2015;6.

  29. Sathasivam KV, Haris MR, Fuloria S, Fuloria NK, Malviya R, Subramaniyan V. Chemical modification of banana trunk fibers for the production of green composites. Polym J. 2021;13:1943. https://doi.org/10.3390/polym13121943.

    Article  CAS  Google Scholar 

  30. Sango T, Yona AM, Duchatel L, Marin A, Ndikontar MK, Joly N, Lefebvre JM. Step–wise multi–scale deconstruction of banana pseudo–stem (Musa acuminata) biomass and morpho–mechanical characterization of extracted long fibres for sustainable applications. Ind Crops Prod. 2018;122:657–68. https://doi.org/10.1016/j.indcrop.2018.06.050.

    Article  CAS  Google Scholar 

  31. Chakraborty I, Rongpipi S, Govindaraju I, Mal SS, Gomez EW, Gomez ED, Kalita RD, Nath Y, Mazumder N. An insight into microscopy and analytical techniques for morphological, structural, chemical, and thermal characterization of cellulose. Microsc Res Tech. 2022;85:1990–2015. https://doi.org/10.1002/jemt.24057.

    Article  CAS  PubMed  Google Scholar 

  32. Garfias Silva V, Cordova Aguilar MS, Ascanio G, Aguayo JP, Pérez-Salas KY, Susunaga Notario AD. Acid hydrolysis of pectin and mucilage from cactus (Opuntia ficus) for identification and quantification of monosaccharides. Molecules. 2022;27:5830. https://doi.org/10.3390/molecules27185830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zoghlami A, Paës G. Lignocellulosic biomass: understanding recalcitrance and predicting hydrolysis. Front Chem. 2019;7:874. https://doi.org/10.3389/fchem.2019.00874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Das A, Paul T, Halder SK, Jana A, Maity C, Mohapatra PK, Pati BR, Mondal KC. Production of cellulolytic enzymes by aspergillus fumigatus ABK9 in wheat bran-rice straw mixed substrate and use of cocktail enzymes for deinking of waste office paper pulp. Bioresour Technol. 2013;128:290–6. https://doi.org/10.1016/j.biortech.2012.10.080.

    Article  CAS  PubMed  Google Scholar 

  35. Ren Y, Lin H, Gong J, Li Z, Li Q, Liu X, Zhang J. A new method for bio-degumming in less-water environment: solid-state-fermentation progressive bio-degumming. Ind Crops Prod. 2022;183:114986. https://doi.org/10.1016/j.indcrop.2022.114986.

    Article  CAS  Google Scholar 

  36. Biswas D, Chakrabarti SK, De S, Paral R. Eco-friendly degumming technology for ramie fiber. J Nat Fibers. 2016;13:227–37. https://doi.org/10.1080/15440478.2015.1005327.

    Article  CAS  Google Scholar 

  37. Shroff A, Karolia A, Shah J. Bio-softening of banana fiber for nonwoven application. Int J Sci Res. 2015;4:524–7.

    Google Scholar 

  38. Balakrishnan S, Wickramasinghe GL, Wijayapala US. Investigation on improving banana fiber fineness for textile application. Text Res J. 2019;89:4398–409. https://doi.org/10.1177/0040517519835758.

    Article  CAS  Google Scholar 

  39. Patel BY, Patel HK. Retting of banana pseudostem fibre using Bacillus strains to get excellent mechanical properties as biomaterial in textile & fiber industry. Heliyon. 2022;8. https://doi.org/10.1016/j.heliyon.2022.e10652.

  40. Pejic BM, Kostic MM, Skundric PD, Praskalo JZ. The effects of hemicelluloses and lignin removal on water uptake behavior of hemp fibers. Bioresour Technol. 2008;99:7152–9. https://doi.org/10.1016/j.biortech.2007.12.073.

    Article  CAS  PubMed  Google Scholar 

  41. Oyewo AT, Oluwole OO, Ajide OO, Omoniyi TE, Murid H. Banana pseudo stem fiber, hybrid composites and applications: a review. Hybrid Adv. 2023;100101. https://doi.org/10.1016/j.hybadv.2023.100101.

  42. Das A, Paul T, Halder SK, Maity C, Mohapatra PD, Pati BR, Mondal KC. Study on regulation of growth and biosynthesis of cellulolytic enzymes from newly isolated aspergillus fumigatus ABK9. Pol J Microbiol. 2013;62(1):31.

    Article  CAS  PubMed  Google Scholar 

  43. Samanta S, Das A, Haider SK, Jana A, Mohapatra PK, Pad BR, Mondal KC. Thermodynamic and kinetic characteristics of an a-amylase from Bacillus licheniformis SKB4. Acta Biologica Szeged. 2014;58(2):147–56. http://www2.sci.u-szeged.hu/ABS.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to SVMCM, Government of West Bengal, India for financial assistance.

Funding

This research work has received funding from SVMCM, Government of West Bengal, India.

Author information

Authors and Affiliations

Authors

Contributions

KCM designed the study. TJ conducted the research. TJ, SM, KM, KP, Hilaluddin, SP and SKH analyzed the data. TJ and SM prepared the primary manuscript. KCM prepared the final manuscript and had the primary responsibility of the final content. TJ, SM, KCM and SKH revised the manuscript.

Corresponding author

Correspondence to Keshab Chandra Mondal.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors read and approved the final manuscript. All authors have agreed to submit the manuscript to SMAB for eventual publication.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jana, T., Mondal, S., Pal, K. et al. Quality improvement of banana fiber through sequential enzymatic treatment. Syst Microbiol and Biomanuf (2024). https://doi.org/10.1007/s43393-024-00265-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43393-024-00265-9

Keywords

Navigation