Skip to main content
Log in

Sonoprocessing coupled to spray drying as a novel strategy to encapsulate bioactive compounds from acerola pomace extract into Saccharomyces cerevisiae cells

  • Short Communication
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

This study evaluates the encapsulation of phytoactives from acerola (Malpighia emarginata) pomace extract (APE) into Saccharomyces cerevisiae cells via sonoprocessing coupled to spray drying (SPSD process). The effect of acoustic energy density (AED; 0–333.3 W/L), APE pH (3–11), and spray drying inlet temperature (T; 150–190 °C) on the encapsulation efficiency (EE) and yield (EY) of phenolic compounds and anthocyanins were investigated through a Box–Behnken experimental design (BBD). Results demonstrated that maximized EEs (> 63%) and EYs (> 126.7 mg/100 g) were obtained using the highest AED (333.3 W/L) and alkaline APE (pH 11), while the optimal T was set at 170 °C. Likewise, these process conditions also enhanced the antioxidant activity of biocapsules which positively correlated with the concentration of yeast encapsulated phytoactives by SPSD. Overall, our results demonstrate the versatility of SPSD protocol for manufacturing bioactive-enriched yeast biocapsules using complex mixtures of phytoactives. Further, it presents an innovative and sustainable roadmap for the management and repurposing of agri-food byproducts such as acerola pomace and other secondary streams of the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data availability

All data generated or analyzed during this study are included in this manuscript.

Code availability

Not applicable.

References

  1. Poletto P, Álvarez-Rivera G, López GD, et al. Recovery of ascorbic acid, phenolic compounds and carotenoids from acerola by-products: an opportunity for their valorization. LWT Food Sci Technol. 2021. https://doi.org/10.1016/j.lwt.2021.111654.

    Article  Google Scholar 

  2. Rezende YRRS, Nogueira JP, Narain N. Microencapsulation of extracts of bioactive compounds obtained from acerola (Malpighia emarginata DC) pulp and residue by spray and freeze drying: chemical, morphological and chemometric characterization. Food Chem. 2018;254:281–91. https://doi.org/10.1016/j.foodchem.2018.02.026.

    Article  CAS  PubMed  Google Scholar 

  3. Rezende YRRS, Nogueira JP, Narain N. Comparison and optimization of conventional and ultrasound assisted extraction for bioactive compounds and antioxidant activity from agro-industrial acerola (Malpighia emarginata DC) residue. LWT Food Sci Technol. 2017;85:158–69. https://doi.org/10.1016/j.lwt.2017.07.020.

    Article  CAS  Google Scholar 

  4. Jafari S, Jafari SM, Ebrahimi M, et al. A decade overview and prospect of spray drying encapsulation of bioactives from fruit products: Characterization, food application and in vitro gastrointestinal digestion. Food Hydrocoll. 2023;134: 108068.

    Article  CAS  Google Scholar 

  5. Young S, Rai R, Nitin N. Bioaccessibility of curcumin encapsulated in yeast cells and yeast cell wall particles. Food Chem. 2020;309: 125700. https://doi.org/10.1016/j.foodchem.2019.125700.

    Article  CAS  PubMed  Google Scholar 

  6. Young S, Nitin N. Thermal and oxidative stability of curcumin encapsulated in yeast microcarriers. Food Chem. 2019;275:1–7. https://doi.org/10.1016/j.foodchem.2018.08.121.

    Article  CAS  PubMed  Google Scholar 

  7. Kurek MA, Majek M, Onopiuk A, et al. Encapsulation of anthocyanins from chokeberry (Aronia melanocarpa) with plazmolyzed yeast cells of different species. Food Bioprod Process. 2023;137:84–92. https://doi.org/10.1016/j.fbp.2022.11.001.

    Article  CAS  Google Scholar 

  8. Rubio FTV, Haminiuk CWI, dos Santos MM, et al. Development of natural pigments microencapsulated in waste yeast Saccharomyces cerevisiae using spray drying technology and their application in yogurt. Food Funct. 2021;12:8946–59. https://doi.org/10.1039/D1FO00708D.

    Article  CAS  PubMed  Google Scholar 

  9. Dupont S, Rapoport A, Gervais P, Beney L. Survival kit of Saccharomyces cerevisiae for anhydrobiosis. Appl Microbiol Biotechnol. 2014;98:8821–34. https://doi.org/10.1007/s00253-014-6028-5.

    Article  CAS  PubMed  Google Scholar 

  10. Dimopoulos G, Katsimichas A, Tsimogiannis D, et al. Cell permeabilization processes for improved encapsulation of oregano essential oil in yeast cells. J Food Eng. 2021;294: 110408. https://doi.org/10.1016/j.jfoodeng.2020.110408.

    Article  CAS  Google Scholar 

  11. Rubio FTV, Haminiuk CWI, Martelli-Tosi M, et al. Utilization of grape pomaces and brewery waste Saccharomyces cerevisiae for the production of bio-based microencapsulated pigments. Food Res Int. 2020;136: 109470. https://doi.org/10.1016/j.foodres.2020.109470.

    Article  CAS  PubMed  Google Scholar 

  12. Tan C, Huang M, McClements DJ, et al. Yeast cell-derived delivery systems for bioactives. Trends Food Sci Technol. 2021;118:362–73. https://doi.org/10.1016/j.tifs.2021.10.020.

    Article  CAS  Google Scholar 

  13. de Medeiros FGM, Dupont S, Beney L, et al. Efficient stabilisation of curcumin microencapsulated into yeast cells via osmoporation. Appl Microbiol Biotechnol. 2019;103:9659–72. https://doi.org/10.1007/s00253-019-10196-4.

    Article  CAS  PubMed  Google Scholar 

  14. de Andrade EWV, Dupont S, Beney L, et al. Osmoporation is a versatile technique to encapsulate fisetin using the probiotic bacteria Lactobacillus acidophilus. Appl Microbiol Biotechnol. 2022;106:1031–44. https://doi.org/10.1007/s00253-021-11735-8.

    Article  CAS  PubMed  Google Scholar 

  15. Errenst C, Petermann M, Kilzer A. Encapsulation of limonene in yeast cells using the concentrated powder form technology. J Supercrit Fluids. 2021;168: 105076. https://doi.org/10.1016/j.supflu.2020.105076.

    Article  CAS  Google Scholar 

  16. Young S, Dea S, Nitin N. Vacuum facilitated infusion of bioactives into yeast microcarriers: evaluation of a novel encapsulation approach. Food Res Int. 2017;100:100–12. https://doi.org/10.1016/j.foodres.2017.07.067.

    Article  CAS  PubMed  Google Scholar 

  17. Kot AM, Gientka I, Bzducha-Wróbel A, et al. Comparison of simple and rapid cell wall disruption methods for improving lipid extraction from yeast cells. J Microbiol Methods. 2020;176: 105999. https://doi.org/10.1016/j.mimet.2020.105999.

    Article  CAS  PubMed  Google Scholar 

  18. Radel S, Gherardini L, McLoughlin AJ, et al. Breakdown of immobilisation/separation and morphology changes of yeast suspended in water-rich ethanol mixtures exposed to ultrasonic plane standing waves. Bioseparation. 2000;9:369–77. https://doi.org/10.1023/A:1011158019835.

    Article  CAS  PubMed  Google Scholar 

  19. Rubio FTV, Haminiuk CWI, de Santos PD, F, et al. Investigation on brewer’s spent yeast as a bio-vehicle for encapsulation of natural colorants from pumpkin (Cucurbita moschata) peels. Food Funct. 2022. https://doi.org/10.1039/d2fo00759b.

    Article  PubMed  Google Scholar 

  20. Pham-Hoang BN, Romero-Guido C, Phan-Thi H, Waché Y. Strategies to improve carotene entry into cells of Yarrowia lipolytica in a goal of encapsulation. J Food Eng. 2018;224:88–94. https://doi.org/10.1016/j.jfoodeng.2017.12.029.

    Article  CAS  Google Scholar 

  21. Tao Y, Han Y, Liu W, et al. Parametric and phenomenological studies about ultrasound-enhanced biosorption of phenolics from fruit pomace extract by waste yeast. Ultrason Sonochem. 2019;52:193–204. https://doi.org/10.1016/j.ultsonch.2018.11.018.

    Article  CAS  PubMed  Google Scholar 

  22. de Andrade EWV, Dupont S, Beney L, et al. Sonoprocessing is an effective strategy to encapsulate fisetin into Saccharomyces cerevisiae cells. Appl Microbiol Biotechnol. 2022;106:7461–75. https://doi.org/10.1007/s00253-022-12214-4.

    Article  CAS  PubMed  Google Scholar 

  23. de Andrade EWV, Hoskin RT, da Silva Pedrini MR. Ultrasound-assisted encapsulation of curcumin and fisetin into Saccharomyces cerevisiae cells: a multistage batch process protocol. Lett Appl Microbiol. 2022;75:1538–48. https://doi.org/10.1111/lam.13820.

    Article  CAS  PubMed  Google Scholar 

  24. de Andrade EWV, Dupont S, Beney L, et al. Sonoprocessing enhances the stabilization of fisetin by encapsulation in Saccharomyces cerevisiae cells. Int Microbiol. 2023. https://doi.org/10.1007/s10123-023-00412-7.

    Article  PubMed  Google Scholar 

  25. Ribeiro VR, Maciel GM, Fachi MM, et al. Biosorption of biocompounds from white and green tea in Saccharomyces cerevisiae waste: study of the secondary metabolites by UPLC-QToF-MS and simulated in vitro gastrointestinal digestion. Food Biosci. 2021. https://doi.org/10.1016/j.fbio.2021.101001.

    Article  Google Scholar 

  26. Ribeiro VR, Maciel GM, Fachi MM, et al. Improvement of phenolic compound bioaccessibility from yerba mate (Ilex paraguariensis) extracts after biosorption on Saccharomyces cerevisiae. Food Res Int. 2019;126: 108623. https://doi.org/10.1016/j.foodres.2019.108623.

    Article  CAS  PubMed  Google Scholar 

  27. Fujita A, Borges K, Correia R, et al. Impact of spouted bed drying on bioactive compounds, antimicrobial and antioxidant activities of commercial frozen pulp of camu-camu (Myrciaria dubia Mc. Vaugh). Food Res Int. 2013;54:495–500. https://doi.org/10.1016/j.foodres.2013.07.025.

    Article  CAS  Google Scholar 

  28. Giusti MM, Wrolstad RE. Characterization and measurement of anthocyanins by UV–visible spectroscopy. Curr Protocol Food Anal Chem. 2001;00:1–13. https://doi.org/10.1002/0471142913.faf0102s00.

    Article  Google Scholar 

  29. de Andrade EWV, Dupont S, Beney L, et al. Techno-functionality of fisetin-enriched yoghurt fermented with Lactobacillus acidophilus bio-capsules produced via osmoporation. Syst Microbiol Biomanuf. 2022;2:743–9. https://doi.org/10.1007/s43393-022-00100-z.

    Article  CAS  Google Scholar 

  30. Liu D, Zeng XA, Sun DW, Han Z. Disruption and protein release by ultrasonication of yeast cells. Innov Food Sci Emerg Technol. 2013;18:132–7. https://doi.org/10.1016/j.ifset.2013.02.006.

    Article  CAS  Google Scholar 

  31. Liu Y, Liang Q, Liu X, et al. Treatment with ultrasound improves the encapsulation efficiency of resveratrol in zein-gum Arabic complex coacervates. LWT Food Sci Technol. 2022;153: 112331. https://doi.org/10.1016/j.lwt.2021.112331.

    Article  CAS  Google Scholar 

  32. Vera de Rosso V, Hillebrand S, Cuevas Montilla E, et al. Determination of anthocyanins from acerola (Malpighia emarginata DC.) and açai (Euterpe oleracea Mart.) by HPLC-PDA-MS/MS. J Food Compos Anal. 2008;21:291–9. https://doi.org/10.1016/j.jfca.2008.01.001.

    Article  CAS  Google Scholar 

  33. Brglez Mojzer E, Knez Hrnčič M, Škerget M, et al. Polyphenols: extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules. 2016;21:901. https://doi.org/10.3390/molecules21070901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sekova VY, Dergacheva DI, Isakova EP, et al. Soluble sugar and lipid readjustments in the Yarrowia lipolytica yeast at various temperatures and ph. Metabolites. 2019. https://doi.org/10.3390/metabo9120307.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Aguilar-Uscanga B, Francois JM. A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Lett Appl Microbiol. 2003;37:268–74. https://doi.org/10.1046/j.1472-765X.2003.01394.x.

    Article  CAS  PubMed  Google Scholar 

  36. Ribeiro RA, Bourbon-Melo N, Sá-Correia I. The cell wall and the response and tolerance to stresses of biotechnological relevance in yeasts. Front Microbiol. 2022;13:1–25. https://doi.org/10.3389/fmicb.2022.953479.

    Article  Google Scholar 

  37. De Lucena RM, Elsztein C, Simões DA, De Morais MA. Participation of CWI, HOG and Calcineurin pathways in the tolerance of Saccharomyces cerevisiae to low pH by inorganic acid. J Appl Microbiol. 2012;113:629–40. https://doi.org/10.1111/j.1365-2672.2012.05362.x.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Universidade Federal do Rio Grande do Norte (UFRN) and the Chemical Engineering Department (DEQ/UFRN) for technical support.

Funding

EWVA was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Grant number 140208/2022-4.

Author information

Authors and Affiliations

Authors

Contributions

EWVA: conceptualization, methodology, investigation, formal analysis, writing (draft and review), and visualization. SD, LB, and TC: writing (review). RTH and MRSP: methodology, resources, supervision, and writing (draft and review). All authors read and approved the manuscript.

Corresponding author

Correspondence to Márcia Regina da Silva Pedrini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Andrade, E.W.V., Hoskin, R.T., Dupont, S. et al. Sonoprocessing coupled to spray drying as a novel strategy to encapsulate bioactive compounds from acerola pomace extract into Saccharomyces cerevisiae cells. Syst Microbiol and Biomanuf (2024). https://doi.org/10.1007/s43393-024-00248-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43393-024-00248-w

Keywords

Navigation