Skip to main content
Log in

Enhanced maltotetraose purity in industrial production by a sustainable bio-physical process

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Maltotetraose (G4) consists of four glucose units linked by an α-1,4-glycosidic bond. This compound demonstrates remarkable versatility in food processing and exhibits specific physiological functions, suggesting promising applications in the medical, chemical, and food sectors. However, due to the closely related physical and chemical properties of maltotriose (G3), G4, and maltopentose (G5), achieving high-purity G4 has been challenging, resulting in a staggering price of US$438.88 per gram. In this study, a novel and efficient bio-physical method was developed to produce high-purity G4. Initially, multi-enzymatic hydrolysis yielded G4 at a 65.83% purity. Subsequent processes involving yeast fermentation and SMB separation further enhanced the purity to an impressive 93.15%. Notably, this pioneering method represents the successful separation of G3, G4, and G5 to exclusively obtain high-purity G4 from maltooligosaccharides, surpassing previous purity achievements. Every facet of this bio-physical method underwent meticulous design and optimization, ensuring a production process that is environmentally friendly, safe, and efficient. To validate its practicality, pilot-scale production tests were conducted. The cost analysis indicates that producing high-purity G4 through this method amounts to only US$0.013 per gram, representing that the actual selling price of G4 was 33,760 times the production cost under this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data are available from the corresponding author on reasonable request.

References

  1. Shinde VK, Vamkudoth KR. Maltooligosaccharide forming amylases and their applications in food and pharma industry. J Food Sci Technol. 2021;1–12. https://doi.org/10.1007/s13197-021-05262-7.

  2. Bae W, Lee SH, Yoo SH, et al. Utilization of a maltotetraose-producing amylase as a whole wheat bread improver: dough rheology and baking performance. J Food Sci. 2014;79(8):E1535–E40. https://doi.org/10.1111/1750-3841.12538.

    Article  CAS  PubMed  Google Scholar 

  3. Soon YS, You JJ, Yeonjoong Y, et al. Inhibition of PDGF-induced migration and TNF-alpha-induced ICAM-1 expression by maltotetraose from bamboo stem extract (BSE) in mouse vascular smooth muscle cells. Mol Nutr Food Res. 2016;60(9):2086–97. https://doi.org/10.1002/mnfr.201500601.

    Article  CAS  Google Scholar 

  4. Kondo H, Honke T, Hasegawa R, et al. Isolation of maltotetraose from Streptomyces as an antibiotic against Erwinia carotovora. J Antibiot. 1975;28(2):157–60. https://doi.org/10.7164/antibiotics.28.157.

    Article  CAS  Google Scholar 

  5. Kimura T, Nakakuki T. Maltotetraose, a new saccharide of tertiary property. Starch/Staerke. 1990;42(4):151–57. https://doi.org/10.1002/star.19900420407.

    Article  CAS  Google Scholar 

  6. Bláhová M, Štefuca V, Hronská H, et al. Maltooligosaccharides: properties, production and applications. Molecules. 2023;28(7):3281. https://doi.org/10.3390/molecules28073281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li J, Ban X, Gu Z, et al. Preparation and antibacterial activity of a novel maltotetraose product. Process Biochem. 2021;108:8–17. https://doi.org/10.1016/j.procbio.2021.05.018.

    Article  CAS  Google Scholar 

  8. Maruo S, Yamamoto H, Toda M, et al. Enzymatic synthesis of high purity maltotetraose using moranoline (1-Deoxynojirimycin). J Agricultural Chem Soc Japan. 1993;57(3):499–501. https://doi.org/10.1271/bbb.57.499.

    Article  CAS  Google Scholar 

  9. Ezure Y, Maruo S, Kojima M, et al. Manufacturing high purity maltose and maltotetraose from starch by a novel and efficient procedure named reducing end modification method. Biosci Biotechnol Biochem. 1997;61(11):1931–33. https://doi.org/10.1271/bbb.61.1931.

    Article  CAS  PubMed  Google Scholar 

  10. Li Y, Lü F, Xu Y, et al. Purification of Ulva lactuca functional oligosaccharides by yeast fermentation combined with enzyme. J Fujian Agric Forestry University(Natural Sci Edition). 2018;47(1):110–14.

    Google Scholar 

  11. Dasaesamoh R, Youravong W, Wichienchot S. Optimization on pectinase extraction and purification by yeast fermentation of oligosaccharides from dragon fruit (Hyloceus Undatus). Int Food Res J. 2016;23(6):2601–07.

    Google Scholar 

  12. Zhang Z, Jin T, Xie X, et al. Structure of maltotetraose-forming amylase from Pseudomonas saccharophila STB07 provides insights into its product specificity. Int J Biol Macromol. 2020;154:1303–13. https://doi.org/10.1016/j.ijbiomac.2019.11.006.

    Article  CAS  PubMed  Google Scholar 

  13. Duan K, Ban X, Wang Y, et al. Improving the product specificity of maltotetraose-forming amylase from Pseudomonas saccharophila STB07 by removing the carbohydrate-binding module. J Agric Food Chem. 2022;70(42):13709–18. https://doi.org/10.1021/acs.jafc.2c05580.

    Article  CAS  PubMed  Google Scholar 

  14. Thakur M, Sharma N, Rai AK, et al. A novel cold-active type I pullulanase from a hot-spring metagenome for effective debranching and production of resistant starch. Bioresour Technol. 2021;320:124288. https://doi.org/10.1016/j.biortech.2020.124288.

    Article  CAS  PubMed  Google Scholar 

  15. Bhat P, Pawaskar G-M, Raval R, et al. Expression of Bacillus licheniformis chitin deacetylase in E. Coli pLysS: sustainable production, purification and characterisation. Int J Biol Macromol. 2019;131:1008–13. https://doi.org/10.1016/j.ijbiomac.2019.03.144.

    Article  CAS  PubMed  Google Scholar 

  16. Phillips EO, Giovinazzi S, Menz SL, et al. Preparation of cell extracts by cryogrinding in an automated freezer mill. JoVE (Journal Visualized Experiments). 2021;167e61164. https://doi.org/10.3791/61164.

  17. Imamoglu S. Simulated moving bed chromatography (SMB) for application in bioseparation. Mod Adv Chromatogr. 2002;211–31. https://doi.org/10.1007/3-540-45345-8_6.

  18. Seidel-Morgenstern A, Kessler LC, Kaspereit M. New developments in simulated moving bed chromatography. Chem Eng Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology. 2008;31(6):826–37. https://doi.org/10.1002/ceat.200800081.

    Article  CAS  Google Scholar 

  19. Barber E, Houghton MJ, Visvanathan R, et al. Measuring key human carbohydrate digestive enzyme activities using high-performance anion-exchange chromatography with pulsed amperometric detection. Nat Protoc. 2022;17(12):2882–919. https://doi.org/10.1038/s41596-022-00736-0.

    Article  CAS  PubMed  Google Scholar 

  20. Maalej H, Ben Ayed H, Ghorbel-Bellaaj O et al. Production and biochemical characterization of a high maltotetraose (G4) producing amylase from Pseudomonas stutzeri AS22. BioMed research international. 2014;2014. https://doi.org/10.1155/2014/156438.

  21. Matsumoto T, Makimoto S, Taniguchi Y. Effect of pressure on the mechanism of hydrolysis of maltotetraose, maltopentaose, and maltohexose catalyzed by porcine pancreatic α-amylase. Biochim et Biophys Acta (BBA)-Protein Struct Mol Enzymol. 1997;1343(2):243–50. https://doi.org/10.1021/jf970137h.

    Article  CAS  Google Scholar 

  22. Quéméneur M, Bittel M, Trably E, et al. Effect of enzyme addition on fermentative hydrogen production from wheat straw. Int J Hydrogen Energy. 2012;37(14):10639–47. https://doi.org/10.1016/j.ijhydene.2012.04.083.

    Article  CAS  Google Scholar 

  23. Ming Z. Research on the Production Technology of Maltotetraose. Journal Of Wuxi University Of Light Industry; 1999.

  24. Adhiraj R, David JI, Hong CK, et al. Understanding the mechanism of glucose-induced relief of Rgt1-mediated repression in yeast. Febs Open Bio. 2014;4(1):105–11. https://doi.org/10.1016/j.fob.2013.12.004.

    Article  CAS  Google Scholar 

  25. Zhang X. Glucose repression of the mal genes in the yeast Saccharomyces cerevisiae, Yeshiva University1996.

  26. Stambuk B, Silva MD, Panek A, et al. Active α-glucoside transport in Saccharomyces cerevisiae. FEMS Microbiol Lett. 1999;170(1):105–. https://doi.org/10.1111/j.1574-6968.1999.tb13361.x.  10.

    Article  CAS  PubMed  Google Scholar 

  27. Jones RP, Greenfield PF. Effect of carbon dioxide on yeast growth and fermentation. Enzym Microb Technol. 1982;4(4):210–23. https://doi.org/10.1016/0141-0229(82)90034-5.

    Article  CAS  Google Scholar 

  28. Zhao G, Chen Y, Carey L, et al. Cyclin-dependent kinase co-ordinates carbohydrate metabolism and cell cycle in S.cerevisiae. Mol Cell. 2016;62(4):546–57. https://doi.org/10.1016/j.molcel.2016.04.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ming Z, Hong C, Jing S, et al. Inoculum size-dependent interactive regulation of metabolism and stress response of Saccharomyces cerevisiae revealed by comparative metabolomics. J Biotechnol. 2009;144(4):279–86. https://doi.org/10.1016/j.jbiotec.2009.09.020.

    Article  CAS  Google Scholar 

  30. White J, Munns DJ. Influence of temperature on yeast growth and fermentation. J Inst Brew. 1951;57(4):280. https://doi.org/10.1002/j.2050-0416.1951.tb01628.x. – 84.

    Article  CAS  Google Scholar 

  31. Lee C-g, Choi J-H, Park C, et al. Standing wave design and optimization of a simulated moving bed chromatography for separation of xylobiose and xylose under the constraints on product concentration and pressure drop. J Chromatogr A. 2017;1527:80–90. https://doi.org/10.1016/j.chroma.2017.10.067.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Liyuan Jiang: Conceptualization, Investigation, Data curation, Writing – original draft. Haocun Kong: Methodology, Data curation. Xiaofeng Ban: Writing - review & editing. Zhengbiao Gu: Conceptualization, Methodology, Resources. Caiming Li: Resources, Supervision. Yue-E Sun: Writing - review & editing. Zhaofeng Li: Conceptualization, Methodology, Resources, Supervision.

Corresponding author

Correspondence to Zhaofeng Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Kong, H., Ban, X. et al. Enhanced maltotetraose purity in industrial production by a sustainable bio-physical process. Syst Microbiol and Biomanuf (2024). https://doi.org/10.1007/s43393-024-00243-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43393-024-00243-1

Keywords

Navigation